协作中继系统容量界及其无速率网络编码
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,高速发展的无线通信技术对人们的日常生活产生了深远的影响。现今的无线网络需要面对爆炸式增长的用户终端数量以及其数据传输需求。协作中继技术是一个潜在的解决方案,其可以有效地增强链路可靠性,增加系统吞吐量并扩大系统覆盖范围。作为下一代无线通信标准(例如LTE-A)中的关键增强型技术,协作通信在通信理论界获得了热切的关注。然而,协作通信技术仍然存在大量理论以及实际问题有待解决。首先,在信息论框架下,协作中继网络的理论性能界仍旧是开放的问题。其次,为了充分获得协作中继技术期望的性能增益,相应的编码设计还需要深入挖掘和研究。作为一种最初针对无噪网络提出的技术,网络编码能够进一步提升协作中继网络的性能。然而为了对抗无线中继网络中存在的衰落、干扰以及噪声,网络编码需要与信道编码相结合以正常工作。作为一类具有较高信道自适应性的信道编码,无速率码被认为非常适用于协作中继网络。将网络编码与无速率码相结合,我们提出了一类具有灵活性、鲁棒性以及较佳性能的联合网络信道编码。
     在本学位论文中,我们在多用户信息论理论以及编码理论的指导下,研究了协作中继网络中的容量界以及联合网络信道编码设计问题。现将研究内容概述如下:
     在本论文的第一部分,我们考虑了非受限半双工高斯放大转发双向中继信道(AF-TWRC)。通过计算相应的双向信道香农内外界,我们给出了该信道容量的一组内界和外界。对于高斯双向信道,其香农内外界是重合的,并以此确定了其容量区。然而对于放大转发双向中继信道,我们得出了相反的结论,即其香农内界和外界除了两个源节点都无噪的情况以外都是不重和的。这是由于放大转发双向中继信道中的中继节点带来了额外的功率限制条件,而该限制条件与两个源节点信道输入间的相关性有关,这是该信道与高斯双向信道的本质区别。虽然放大转发双向中继信道的容量区之前被认为已经是确立了,但本文推翻了该结论,其容量区应该仍旧是一个开放问题。最后我们在中继无噪的情况下研究了该信道的容量。通过依据相关平衡思想推得的新外界,我们确立了该情况下放大转发双向中继信道的容量区。
     在第二部分,我们针对半双工时分双向中继系统提出了一个基于无速率码的三时隙网络编码传输协议,其中两个源节点通过一个中继节点的协助互相传输信息。在该协议中,每个源节点分别在前两个时隙中将其信息采用无速率编码后在系统中广播,直到中继节点正确译码并反馈ACK。在第三时隙,中继将两个源节点的消息利用基于无速率网络编码合并并编码,然后将其在系统中广播。两个源节点将该时隙以及前两个时隙收到的编码包进行迭代译码来恢复出对方源节点的消息。我们采用无速率码的一种,Raptor码,来实现我们的无速率网络编码方案。对于高斯噪声信道以及块衰落信道这两种情况,我们都能通过求解一组线性规划问题来联合优化系统中各节点采用的无速率码度数分布。仿真结果表明,采用优化度数分布的无速率网络编码方案要优于二元除删信道最优度数分布以及传统的联合网络信道编码方案,即能达到更高的系统吞吐量,并有着更低的系统误比特率。
     在第三部分,我们考虑一个非对称时分多接入中继系统,其中包含了两个源节点,一个中继节点以及一个目的节点。所谓非对称,是指两个源节点到中继节点或目的节点的信道增益可能不同,或者两个源节点的消息长度可能不同。为了增强链路鲁棒性以及系统吞吐量,我们采用一种基于特殊无速率码的联合网络信道编码,该无速率码同时扮演了网络编码以及信道编码的角色。具体来说,源节点将各自的消息采用无速率码编码后广播给中继节点以及目的节点。而在中继节点,我们提出了一种新型的二维LT码(2D-LT),其可以将两个源节点消息的预编码比特利用二维度数分布联合编码同时内在地完成了网络编码。非常有趣的是,我们提出的编码方法可以退化成几种已知的基于无速率码的联合网络信道编码方法。为了得到趋近于理论上限的性能,我们利用外信息传递分析优化了两个源节点以及中继节点采用的无速率码的度数分布。仿真说明了我们提出的无速率网络编码在采用优化度数分布下,相较于采用传统度数分布的其他联合网络信道编码,可以达到更低的误码率以及更高的系统吞吐量。
In the past decades, the rapid development of wireless communication has a profound effect on our daily life. Today's wireless networks have to face the explosive growth of popularity of user equipments and their demands for data transmission. One potential solution is cooperative communication, which can effectively enhance the link reliability as well as increase the sys-tem throughput and coverage. Being a key role in the next generation communication standards (e.g., Long Term Evolution-Advanced), cooperative communication has received tremendous in-terests in the research community. However, there remains quite many theoretic and practical issues to be addressed for cooperative communication. The fundamental limits of cooperative relay networks, under the framework of information theory, are still open problems. Moreover, the practical coding schemes to achieve the promised gains of cooperative relaying are far from fully investigated. Network coding, originally proposed for noiseless networks, has shown its significant advantage when applied to the cooperative relay networks. Nevertheless, in order to combat the fading, interference and noise, which are inevitable in wireless cooperative relay networks, network coding should be incorporated with channel coding to work properly. As a highly compatible channel code, rateless code, has been found synergistic matching in coopera-tive relay networks. By merging the two, we propose a class of flexible and robust joint network and channel coding schemes with good performances.
     In this dissertation, resorting to multiuser information theory and coding theory, we investi-gate the capacity bounds as well as joint network and channel coding design in cooperative relay networks. The contents of this dissertation are listed as follows.
     In the first part of this dissertation, we revisit the non-restricted half-duplex Gaussian amplify-and-forward two-way relay channel (AF-TWRC). The inner and outer bounds of its capacity region are derived by evaluating Shannon's inner and outer bounds for general two-way channels. We prove that, in contrast to the case of Gaussian two-way channel (GTWC) where the two bounds coincide thus establishing its capacity region, the two bounds of AF-TWRC do not coincide unless both terminals are noise-free, due to that the intermediate relay node introduces additional power constraint relating to the correlation of channel inputs from both terminals. This indicates that the capacity region of non-restricted Gaussian AF-TWRC, which was previously believed to be already established in a way similar to that of GTWC, still remains open. We further investigate a special case of non-restricted AF-TWRC where the relay is noise-free, and obtain its capacity region based on the tighter dependence balance bound.
     In the second part, we propose a three-stage rateless coded protocol for a half-duplex time-division two-way relay system, where two terminals send messages to each other through a relay between them. In the protocol, each terminal takes one of the first two stages respectively to encode its message using rateless code and broadcast the result until the relay acknowledges successful decoding. During the third stage, the relay combines and re-encodes both messages with a joint network-channel coding scheme based on rateless coding which provides incremen-tal redundancy. Together with the packets received directly in previous stages, each terminal then retrieves the desired message using an iterative decoder. The degree profiles of the specific rateless codes, i.e., Raptor codes, implemented at both terminals and the relay, are jointly opti-mized for both the AWGN channel and the Rayleigh block fading channel through solving a set of linear programming problems. Simulation results show that, the system throughput as well as the error rate achieved by the optimized degree profiles always outperforms those achieved by the conventional degree profile optimized for Binary Erasure Channel (BEC) and the previous network coding scheme with rateless codes.
     In the third part of this dissertation, we consider an asymmetric time-division multiple ac-cess relay system consisting of two sources, one relay and one destination, where the channel conditions and message lengths of the two sources are allowed to be different. To enhance the link robustness and the system throughput, joint network-channel coding (JNCC) is employed with a specially designed rateless code which conducts both the channel coding and network coding simultaneously. In particular, at the sources, messages are rateless coded and then broad-casted to the relay and destination. While at the relay, a novel two-dimensional (2-D) LT code is proposed, which jointly encodes the precoded message bits of the two sources using a2-D degree profile and at the meantime completes the network coding inherently. Interestingly, the proposed scheme can be degraded to several conventional JNCC schemes based on rateless cod-ing. To further approach the theoretical limit, the corresponding degree profiles implemented at both sources and the relay are jointly designed based on the extrinsic information transfer (EXIT) function analysis. Simulations show that our proposed JNCC scheme with the optimized degree profiles outperforms other JNCC schemes with the conventional profiles both on the BER and throughput performances.
引文
[1]Cisco visual networking index:Global mobile data traffic forecast update.2012-2017.
    [2]E. Dahlman, S. Parkvall. and J. Skold.4G:LTE/LTE-Advancedfor Mobile Broadband. Academic Press, 2011.
    [3]J. Huang. F. Qian. A. Gerber, Z.M. Mao. S. Sen, and O. Spatscheck. A close examination of performance and power characteristics of 4g lte networks. Mobisys,2012.
    [4]Congzheng Han, Tim Harrold, Simon Armour, Ioannis Krikidis, Stefan Videv, Peter M Grant, Harald Haas, John S Thompson. Ivan Ku, Cheng-Xiang Wang, et al. Green radio:radio techniques to enable energy-efficient wireless networks. IEEE Commun. Magazine,49(6):46-54,2011.
    [5]Patrick Kurp. Green computing. Communications of the ACM,51 (10):11-13,2008.
    [6]B.A. Fette. Cognitive radio technology. Academic Press.2009.
    [7]G. Yuan, X. Zhang. W. Wang, and Y. Yang. Carrier aggregation for lte-advanced mobile communication systems. IEEE Commun. Magazine,48(2):88-93.2010.
    [8]Rui Yin, Zhaoyang Zhang, Guanding Yu, Yu Zhang, and Yanfang Xu. Power allocation for relay-assisted tdd cellular system with dynamic frequency reuse. IEEE Trans. Wireless Commun.,11(7): 2424-2435,2012.
    [9]Viveck R Cadambe and Syed A Jafar. Interference alignment and spatial degrees of freedom for the k user interference channel. In proc. IEEE Int. Conf. Commun., pages 971-975,2008.
    [10]Gerhard Kramer, Michael Gastpar. and Piyush Gupta. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inf. Theory,51(9):3037-3063,2005.
    [11]Truman Chiu-Yam Ng and Wei Yu. Joint optimization of relay strategies and resource allocations in cooperative cellular networks. IEEE J. Sel. Areas in Commun..25(2):328-339,2007.
    [12]J.N. Laneman, D.N.C. Tse,and G.W. Wornell. Cooperative diversity in wireless networks:Efficient protocols and outage behavior. IEEE Trans. Inf. Theory,50(12):3062-3080.2004.
    [13]3gpp tr 36.814:evolved universal terrestrial radio access (e-utra); further advancements for e-utra physical layer aspects.
    [14]T. Cover and A.E.L. Gamal. Capacity theorems for the relay channel. IEEE Trans. Inf. Theory,25(5): 572-584,1979.
    [15]C.E. Shannon. A mathematical theory of communication.ACM SIGMOBILE Mobile Computing and Commun.,5(1):3-55.2001.
    [16]E.C. Van Der Meulen.Three-terminal communication channels.Advances in applied Probability, pages 120-154,1971.
    [17]E. Van der Meulen. A survey of multi-way channels in information theory:1961-1976.IEEE Trans. Inf. Theory,23(1):1-37.1977.
    [18]Y. Zhao, R. Adve,and T.J. Lim. Improving amplify-and-forward relay networks:optimal power allo- cation versus selection. In proc. IEEE Int. Symp. Inf. Theory(ISIT), pages 1234-1238,2006.
    [19]G. Kramer and A.J. van Wijngaarden. On the white gaussian multiple-access relay channel. In proc. IEEE Int. Symp. Inf. Theory (ISIT),page 40,2000.
    [20]L. Sankaranarayanan. G. Kramer, and N.B. Mandayam. Capacity theorems for the multiple-access relay channel. In proc.42nd Annu. Allerton Conf. Commun., Control, and Computing, pages 1782-1791, 2004.
    [21]L. Sankaranarayanan, G. Kramer, and N.B. Mandayam. Hierarchical sensor networks:capacity bounds and cooperative strategies using the multiple-access relay channel model. In proc. First Annual IEEE Commun. Society Conf. Sensor and Ad Hoc Commun. and Networks (SECON 2004), pages 191-199, 2004.
    [22]G. Kramer. P. Gupta, and M. Gastpar. Information-theoretic multihopping for relay networks. In proc. Int. Zurich Seminar on Commun., pages 192-195,2004.
    [23]C.E. Shannon. Two-way communication channels. In proc.4th Berkeley Symp. Math. Stat. Prob, volume 1. pages 351-384.1961.
    [24]T. Han. A general coding scheme for the two-way channel. IEEE Trans. Inf. Theory,30(1):35-44,1984.
    [25]R. Knopp. Two-way wireless communication via a relay station. In proc. GDRISIS meeting, pages 1-54,2007.
    [26]R. Knopp. Two-way radio networks with a star topology. In proc. Int. Zurich Seminar on Commun., pages 154-157,2006.
    [27]B. Rankov and A. Wittneben. Achievable rate regions for the two-way relay channel. In proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 1668-1672,2006.
    [28]B. Rankov and A. Wittneben. Spectral efficient signaling for half-duplex relay channels. In proc. the Thirty-Ninth Asilomar Conf. Signals, Systems and Computers, pages 1066-1071,2005.
    [29]D. Gunduz. E. Tuncel, and J. Nayak. Rate regions for the separated two-way relay channel. In proc. 46th Annual Allerton Conf. Commun., Control, and Computing, pages 1333-1340,2008.
    [30]W. Nam, S.Y. Chung, and Y.H. Lee. Capacity bounds for two-way relay channels. In proc. IEEE Int. Zurich Seminar on Commun., pages 144-147,2008.
    [31]R. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory,8(1):21-28,1962.
    [32]C. Berrou. A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding and decoding: Turbo-codes.1. In proc.1993 IEEE Int. Conf. Commun. (ICC), volume 2, pages 1064-1070,1993.
    [33]M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu. Raptor codes for reliable download delivery in wireless broadcast systems. In proc.3rd IEEE Consumer Commun. and Networking Conf. (CCNC 2006), volume 1, pages 192-197.2006.
    [34]J.W. Byers. M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk data. In proc. ACM SIGCOMM Computer Communication, volume 28. pages 56-67,1998.
    [35]M. Luby. Lt codes. In proc.43rd Annual IEEE Symp. Foundations of Computer Science,pages 271-280, 2003.
    [36]H. Jin, A. Khandekar, and R. McEliece. Irregular repeat-accumulate codes. In proc.2nd Int. Symp. Turbo codes and related topics, pages 1-8,2000.
    [37]3gpp ts26.346:2007, technical specification group services and system aspects, multimedia broadcast/-multicast services(mbms) protocols and codes (release 6).mar.2007.
    [38]R. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory,27(5):533-547, 1981.
    [39]O. Etesami and A. Shokrollahi. Raptor codes on binary memoryless symmetric channels. IEEE Trans. Inf. Theory,52(5):2033-2051,2006.
    [40]T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory.47(2):619-637,2001.
    [41]Z. Cheng. J. Castura, and Y. Mao. On the design of raptor codes for binary-input Gaussian channels. IEEE Trans. Commun.,57(11):3269-3277.2009.
    [42]A. Venkiah, C. Poulliat, and D. Declercq. Analysis and design of raptor codes for joint decoding using information content evolution. In proc. IEEE Int. Symp. Inform. Theory (ISIT), pages 421-425,2007.
    [43]J. Castura and Y. Mao. Rateless coding over fading channels. IEEE Commun. Lett.,10(1):46-48,
    [44]J. Castura. Y. Mao. and S. Draper. On rateless coding over fading channels with delay constraints. In proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 1124-1128,2006.
    [45]J-Castura and Y. Mao. Rateless coding for wireless relay channels. In proc. IEEE Int. Symp. Inf. Theory (ISIT). pages 810-814,2005.
    [46]J. Castura and Y. Mao. Rateless coding for wireless relay channels. IEEE Trans. Wireless Commun.,6 (5):1638-1642..
    [47]Y. Liu. A low complexity protocol for relay channels employing rateless codes and acknowledgement. In proc. IEEE Int. Symp. Inf. Theory (ISIT). pages 1244-1248,2006.
    [48]A.F. Molisch, N.B. Mehta, J.S. Yedidia. and J. Zhang. Cooperative relay networks using fountain codes. In proc. Global Telecommun. Conf. (GLOBECOM), pages 1-6,2006.
    [49]R. Nikjah and N.C. Beaulieu. Novel rateless coded selection cooperation in dual-hop relaying systems. In proc. IEEE Global Telecommun. Conf. (Globecom), pages 1-6,2008.
    [50]R. Nikjah and N.C. Beaulieu.Achievable rates and fairness in rateless coded relaying schemes. IEEE Trans. Wireless Commun.,7(11):4439-4444,2008.
    [51]Z. Yang and A. Host-Madsen. Rateless coded cooperation for multiple-access channels in the low power regime. In proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 967-971,2006.
    [52]M. Uppal, A. Host-Madsen, and Z. Xiong. Practical rateless cooperation in multiple access channels using multiplexed raptor codes. In proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 671-675,2007.
    [53]M. Uppal. Z. Yang, A. Host-Madsen, and Z. Xiong. Cooperation in the low power regime for the mac using multiplexed rateless codes. IEEE Trans. Signal Processing,58(9):4720-4734,2010.
    [54]M. Uppal. G. Yue, X. Wang, and Z. Xiong. A rateless coded protocol for half-duplex wireless relay channels.IEEE Trans. Signal Processing.59(1):209-222,2011.
    [55]C. Gong. G. Yue, and X. Wang. Analysis and optimization of a rateless coded joint relay system.IEEE Trans. Wireless Commun.,9(3):1175-1185,2010.
    [56]R. Ahlswede, N. Cai, S.Y.R. Li, and R.W. Yeung. Network information flow. IEEE Trans. Inform. Theory,46(4):1204-1216.2002.
    [57]Raymond W. Yeung and Zhen Zhang. Distributed source coding for satellite communications.IEEE Trans. Inf. Theory,45(4):1111-1120,1999.
    [58]S.Y.R. Li. R.W. Yeung, and N. Cai. Linear network coding. IEEE Trans. Inf. Theory,49(2):371-381. 2003.
    [59]Ralf Koetter and Muriel Medard. An algebraic approach to network coding. IEEE/ACM Trans. Net-working.11(5):782-795,2003.
    [60]T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast. IEEE Trans. Inf. Theory.52(10):4413-4430,2006.
    [61]Jay Kumar Sundararajan, Devavrat Shah, Muriel Medard. Michael Mitzenmacher, and Joao Barros. Network coding meets tcp. In proc:INFOCOM 2009. pages 280-288.2009.
    [62]Mea Wang and Baochun Li. R2:Random push with random network coding in live peer-to-peer stream-ing. IEEE J. Sel. Areas in Commun..25(9):1655-1666,2007.
    [63]Christos Gkantsidis. John Miller, and Pablo Rodriguez. Comprehensive view of a live network coding p2p system. In proc. the 6th ACM SIGCOMM conference on Internet measurement, pages 177-188, 2006.
    [64]B. Smith and S. Vishwanath. Network-coding in interference networks.pages]-6,2005.
    [65]S. Zhang, S.C. Liew, and P.P. Lam. Hot topic:physical-layer network coding. In proc. the 12th Annual Int. Conf. Mobile computing and networking, pages 358-365.2006.
    [66]C. Hausl and P. Dupraz. Joint network-channel coding for the multiple-access relay channel. In proc. 3rd Annual IEEE Commun. Society on Sensor and Ad Hoc Commun. and Networks (SECON), volume 3. pages 817-822.2006.
    [67]P. Popovski and H. Yomo. Physical network coding in two-way wireless relay channels. In proc. IEEE Int. Conf. Commun. (ICC),pages 707-712,2007.
    [68]C. Schnurr, T.J. Oechtering, and S. Stariczak. On coding for the broadcast phase in the two-way relay channel. In proc.41st Annual Conf. Inf. Sciences and Systems (CISS), pages 271-276,2007.
    [69]T.J. Oechtering. C. Schnurr, I. Bjelakovic, and H. Boche. Broadcast capacity region of two-phase bidirectional relaying. IEEE Trans. Inf. Theory,54(1):454-458.2008.
    [70]F. Xue and S. Sandhu. PHY-layer network coding for broadcast channel with side information. In proc. Inf. Theory Workshop (ITW). pages 108-113.2007.
    [71]C. Hausl and J. Hagenauer. Iterative network and channel decoding for the two-way relay channel.In proc. IEEE Int. Conf. Commun. (ICC), volume 4. pages 1568-1573.2006.
    [72]J. Hou, C. Hausl. and R. Kotter. Distributed turbo coding schemes for asymmetric two-way relay communication. In proc.5th Int. Symp. Turbo Codes and Related Topics, pages 237-242,2008.
    [73]M.H.Azmi, J. Li, J. Yuan, and R. Malaney. Design of distributed multi-edge type Idpc codes for two-way relay channels. In proc. IEEE Int. Conf. Commun. (ICC), pages 1-5,2011.
    [74]S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference:analog network coding. In proc. ACM Conf. Applications, technologies, architectures, and protocols for computer commun., pages 397-408,2007.
    [75]S. Zhang and S.C. Liew. Channel coding and decoding in a relay system operated with physical-layer network coding. IEEE J. Sel. Areas in Commun.,27(5):788-796.2009.
    [76]B. Nazer and M. Gastpar. Compute-and-forward:Harnessing interference through structured codes. IEEE Trans. Inf. Theory,57(10):6463-6486,2011.
    [77]Deniz Gunduz, Aylin Yener, Andrea Goldsmith, and H Vincent Poor. The multi-way relay channel. In proc. IEEE Int. Symp. Inf. Theory (ISIT), pages 339-343,2009.
    [78]Aditya Umbu Tana Amah and Anja Klein. Beamforming-based physical layer network coding for non-regenerative multi-way relaying. EURASIP J. Wireless Commun. and Networking,2010(7):1-13.2010.
    [79]Namyoon Lee. Jong-Bu Lim,and Joohwan Chun. Degrees of freedom of the mimo y channel:Signal space alignment for network coding. IEEE Trans. Inf. Theory,56(7):3332-3342,2010.
    [80]C. Hausl. Joint network-channel coding for wireless relay networks. PhD thesis,Dissertation, Technis-che Universitat Munchen,2008.
    [81]Y. Chen, S. Kishore. and J. Li. Wireless diversity through network coding. In proc. IEEE Wireless Commun. and Networking Conf. (WCNC), volume 3. pages 1681-1686,2006.
    [82]Y. Li, G. Song, and L. Wang. Design of joint network-low density parity check codes based on the exit charts. IEEE Commun. Lett.,13(8):600-602,2009.
    [83]J. Li, J. Yuan, R. Malaney. M. Azmi. and M. Xiao. Network coded ldpc code design for a multi-source relaying system. IEEE Trans. Wireless Commun..10(5):1-14,2011.
    [84]J.H. Kim, S.Y. Park, J.Y. Kim, Y.J. Kim. and H.Y. Song. Joint ldpc codes for multi-user relay channel. In proc. Fourth Workshop on Network Coding, Theory and Applications (NetCod), pages 1-6,2008.
    [85]D. Duyck,D. Capirone. J.J. Boutros, and M. Moeneclaey. Analysis and construction of full-diversity joint network-Idpc codes for cooperative communications.EURASIP J. Wireless Commun. and Net-working,2010(9):1-16.2010.
    [86]A.P. Hekstra and F.M.J. Willems. Dependence balance bounds for single-output two-way channels. IEEE Trans. Inf. Theory,35(1):44-53,1989.
    [87]HAN TE SUN. A general coding scheme for the two-way channel. IEEE Trans. Inf. Theory,30(1): 35-44,1984.
    [88]J. P. M. Schalkwijk. On an extension of an achievalble rate region for the binary muliplying channel. IEEE Trans. Inf. Theory.lT-29:445-448,1984.
    [89]C. Schnurr,T.J. Oechtering, and S. Stanczak. Achievable rates for the restricted half-duplex two-way relay channel. In proc. the Forty-First Asilomar Conference on Signals, Systems and Computers, pages 1468-1472,2007.
    [90]W. Nam, S.Y. Chung, and Y.H. Lee. Capacity of the gaussian two-way relay channel to within 1/2 bit. IEEE Trans. Inf. Theory,56(11):5488-5494.2010.
    [91]R. Vaze and R.W. Heath. On the capacity and diversity-multiplexing tradeoff of the two-way relay channel. IEEE Trans. Inf. Theory,57(7):4219-4234,2011.
    [92]Z. Zhang, T. Berger, and J. Schalkwijk. New outer bounds to capacity regions of two-way channels. IEEE Trans. Inf. Theory,32(3):383-386,1986.
    [93]R. Tandon and S. Ulukus. Dependence balance based outer bounds for gaussian networks with cooper-ation and feedback. arXiv:0812.I857,2008.
    [94]D. Wubben and Y. Lang. Generalized sum-product algorithm for joint channel decoding and physical-layer network coding in two-way relay systems. In proc. Global Telecommun. Conf. (GLOBECOM), pages 1-5,2010.
    [95]R.H. Y. Louie, Y. Li. and B. Vucetic. Practical physical layer network coding for two-way relay channels: performance analysis and comparison. IEEE Trans. Wireless Commun.,9(2):764-777.2010.
    [96]L. Lu and S.C. Liew. Asynchronous physical-layer network coding. IEEE Trans. Wireless Commun., 11(2):819-831,2012.
    197] C. Hausl. Improved rate-compatible joint network-channel code for the two-way relay channel. In proc. Joint Conf. Commun. and Coding (JCCC). pages 1-6,2006.
    [98]I. Byun and K.S. Kim. Practical network-coding scheme for two-way relay channels employing a rate-compatible punctured code.IEICE Electronics Express,6(21):1522-1527,2009.
    [99]M. Uppal. G. Yue, X. Wang, and Z. Xiong. A rateless coded protocol for half-duplex wireless relay channels. In proc. IEEE Int. Symp. Inform. Theory (ISIT), pages 953-957,2010.
    [100]A. Venkiah, C. Poulliat, and D. Declercq. Jointly decoded raptor codes:analysis and design for the biawgn channel. EURASIP Journal on Wireless Commun. and Networking,2009:16.2009.
    [101]F. Xue, C.H. Liu. and S. Sandhu. MAC-layer and PHY-layer network coding for two-way relaying: Achievable regions and opportunistic scheduling. In proc.45th Annual Allerton Conf. Commun., Con-trol and Computing, pages 1-7,2007.
    [102]A. Shokrollahi. Raptor codes. IEEE Trans. Inf. Theory,52(6):2551-2567.
    1103] A. Shokrollahi. Ldpc codes:An introduction. Coding, cryptography and combinatorics, pages 85-110, 2004.
    [104]A. Venkiah, P. Piantanida. C. Poulliat, P. Duhamel. D. Declercq, et al. Rateless coding for quasi-static fading channels using channel estimation accuracy. In proc. IEEE Int. Symp. Inform. Theory (ISIT), pages 2257-2261,2008.
    [105]M.A. Shokrollahi, S. Lassen, and R. Karp. Systems and processes for decoding chain reaction codes through inactivation, February 15 2005. US Patent 6,856,263.
    [106]C. Hausl. F. Schreckenbach.I. Oikonomidis, and G. Bauch. Iterative network and channel decoding on a tanner graph. In proc. Allerton Conf. on Commun., Control and Computing, pages 1-10,2005.
    [107]S. Puducheri, J. Kliewer, and T.E. Fuja. The design and performance of distributed It codes. IEEE Trans. Inf. Theory,53(10):3740-3754,2007.
    [108]J Schalkwijk and Thomas Kailath. A coding scheme for additive noise channels with feedback-i:No bandwidth constraint. IEEE Trans. Inf. Theory,12(2):172-182,1966.
    [109]L Ozarow. The capacity of the white gaussian multiple access channel with feedback. IEEE Trans. Inf. Theory,30(4):623-629,1984.
    [110]Amos Lapidoth and Michele Wigger. On the awgn mac with imperfect feedback. IEEE Trans. Inf. Theory,56(11):5432-5476.2010.
    [111]Fredrik Rusek, Daniel Persson,Buon Kiong Lau, Erik G Larsson,Thomas L Marzetta, Ove Ed-fors, and Fredrik Tufvesson. Scaling up mimo:Opportunities and challenges with very large arrays. arXiv:1201.3210,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700