大鼠脊髓胶质细胞在福尔马林致内脏痛中作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内脏痛(Visceral pain)是临床上常见的一种疼痛现象,主要由于机械牵拉、缺血性改变、痉挛、炎症等刺激引起,其特点为缓慢、持续、定位不清且常伴有牵涉痛(referred pain)。当内脏器官损伤或炎症反应发生时,常有痛觉过敏现象。对于内脏痛及其牵涉痛的发生机理目前存在许多假说,但其确切机理还不明确,而且不同的内脏性疼痛其发病机制不尽相同,因此,关于内脏痛发生机制及其治疗手段的研究也是目前研究的热点之一。以往认为,内脏痛及其伴发的牵涉痛是神经元活动变化引起的,而神经胶质细胞只起到支持、营养、参与代谢和修复的作用。因此认为,神经系统的活动变化主要依赖于神经元。新近研究表明,脊髓神经胶质细胞(主要是星形胶质细胞和小胶质细胞)是神经病理性痛启动和维持的重要因素。胶质细胞不仅仅是神经元“谈话”(信息传递)的倾听者,还参与神经元间的交流。但目前对该方面的研究主要集中在躯体痛引起中枢变化的机制。而对于内脏痛是否影响胶质细胞的反应变化以及和神经元的关系的研究依然鲜见报道。由于内脏痛与躯体痛存在着差异,内脏痛有自己的反应特点。那么
Visceral pain is very common in clinical. It is mainly induced by mechanical drag, changes of ischemia, spasm and inflammation, etc. Viceral pain is a kind of pain that is hard to localize and is always accompanied with referred pain. When the internal organs are injured or inflamed, algesia hypersensitiveness may often occur. There are many hypothesis related with the mechanism of algesia and its-induced referred pain, but the exact one is not clear. We know that different visceralgia has different mechanism. Thus, the mechanism of visceralgia and its therapeutic methods are one of the hot spot of nowadays research. In the past, people thought that the main mechanism of visceralgia and the referred pain accompanied with it is induced by the changes of neuron activity, the functions of glia only provided structural, metabolic and trophic support to central neurons.Today, people think that the changes of central nervous system activity mainly dependent on neurons. Newly researches found that the spinal cord glia (especially astrocyte and microglia) is a critical factor starting and maintaining the neuorpathic pain. Glia is not only the listener of the talk between neurons (message transport), but also is the participant of the communication with neurons. The present many
引文
1. Gebhart GF, Ness TJ. Mechanism s of visceralPain. In: BondMR, Charton JE & Wo If CJ.P roceedings of the V Ith Worid congress on Pain Elsevier Science Publishers BV. 1991,14:351
    2. Mantyh PW, Hunt SP. Neuropep tides are present in projection neurons at all levels in visceral and taste pathways from periphery to sensory cortex. Brain Res, 1984, 299:297
    3. Dock ray GJ, Sherkey KA. Neurochemistry of Visceral afferent neurons. Cervero and morrism Progress in brain research Vo167.Elsevier Science Publishers BV. 1991, 133-154
    4. Ekman R, Samuelsson H and Headner T. CSF neuropep tides in cancer pain. Acta A naesthesio logica Scandinavica, 1993, 37:502
    5. Yasui Y. Calcitonin gene-related pep tide immuno reactivity in the visceral sensory cortex, thalamus and related pathways in the rat. J Comp N euro 1, 1989, 290 (4): 487
    6. Rice A S. Pre-emptive intrathecal administration of an NMDA recap ter antagonist (A P25) prevents hyperreflexia in a model of persistent Visceral pain. Pain, 1994, 57 335
    7. Banner SE. 5-Hydroxy tryp tam ine 3 recep to r antagonism modulates a noxious visceral psendo affective reflex. N europharmaco logy, 1995, 34 (3):263
    8. Banner SE. 5-Hydroxytryptamine3 receptor antagonism modulates a noxious visceral pseudoaffective reflex.Neuropharmacology. 1995 Mar;34(3):263-7.
    9. Talley NJ. 5-hydroxytrip tam ine agonits and antagonists in the modulation of gastro intestinal mo tility and sensation. Aliment Pharmaco 1 Ther, 1992,6:273
    10. Haley JE, Dickenson AH, Schach ter M. Electrophysio logical evidence for a role of nitric oxide in pro longed chemical nocicep tion in the rat. Neuropharmaco logy, 1992,31: 251
    11. 饶志仁。延髓内脏带——新的机能结构区。中国学术期刊文摘,1995, 1; 43 Zhiren. Rao, Gong. Ju. Morphology of the medullary Visceral Zone. Chinese ScienceBulletin,1999; 44(1): 1-10.
    12.陈良为,饶志仁,施际武。大鼠延髓内脏带的化学神经解剖学。解剖学报,1996,27(4):386~390
    13. Teng GX. The action of the visceral nociceptive neurons in PO. The k itasato A rch ive of ExperimetalM edicine. 1991, 64:43
    14. Teng GX,M eng XW, L iu SZ. Intracellular Po tentials of visceronocicep tive neurons in posterior group thalamic nuclei and its labeling with HRP intracellularly in cat. The kitasato Arch. of Exp.M ed. 1992, 65 (4) : 217
    15.金善学,吕岩,秦秉志.大鼠腰骶髓NO合成酶阳性神经元与接受盆内脏伤害性刺激神经元的关系.神经科学,1995,增刊,94
    16. Ro sen SD, Panlesu E, F rith CD. Central nervous Pathways mediating angina pecto ris, L ancet,1994, 344 (8916): 147
    17. Cechetto DF. Evidence for a viscero top ic senso ry representation in the co rtex and thalamus in the rat. J Comp N euro 1, 1987, 262:27
    18.横田敏胜.痛病态机序—内脏痛部分.脑神经,1989,38(12):1105
    19. H irshberg RM, A lchaer ED, L awand NB, et al. Is there a pathway in the po sterio r funculus that signals visceral pain? Pain, 1996, 67:291
    20. Baik EJ, Jeong Y. Mechanism oftransm ission and modulation of renal pain in cats: effect of nucleus raphe magnus stimulation on renal pain. Yonsei Med, 1995, 36 (4): 348
    21. Shu J, L i KY, Huang DK. The central effect of electroacupuncture analgesia on visceral pain of rats: a study using 2-DG method. Acupuncture " ElectroTheropentics Research, 1994, 19 (223): 107
    22. Carstens E, Yoko ta T. V iscero somatic convergence and responses to intension of neurons at the junction of m idbrain and po sterio r thalamus in the cat.Exp. N euro 1,1980, 70:32923. WoolfCJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Sci 2000,288 : 1765-9.
    24. Garrison, C. J., Dougherty, P. M., Kajander, K. C. &Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerveconstriction injury. Brain Res. 1991, 565(1), 1-7
    25. Garrison, CJ, Dougherty PM. & Carlton SM. GFA Pexpression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol. 1994, 129(2), 237-243
    26.韩济生.主编神经科学原理.2版.北京:北京医科大学以版社,1999.:527
    27. Watkins LR, Maier SE Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003, 2(12): 973-85.
    28. Hashizume H, DeL eo JA, Co lburn RW, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine, 2000, 25:1206~1217
    29. Milligan ED, Mehmert KK, Hinde JL, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency V'trus-1 (HIV-1)envelope glycoprotein, gp120. Brain Res, 2000, 861:105~116
    30. Haydon PG. Glia: listening and talking to the synapse. Nature Neuro sci Rev, 2001, 2:185~193
    31. Chapman G, Moo res K, Harrison D, et al. Fractalkine cleavage from neuronal membranes represents an acute event in theinflammatory response to excito toxic brain damage. J Neuro sci, 2000, 20 (15): RC87
    32. Watkins LR, Hansen MK., Nguyen KT, Lee JE & Maier SF Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci.1999, 650, 449-481
    33. Raghavendra V, Tanga F & DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of nenropathy. J. Pharmacol. Exp. Ther. 2003, 306, 624-630
    34.傅开元,Light AR,Maixner W.外周炎症性疼痛刺激诱发中枢神经系统小胶质细胞增??值活化.中国神经免疫学和神经病学杂志.2001,8(3):179—183
    35. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in 'small' gila. Trends Neurosci. 2005 Feb;28(2):101-7.
    36. Fu KY, Light AR, Malxner W. Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience. 2000;101 (4):1127-35.
    37.李卉丽,秦绿叶,万有,等.疼痛研究的新亮点:星形胶质细胞.生理科学进展,2003,34(1):45~48
    38.袁华,段丽,饶志仁.大鼠三叉神经尾侧亚核内星形胶质细胞对疼痛刺激的反应及与神经元的关系.解剖学报 2003,34(6):563—567
    39.袁华,段丽,饶志仁.痛刺激后大鼠三叉神经尾侧亚核星形细胞和神经元相互关系的电镜观察.中国神经科学杂志,2003,19(1):5~8
    40. Chu DL, Qiu JY, Duan L et al. Response of astrocytes and neurons to Formalin injection in upper lip of rat. J Fourth Mi Med Univ 2001,22(16): 1441
    41. Sessle BJ.The neural basis of temporomandibular joint and masticatory muscle pain. J Orofac Pain. 1999 Fall; 13(4):238-45.
    42. Bereiter DA, Hirata H, Hu JW. Trigeminal subnucleus caudalis: beyond homologies with the spinal dorsal horn. Pain. 2000 Dec 1;88(3):221-4.
    43. Balam TA, Yamashiro T, Zheng L, Murshid Ahmed S, Fujiyoshi Y, Takano-Yamamoto T. Experimental tooth movement upregulates preproenkephalin mRNA in the rat trigeminal nucleus caudalis and oralis.
    44. Ngan P, Kess B, Wilson S. Perception of discomfort by patients undergoing orthodontic treatment. Am J Orthod Dentofacial Orthop. 1989, 96(1):47-53.
    45. Bondemark L, Fredriksson K, Ilros S. Separation effect and perception of pain and discomfort from two types of orthodontic separators. World J Orthod. 2004??Summer;5(2):172-6
    46. Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat.Eur J Orthod. 1995,17(4):311-25.
    47. Vandevska-Radunovic V, Kvinnsland S, Kvinnsland IH.Effect of experimental tooth movement on nerve fibres immunoreactive to calcitonin gene-related peptide, protein gene product 9.5, and blood vessel density and distribution in rats. Eur J Orthod. 1997, 19(5):517-29.
    48. Loescher AR, al-Emran S, Sullivan PG, Robinson PP. Characteristics of periodontal mechanoreceptors supplying cat canine teeth which have sustained orthodontic forces. Arch Oral Biol. 1993, 38(8):663-9.
    49. Saitoh I, Ishii K, Kobayashi M, Hanada K, Maeda T, Sato O.An immunohistochemical study on the response of nerve fibers in the periodontium of rat molars during experimental tooth movement Nippon Kyosei Shika Gakkai Zasshi. 1990, 49(5):466-74
    50. Watanabe, M., Tanaka, E., Suemune, S., Satoda, T., Maeda, N., Uchida, T. & Tanne, K. Expression of c-Fos protein in the trigeminal nuclear complex resulting from quantified force application to the rat molar. Oral Rehabilitation. 2003, 30(11), 1128-1137.
    51. Hattori Y, Watanabe M, Iwabe T, Tanaka E, Nishi M, Aoyama J, Satoda T, Uchida T, Tanne K. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Res. 2004, 1021(2): 183-91.
    52. Magdalena CM, Navarro VP, Park DM, Stuani MB, Rocha MJ.C-fos expression in rat brain nuclei following incisor tooth movement. J Dent Res. 2004, 83(1): 50-4.
    53. Kato J, Wakisaka S, Tabata MJ, Sasaki Y, Kurisu K. Induction of Fos protein in the rat trigeminai nucleus complex during an experimental tooth movement. Arch Oral Biol. 1994, 39(8):723-6.
    54. Yamashiro T, Satoh K, Nakagawa K, Moriyama H, Yagi T, Takada K. Expression of Fos in the rat forebrain following experimental tooth movement.J Dent Res. 1998, 77(11):1920-5
    55. Hiroshima K, Maeda T, Hanada K, Wakisaka S. Temporal and spatial distribution of Fos protein in the parabrachial nucleus neurons during experimental tooth movement of the rat molar. Brain Res. 2001, 908(2):161-73.
    56. Yamashiro T, Nakagawa K, Satoh K, Moriyama H, Takada K. c-fos expression in the trigeminal sensory complex and pontine parabrachial areas following experimental tooth movement. Neuroreport. 1997, 8(9-10):2351-3.
    57. Jasmin L, Burkey AR, Card JP, Basbaum AI (1997). Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J Neurosci 17:3751-3765.
    58. Bester H, Matsumoto N, Besson JM, Bernard JE Further evidence for the involvement of the spinoparabrachial pathway in nociceptive processes: a c-Fos study in the rat. J Comp Neurol 1997, 383:439-458.
    59. Millan MJ.Descending control of pain. Prog Neurobioi 2002, 66:355-474.
    60. Yamashiro T, Fukunaga T, Kabuto H, Ogawa N, Takano-Yamamoto T. Activation of the bulbospinal serotonergic system during experimental tooth movement in the rat. J Dent Res 2001, 80:1854-1857.
    61. Fujiyoshi Y, Yamashiro T, Deguchi T, Sugimoto T, Takano-Yamamoto T.The difference in temporal distribution of c-Fos immunoreactive neurons between the medullary dorsal horn and the trigeminal subnucleus oralis in the rat following experimental tooth movement. Neurosci Lett. 2000, 283(3):205-8.
    62. Balam TA, Yamashiro T, Zheng L, Murshid Ahmed S, Fujiyoshi Y, Takano-Yamamoto T. Experimental tooth movement upregulates preproenkephalin mRNA in the rat trigeminal nucleus??caudalis and oralis.
    63. Inoue K, Tsuda M, Koizumi S. ATP- and adenosine-mediated signaling in the central nervous system: chronic pain and microglia: involvement of the ATP receptor P2X4. J Pharmacol Sci. 2004, 94(2): 112-4.
    64. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force fro pathologyical pain. Trends Nerosci, 20001,24, 450-455
    65. Koltzenburg M, Wall PD, McMachon SB. Does the right side know what the left is doing? Trends Neurosci 1999; 22:122-127
    66. Watkins LR. Spinal cord glia: new player in pain, Pain 2001, 93:201-205
    67. Wieseler-Frank J, Maier SF, Watkins LR.Glial activation and pathological pain. Neurochem Int. 2004;45(2-3):389-95.
    68. Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002, 82(4):981-1011,
    69. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001, 24(8):450-5.
    70. Parpura, V. Glutamate-mediate astrocyte-neuron signaling. Natute 1994, 369, 744-747
    71. Gallo V, Ghiani CA. Glutamate receptors in glia: new cell, new inputs and new functions. Trends Phamacol. Sci 21,252-258
    72. Haydon PG. Neuroglial networks: neurons and glia talk to each other. Curr Biol. 2000,10(19): 712-4.
    73. Gomes FC, Spohr TC, Martinez R, Moura Neto V. Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res. 2001,34(5):611-20.
    74. Carmignoto G Astrocyte-neurone crosstalk: variants of the same language? Trends PharmacoI Sci. 2000, 21 (10): 373-5.
    75. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002,??18; 298(5593): 556-62
    76. Kreutzberg, GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosic1996, 19:312-318][ Vilhardt F. Microglia: phagocyte and glia cell. Int J Biochem Cell Biol. 2005, 37(1):17-21.
    77. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005, 115(1-2):71-83.
    78. Eriksson NP. A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res. 1993,96,19-27
    79. Liu L, Complement and clusterin in the spinal cord dorsal horn and gracile nucleus following sciatic nerve injury in the adult ral. Neuroscience 1995, 68, 167-179
    80. Coyle DE, Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Giia, 1998, 23,75-83
    81. Tanga FY. RT-PCR assessment of spinal microglial and astrocytic activation marker in a rat model of neuropathic pain. Neurochem 2004, 45: 397-407
    82.高蓓,兰莉,饶志仁.脂多糖诱导大鼠延髓神经元FOS小胶质细胞OX42表达水平的变化.第四军医大学学报,2004,25(8):702
    83. Yeo JF, Liu HP, Leong SK. Sustained microglial immunoreactivity in the caudal spinal trigeminal nucleus after formalin injection. J Dent Res. 2001 Jun;80(6):1524-9.
    84. Visentin, S. et al. Two different ionotropic receptors are activated by ATP in rat microglia. J. Physiol. 1999, 519, 723-736
    85. Jin, S.X. et al p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 2003, 23, 4017-402286. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004, 45(1):89-95.
    87. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003, 86(6):1534-43,
    88. Ralevic, V. and Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998, 50, 413-492
    89. Khakh, B.S. et al. International union of pharmacology. ⅩⅩⅣ. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol. Rev. 2001, 53, 107-118
    90. Kennedy, C. et al. Crossing the pain barrier: P2 receptors as targets for novel analgesics. J. Physiol. 2003, 553,683-694
    91. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424, 778-783
    92. Inoue K, Tsuda M, Koizumi S. Chronic pain and microglia: the role of ATP. Novartis Found Symp. 2004;261:55-64
    93. Inoue K, Tsuda M, Koizumi S. ATP- and adenosine-mediated signaling in the central nervous system: chronic pain and microglia: involvement of the ATP receptor P2X4. J Pharmacol Sci. 2004, 94(2): 112-4.
    94. Bennett G.. Neuropathic pain in the orofacial region: Clinical and research challenges. J Orofac Pain 2004,18:281-286
    95. Henry JL. Future basic science directions into mechanisms of neuropathic pain. J Orofac Pain. 2004 Fall;18(4):306-10.96. Salter M. Cellular neuroplasticity mechanisms mediating pain persistence. J Orofac Pain 2004, 18,318-324
    97. Tsuda, M, Shigemoto-Mogami,Y, Koizumi, S, Mizokoshi,A, Kohsaka, S, Salter, M&Inoue K. P_(2x4) receptors induced in spinal microglia gate tactile allodynia after nerve injury.Nature. 424,778-783(2003)
    98. Cook SP, Vulchanova L, Hargreaves KM. et al. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature, 1997;387:505-508
    99. Lewis C, Neidhart S, Holy C, et al. Coexpression of P_(2x2) and P_(2x3) receptor subunits can account for ATP-gated in sensory neurons. Nature. 1995;377:432-435
    100. Hugel S, Schichter R. Presynaptic P_(2x) receptors facihtate inhibitory GABA ergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci, 2000,20(6):2121-
    101. Antonio G.D, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME. Antinociceptive effect of a new P_(2z)/P_(2x7) antagonist, Oxidized ATP, in arthritic rats. Neuroscience 2002; 327:87-90.
    102.向正华,吕军,蒋平,焦炳华,Burnstock G.大鼠脑外伤时嘌呤受体P2X4受体的表达。解剖学杂志,2003,26(3):203—207
    103. Barbara G,De Giorgio R, Stanghellini V, et al. A role for inflammation in irritable bowel syndrome. Gut, 2002,51 (Suppl 1): i41-i44.
    104. Thuluvath PJ, Connolly G1V1, Forbes A, et al. Abdominal pain in HIV infection. Quart J l~led, 1991, 78: 275~285.
    105. KoltzenberglVl, WallPD, lVlelVlahon SB. Does the right side know what the left is doing? Trends Neurosci, 1999, 22: 122~127.
    106. Watkins L.R, Martin D, Ulrich P, Tracey K.J, Maier S.F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat, Pain 1997, 71: 225-235.107. Watkins L.R, Maier S.F. Implications of immune-to-brain communication for sickness and pain, Proc Natl Acad Sci USA. 1999,96:7710-7713.
    108. Watkins L.R, Maier S.F. The pain of being sick: implications of immune-to-brain communication for understanding pain, Annu Rev Psychol. 2000, 51:29-57.
    109. Watkins L.R, Milligan E.D, Maier S.F. Glial activation: a driving force for pathological pain, Trends Neurosci. 2001,24:450-455.
    110. Li T, Gao W, Rao Z-R. Noxious somatic stimulation-induced expression of Fos-like immunoreactivity in catecholaminergic neurons with habenular nucleus projection in the medullary visceral zone of rat, Brain Res. 1998,783:51-56.
    111. Kitamura T, Nakanishi K, Watanabe S, Endo Y, Fujita S. GFA-protein gene expression on the astroglia in cow and rat brain, Brain Res. 1987,423:189-195.
    112. Carmignoto G. Astrocyte-neurone crosstalk: variants of the same language? Trends Pharmacoi Sci.2000, 21:373-375.
    113. Bezzi P, Volterra A.A neuron-glia signaling network in the active brain, Current Opinion in Neurobiology.2001, 11:387-394.
    114. Watkins L.R, Milligan E.D, Maier S.F Spinal cord glia: new players in pain, Pain.2001, 93:201-205.
    115. Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003, 2(12):973-85.
    116. Yu C. Traditional Chinese veterinary acupuncture and moxibustion [M]. Beijing: Agriculture Press, 1987;147-163.
    117. Liu JH, Yan J, Yi SX, Chang XR, Lin YP, Hu JM. Effects of electroacupuncture on gastric myoelectric activity and substance P in the dorsal vagal complex of rats. Neurosci Lett. 2004;(356):99-102.
    118. Gao Wei, Huang Yuxin, Chen Hong, et al. Regulatory mechanism ofelectroacupuncture on the stomach channelbrain-gut peptide immune network. Word journal of Gastroenterology. 2001;32(9):279-283.
    119. Wang Jing jie, Huang Yuxin, Guo Qingdong et al. Experimental study on the effect of electoacupuncture in ameliorating gastric motor disorders under psychological stress in rats. Acupuncture Res.2001; (25)267-271.
    120. Marcel M, Sylviane C, Fabien G, et al. Inflammation of the sigmoid colonic wall induced by formalin as a model of acute visceral pain. Pain, 1994;57:327
    121.史娟,张淼丽,李继硕。DCN内躯体初级传入粗纤维的证明及其意义探讨。神经解剖学杂志。2001,17(3):243—247
    122.孙怡宁,罗金燕.大鼠结肠慢性炎性刺激诱导腰骶髓和延髓Fos的表达及其意义.中华消化杂志,2004;24(7):403-406.
    123. Kitamura T, Nakanishi K, Watanabe S, et al. GFA-protein gene expression on the astroglia in cow and rat brain. Brain Res. 423:189-195, 1987.
    124. Carmignoto G. Astrocyte-neurone crosstalk: variants of the same language? Trends Pharmacol Sci. 21:373-375, 2000.
    125. Bezzi Paola and Volterra Andrea A neuron-glia signalling network in the active brain Current Opinion in Neurobiology. 11:387-394,2001.
    126. Watkins L R, Martin D, Ulrich P, Tracey K J, Maier SF. Evidence for the involvement of spinal cord gila in subcutaneous formalin induced hyperalgesia in the rat, Pain. 1997, 71:225-235.
    127. Watkins L R, Maier S F. Implications of immune-to-brain communication for sickness and pain, Proc Natl Acad Sci USA.. 1999,96:7710-7713.
    128. Watkins L R,Maier S F. The pain of being sick: implications of immune-to-brain communication for understanding pain, Annu Rev Psychol. 2000,51:29-57.
    129. Watkins L R, Milligan E D, Maier S F. Glial activation: a driving force for??pathological pain, Trends Neurosci. 2001,24:450-455.
    130. Watkins L R, Maier S E Implications of immune-to-brain communication for sickness and pain, Proc Natl Acad Sci USA.1999,96: 7710-7713.
    131. Watkins L R,Maier S F. The pain of being sick: implications of immune-to-brain communication for understanding pain, Annu Rev Psychol. 2000,51:29-57.
    132. Watkins L R, Martin D, Ulrich P, Tracey K J, Maier SF. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat, Pain 1997, 71:225-235.
    133. Watkins L R, Milligan E D, Maier S F. Gliai activation: a driving force for pathological pain, Trends Neurosci. 2001, 24:450-455.
    134. Carmignoto G. Astrocyte-neurone crosstalk: variants of the same language? Trends Pharmacol Sci. 2000,21:373-375.
    135. Bezzi Paola and Volterra Andrea A neuron-glia signalling network in the active brain Current Opinion in Neurobiology. 2001,11:387-394.
    136. Liu XJ, Salter MW. Purines and pain mechanisms: recent developments.Curr Opin Investig Drugs. 2005, 6(1):65-75.
    137. Inoue K, Tsuda M, Koizumi S.Chronic pain and microglia: the role of ATP. Novartis Found Symp. 2004;261:55-64
    138. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" gila. Trends Neurosci. 2005,28(2): 101-7.
    139. Dunn PM, Zhong Y, Burnstock G. P2X receptors in peripheral neurons[J]. Prog Neurobioi, 2001,65(2):107-134.
    140. Xu GY,Huang L Y. Peripheral inflammation sensitizes P2X receptormediated responses in rat dorsal root ganglion neurons [J]. JNeurosci,2002,22(1):93-102.
    141. Bumstock G. Purine2mediated signaling in pain and visceral perception[J]. TrendsPharmacol Sci,2001,22 (4): 182-188.
    142. Souslova V, Cesare P,Ding Y, et al. Warm2coding deficits and aberrant inflammatory pain is mice lacking P2X3 receptors.Nature,2000,407:1015-1017.
    143. Wismer CT,Faltynek CR,Jarvis MF, et al. Distinct neurochemical echanisms are activated following administration of different P2X receptor agonists in the hind paw of a rat[J]. Brain Res,2003,965(122):187-193.
    144. Chizh BA, Illes P. P2X receptors and nociception[J]. Pharmacol Rev,2001,53(4):553-568.
    145. Tsuda M,Koizumi S,Rita A, et al. Mechanical allodynia caused byintraplantar injection of P2X receptor agonist in rat: involvement of heteromeric P2X2/3 receptor signaling in capsaicin2insensitive primary afferent neurons[J]. J Neurosci,2000,20 (15):RC 90.
    146. Stanfa LC, Kontinen VK,Dickenson AH. Effects of spinally administered P2X receptor agonists and antagonists on the responses of dorsa horn neurons recorded in normal, carrageeenan2inflamed and neuropathic rats[J]. Br J Pharmacol,2000,129 (2):351-359.
    147. Hamilton SG, McMahon SB, Lewin GR. Selective activation of nociceptors by P2X receptor agonist in normal and in flamed rat skin[J]. J Physiol,2001,534(2):437-445.
    148. Xu GY, Huang L Y. Peripheral inflammation sensitizes P2X receptor mediated responses in rat dorsal root ganglion neurons. J Neurosci,2002,22(1):93-102.
    149. Burnstock G. Purine2mediated signaling in pain and visceral perception [J]. Trends Pharmacol Sci,2001,22(4):182-188.
    150. Abbracchio MP, Boeynaems JM, Bamard EA, et al. Characterization of the UDP2glucose receptor (re2named here the P2Y14 receptors) adds diversity to the P2Y receptor family [J]. Trends Pharmacol Sci,2003,24(2):52-55.
    151. Sanada M, Yusada H,Omatsu2Kanbe M. Increase in intracellular Ca~(2+) and calcitonin gene2related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons [J]. Neuroscience,2002,111(2):413-422.
    152. Usachev YM, Demarco SJ, Campbell C, et al. Bradykinin and ATP accelerate Ca~(2+) efflux from rat sensory neurons via protein kinase C and the plasma membrane Ca~(2+) pump isoform 4[J]. Neuron,2002,33(1):113-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700