P2Y14嘌呤受体在血管内皮细胞上的功能表达及在肿瘤发生发展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P2Y14是一种抑制环磷酸腺苷(cyclic AMP, cAMP)合成的Gi (inhibitory adenylate cyclaes g protein, Gi)蛋白偶联受体,能够被尿嘧啶核苷-5’-二磷酸葡萄糖(UDP-glucose, UDPG), UDP一半乳糖(UDP-galactose)和UDP-N乙酰葡糖胺(UDP-N-acetylglucosamine)激活。最近的研究表明,P2Y14受体参与T淋巴细胞免疫功能的调节以及气道上皮中促炎因子白细胞介素-8(IL-8)的合成。同时,在凝血酶诱导的星型胶质细胞中观察到UDP-Glc的胞外释放,这表明在炎症的发生过程中P2Y14受体可能被激活。目的本研究旨在通过探讨P2Y14受体在人肺微血管内皮细胞(Human Lung Microvascular Endothelial Cells, HLMVEC)上的功能,从而揭示其在呼吸系统疾病及血液系统疾病中的发生与发展中的潜在机制。
     方法通过RT-PCR和免疫印记法(Western blot)来证实P2Y14受体在HLMVEC内的表达。同时,环磷酸腺苷(cyclic AMP, cAMP)实验表明P2Y14的特异性底物UDP-glucose可以抑制腺苷酸环化酶(adenylate cyclase, AC)特异性激活剂毛喉素(forskolin)诱导的cAMP产物的增加。而在HLMVEC细胞信号转导的研究中发现,给予P2Y14的特异性底物UDP-glucose处理后,激活了Raf-1, MEK-1/2和ERK1/2信号转导通路。并且,通过电子细胞基质阻抗判断(Electrical cell-substrate impedance sensing, ECIS)的方法来观察给予HLMVEC UDP-Glc预处理后对内皮细胞创伤愈合的促进作用。
     结果
     1.P2Y14受体在HLMVEC内高表达。
     2.P2Y14的特异性底物UDP-glucose可以抑制腺苷酸环化酶特异性激活剂毛喉素(forskolin)诱导的cAMP产物的增加。
     3.在HLMVEC细胞信号转导的研究中发现,给予P2Y14的特异性底物UDP-glucose处理后,激活了Raf-1, MEK-1/2和ERK1/2信号转导通路。
     4.通过电.子细胞基质阻抗判断(Electrical cell-substrate impedance sensing,ECIS)的方法观察到对HLMVEC给予P2Y14的特异性底物UDP-Glc (100μM,15min)预处理后激活了ERK1/2信号转导通路,并对内皮细胞的创伤愈合发挥促进作用。
     结论
     1.P2Y14受体广泛表达于胃,胎盘,脂肪组织,心脏以及各种免疫细胞中,本研究首次证实了其在肺血管内皮细胞中的功能性表达。这对在其他组织器官中发现P2Y14受体的表达以及功能提供了一个新的方向。
     2.P2Y14的特异性底物UDP-glucose可抑制forskolin诱导的cAMP产物的增加。而在肿瘤细胞中普遍存在着cAMP含量下降的现象。因此,P2Y14受体可能通过调节cAMP的含量来进一步影响肿瘤细胞的生长,分化。
     3.P2Y14的特异性底物UDP-glucose能够激活Raf-1, MEK-1/2和ERK1/2信号转导通路,从而促进细胞从由G0/G1期进入S期并影响细胞增殖、分化、凋亡等一系列生物学效应。
     4.血管内皮细胞的损伤及功能紊乱与多种疾病的发生密切相关。而P2Y14的特异性底物UDP-Glc通过激活ERK1/2信号转导通路,从而促进内皮细胞的创伤修复。
The P2Y14 is a Gi-coupled receptor that inhibits the synthesis of cAMP, and is activated by UDP-glucose, UDP-galactose, and UDP-N-acetylglucosamine. Recent studies indicate the role of P2Y14 in modulating the immune function in T-lymphocytes and secretion of the proinflammatory cytokine IL-8 in airway epithelial cells. Furthermore, extracellular release of UDP-glucose was observed in thrombin-treated astrocytes suggesting that P2Y14 may be activated in inflammation.
     AIM
     The aim of this study was to identify the functional expression of P2Y14 receptor in HLMVEC, and thus further demonstrated the mechanism of P2Y14 receptor in the occurrence and progressive of respiratory and blood diseases.
     METHODS
     We used RT-PCR and western blot to investigate the mRNA and protein expression of P2Y14 receptor in the HLMVEC. The cAMP assay was used to identify the function of P2Y14 receptor under the P2Y14-specific substrate, UDP glucose, treatment in HLMVEC. Signaling studies show treatment of HLMVEC with UDP-glucose activates the Raf-1/MEK-1/ERKl/2 pathway. The ECIS (Electrical cell-substrate impedance sensing) was used to check the permeability of HLMVEC with UDP-glucose treatment.
     RESULTS
     1. Our data indicate for the first time that P2Y14 is expressed in endothelial cells (HLMVEC) as evidenced by RT-PCR, Western blot.
     2. The cAMP assay indicates that P2Y14 is functional in HLMVEC as an addition of the P2Y14-specific substrate, UDPglucose, inhibited the forskolin-induced cAMP production.
     3. Signaling studies show treatment of HLMVEC with UDP-glucose activates the Raf-1/MEK-1/ERK1/2 pathway.
     4. The ECIS (Electrical cell-substrate impedance sensing) data indicate that pretreatment of HLMVEC with UDP-glucose (100μM,15min) stimulated wound healing suggesting the participation of P2Y14 in endothelial repair after acute lung injury.
     CONCLUSIONS
     1. P2Y14 receptor is widely expressed in stomach, placenta, adipose tissue, lung, heart and many kinds of immunocells. Our data indicate for the first time that P2Y14 is expressed in endothelial cells (HLMVEC). This result will benefit the other functional and expressional studies of P2Y14 receptor in many kinds of other cells and tissues.
     2. The cAMP assay indicates that P2Y14 is functional in HLMVEC as an addition of the P2Y14-specific substrate, UDPglucose, inhibited the forskolin-induced cAMP production. Therefore, tumor cell growth and differentiation may be regulated by P2Y14 receptor through the up- or down-regulation of cAMP in the cells.
     3. The treatment of HLMVEC with UDP-glucose activates the Raf-1/MEK-1/ERK1/2 pathway, and thus can promote the cells go from G0/G1 to S cycle and further affect the cell proliferation, differentiation and apoptosis and so on.
     4. The wound and function disorder of endothelial cells are close related many kinds of diseases. The pretreatment of HLMVEC with UDP-glucose stimulated wound healing suggesting the participation of P2Y14 in endothelial repair after acute injury.
引文
[1]Burnstock G. Purinergic nerves. Pharmacol Rev,1972,24(3):509-81
    [2]Burnstock G. A basis for distinguishing two types of purinergic receptor. In Cell Membrane Receptors for Drugs and Hormones:A Multidisciplinary Approach, Straub RW and Bolis Leds, New York:Raven Press,1978,107-118
    [3]Abbracchio MP et al. International Union of Pharmacology LVIII:update on the P2Y G protein-coupled nucleotide receptors:from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev,2006,58(3):281-341
    [4]Ecke D et al. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J,2008,409(1): 107-116
    [5]Wang L et al. P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol,2002,40(6):841-853
    [6]Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology,1997,36(9):1127-1139
    [7]Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev, 2007,87(2):659-797
    [8]von Kugelgen I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther,2006,110(3):415-432
    [9]Vallon V. P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol,2008,294:F10-F27
    [10]White N et al. P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett,2005,224(1):81-91
    [11]Maaser K et al. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer,2002,86(4):636-644
    [12]Janssens R et al. Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. BrJPharmacol,2001,132(2):536-546
    [13]Dixon CJ et al. Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors. Br J Cancer,1997,75(1):34-39
    [14]Schafer R et al. ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol,2003,285
    [15]Schulz A, Schoneberg T. The structural evolution of a P2Y2 like G-protein-coupled receptor. J Biol Chem,2003,278:35531~35541.
    [16]AbbracchioMP, Boeynaems JM, Barnard EA, et al. Charac-terization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci,2003,24:52~55.
    [17]CattaneoM, ZighettiML,Lombardi R, et al. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci USA, 2003,100:1978~1983.
    [18]Inbe H, Watanabe S, MiyawakiM, et al. Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem,2004,279:19790~19799.
    [19]Zhang FL, Luo L, Gustafson E, et al. P2Y13:Identification and characterization of a novel Gai-coup led ADP receptor from human and mouse. J Pharm Exp Ther,2002,301:705~ 713.
    [20]Wong CH, Ko WH. Stimulation of Cl- secretion via mem-brane-restricted Ca2+ signalingmediated by P2Y receptors in polarized epithelia. J Biol Chem,2002,277:9016~ 9021.
    [21]Robaye B, Ghanem E,Wilkin F, et al. Loss of nucleotide regulation of epithelial chloride transport in jejunum of P2Y4 nullmice. Mol Pharmacol,2003,63:777~783.
    [22]Filippov AK, Simon J,Barnard EA, et al. Coupling of the nu-cleotide P2Y4 receptor to neuronalion channel. Br J Pharma-col,2003,138:400~406.
    [23]Lee BC, Cheng T, Adams GB, et al. P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev,2003,17:1592~ 1604.
    [24]Boeynaems JM, Robaye B, Janssens R, et al. Overview of P2Y receptors as therapeutic targets. Drug Dev Res,2001,52:187~189.
    [25]Maaser K et al. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer,2002,86(4):636-644
    [26]Janssens R et al. Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol,2001,132(2):536-546
    [27]Dixon CJ et al. Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors. Br J Cancer,1997,75(1):34-39
    [28]Locati M, Deuschle U, Massardi ML, et al. Analysis of the gene expression profile activat ed by the CC chemokine ligand 5/RANTES and by lipopolysac charide in human monocytes. J Immunol,2002,168(7):3557-3562.
    [29]Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity,2000,12(2):121-127.
    [30]方伟岗等.P2Y嘌呤受体介导的信号转导系统在前列腺癌细胞生长及转移中的作用.北京大学学报,2001,33(5):394-397
    [31]Banchereau, J., and R. M. Steinman.1998. Dendritic cells and the control of immunity. Nature 392:245.
    [32]Rescigno,M.,C.Winzler,D. Delia,C. Mutini, M.Lutz, and P.Ricciardi-Castagnoli.1997. Dendritic cell maturation is required for initiation of the immune response.J.Leukocyte Biol. 61:415.
    [33]Sallusto, F., and A. Lanzavecchia.1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor_. J. Exp. Med.179:1109.
    [34]Pashenkov, M., N. Teleshova, M. Kouwenhoven, V. Kostulas, Y. M. Huang,M. Soderstrom, and H. Link.2002. Elevated expression of CCR5 by myeloid(CD11c_) blood dendritic cells in multiple sclerosis and acute optic neuritis.Clin. Exp. Immunol.127:519.
    [35]Sallusto, F., B. Palermo, D. Lenig, M. Miettinen, S. Matikainen, I. Julkunen,R. Forster, R. Burgstahler, M. Lipp, and A. Lanzavecchia.1999. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol.29:1617.
    [36]Sozzani, S., W. Luini, A. Borsatti, N. Polentarutti, D. Zhou, L. Piemonti, G.D'Amico, C. A. Power, T. N. Wells, M. Gobbi, et al.1997. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J. Immunol.159:1993.
    [37]Reddy, A., M. Sapp, M. Feldman, M. Subklewe, and N. Bhardwaj.1997. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90:3640.
    [38]Sallusto, F., and A. Lanzavecchia.2000. Understanding dendritic cell and Tlymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev.177:134.
    [39]Sozzani, S., P. Allavena, G. D'Amico, W. Luini, G. Bianchi, M. Kataura, T. Imai, O. Yoshie, R. Bonecchi, and A. Mantovani.1998. Differential regulation of chemokine receptors during dendritic cell maturation:a model for their trafficking properties. J. Immunol.161:1083.
    [40]Caux, C., S. Ait-Yahia, K. Chemin, O. de Bouteiller, M. C. Dieu-Nosjean, B. Homey, C Massacrier, B. Vanbervliet, A. Zlotnik, and A. Vicari.2000. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines.Springer Semin. Immunopathol.22:345.
    [41]Baekkevold, E. S., T. Yamanaka, R. T. Palframan, H. S. Carlsen, F. P. Reinholt,U. H. von Andrian, P. Brandtzaeg, and G. Haraldsen.2001. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment.J. Exp. Med. 193:1105.
    [42]Ni, K., and H. C. O'Neill.1997. The role of dendritic cells in T cell activation.Immunol. Cell Biol.75:223.
    [43]Sauter, B., M. L. Albert, L. Francisco, M. Larsson, S. Somersan, and N. Bhardwaj.2000. Consequences of cell death:exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191:423.
    [44]Gallucci, S., and P. Matzinger.2001. Danger signals:SOS to the immune system. Curr. Opin. Immunol.13:114.
    [45]Wilkin, F., X. Duhant, C. Bruyns, N. Suarez-Huerta, J. M. Boeynaems, and B. Robaye.2001. The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J. Immunol.166:7172.
    [46]Burnstock, G.1997. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127.
    [47]Berchtold, S., A. L. Ogilvie, C. Bogdan, P. Muhl-Zurbes, A. Ogilvie, G. Schuler, and A. Steinkasserer.1999. Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett.458:424.
    [48]la Sala, A., S. Sebastiani, D. Ferrari, F. Di Virgilio, M. Idzko, J. Norgauer, and G. Girolomoni.2002. Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715.
    [49]Chambers, J. K., L. E. Macdonald, H. M. Sarau, R. S. Ames, K. Freeman,J. J. Foley, Y. Zhu, M. M. McLaughlin, P. Murdock, L. McMillan, et al.2000.A G protein-coupled receptor for UDP-glucose.J. Biol. Chem.275:10767.
    [49]Abbracchio, M. P., J. M. Boeynaems, E. A. Barnard, J. L. Boyer, C. Kennedy,M. T. Miras-Portugal, B. F. King, C. Gachet, K. A. Jacobson, G. A. Weisman, and G. Burnstock. 2003. Characterization of the UDP-glucose receptor (re-named here the P2Y(14) receptor) adds diversity to the P2Y receptor family. Trends Pharmacol. Sci.24:52.
    [50]Nomura, N., N. Miyajima, T. Sazuka, A. Tanaka, Y. Kawarabayasi, S. Sato,T. Nagase, N. Seki, K. Ishikawa, and S. Tabata.1994. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1 (supplement).DNA Res.1:47.
    [51]Charlton, M. E., A. S. Williams, M. Fogliano, P. M. Sweetnam, and R. S. Duman.1997. The isolation and characterization of a novel G protein-coupled receptor regulated by immunologic challenge. Brain Res.764:141.
    [52]Freeman, K., P. Tsui, D. Moore, P. C. Emson, L. Vawter, S. Naheed, P. Lane,H. Bawagan, N. Herrity, K. Murphy, et al.2001. Cloning, pharmacology, and tissue distribution of G-protein-coupled receptor GPR105 (KIAA0001) rodent orthologs. Genomics 78:124.
    [53]Ebner, S., G. Ratzinger, B. Krosbacher, M. Schmuth, A. Weiss, D. Reider, R. A. Kroczek, M. Herold, C. Heufler, P. Fritsch, and N. Romani.2001. Productionof IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4.J. Immunol.166:633.
    [54]Kalinski, P., J. H. Schuitemaker, C. M. Hilkens, E. A. Wierenga, and M. L. Kapsenberg. 1999. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-_and to bacterial IL-12 inducers:decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol.162:3231.
    [55]Vissers, J. L., F. C. Hartgers, E. Lindhout, M. B. Teunissen, C. G. Figdor, and G. J. Adema. 2001. Quantitative analysis of chemokine expression by dendritic cell subsets in vitro and in vivo. J. Leukocyte Biol.69:785.
    [56]Vulcano, M., C. Albanesi, A. Stoppacciaro, R. Bagnati, G. D'Amico, S. Struyf, P. Transidico, R. Bonecchi, A. Del Prete, P. Allavena, et al.2001. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur. J. Immunol.31:812.
    [57]Yanagihara, S., E. Komura, J. Nagafune, H. Watarai, and Y. Yamaguchi.1998.EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is upregulated upon maturation. J. Immunol.161:3096.
    [58]Hashimoto, S., T. Suzuki, H. Y. Dong, S. Nagai, N. Yamazaki, and K. Matsushima.1999. Serial analysis of gene expression in human monocytederived dendritic cells. Blood 94:845. 30. Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka.2000. Immunobiology of dendritic cells. Annu. Rev. Immunol.18:767.
    [59]Luther, S. A., and J. G. Cyster.2001. Chemokines as regulators of T cell differentiation. Nat. Immunol.2:102.
    [60]Hill, S. J., C. R. Ganellin, H. Timmerman, J. C. Schwartz, N. P. Shankley,J. M. Young, W. Schunack, R. Levi, and H. L. Haas.1997. International Union of Pharmacology. ⅩⅢ. Classification of histamine receptors. Pharmacol. Rev.49:253.
    [61]Mazzoni, A., H. A. Young, J. H. Spitzer, A. Visintin, and D. M. Segal.2001.Histamine regulates cytokine production in maturing dendritic cells, resulting inaltered T cell polarization. J. Clin. Invest.108:1865.
    [62]Adema, G. J., F. Hartgers, R. Verstraten, E. de Vries, G. Marland, S. Menon,J. Foster, Y. Xu, P. Nooyen, T. McClanahan, et al.1997. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 387:713.
    [63]Nardelli, B., D. K. Morahan, G. W. Bong, M. A. Semenuk, B. L. Kreider, and G. Garotta. 1999. Dendritic cells and MPIF-1:chemotactic activity and inhibition of endogenous chemokine production by IFN-_and CD40 ligation. J. Leukocyte Biol.65:822.
    [64]Youn, B. S., S. M. Zhang, E. K. Lee, D. H. Park, H. E. Broxmeyer, P. M. Murphy,M. Locati, J. E. Pease, K. K. Kim, K. Antol, and B. S. Kwon.1997. Molecular cloning of leukotactin-1:a novel human_-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. J. Immunol.159:5201.
    [65]Fischer, F. R., Y. Luo, M. Luo, L. Santambrogio, and M. E. Dorf.2001. RANTES-induced chemokine cascade in dendritic cells.J. Immunol.167:1637.
    [66]Yang, D., O. M. Howard, Q. Chen, and J. J. Oppenheim.1999. Cutting edge:immature dendritic cells generated from monocytes in the presence of TGF-_lexpress functional C-C chemokine receptor 6. J. Immunol.163:1737.
    [67]Power, C. A., D. J. Church, A. Meyer, S. Alouani, A. E. Proudfoot, I. Clark-Lewis, S. Sozzani, A. Mantovani, and T. N. Wells.1997. Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3_from lung dendritic cells. J. Exp. Med.186:825.
    [68]Greaves, D. R., W. Wang, D. J. Dairaghi, M. C. Dieu, B. Saint-Vis, K. Franz-Bacon, D. Rossi, C. Caux, T. McClanahan, S. Gordon, et al.1997.CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3_ and is highly expressed in human dendritic cells. J. Exp. Med.186:837.
    [69]Sallusto, F., P. Schaerli, P. Loetscher, C. Schaniel, D. Lenig, C. R. Mackay, S. Qin, and A. Lanzavecchia.1998. Rapid and coordinated switch in chemokinereceptor expression during dendritic cell maturation. Eur. J. Immunol.28:2760.
    [70]Haribabu, B., D. V. Zhelev, B. C. Pridgen, R. M. Richardson, H. Ali, and R. Snyderman. 1999. Chemoattractant receptors activate distinct pathways for chemotaxis and secretion:role of G-protein usage. J. Biol. Chem.274:37087.
    [71]Ahamed, J., and H. Ali.2002. Distinct roles of receptor phosphorylation, G protein usage, and mitogen-activated protein kinase activation on platelet activating factor-induced leukotriene C4 generation and chemokine production. J. Biol. Chem.277:22685.
    [72]Eigenbrodt, E., M. Reinacher, U. Scheefers-Borchel, H. Scheefers, and R. Friis.1992. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit. Rev. Oncog.3:91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700