五肽化合物PLNPK对大鼠抗GBM肾炎的治疗作用及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察五肽化合物CMS010.26对大鼠抗肾小球基底膜(glomerular basement membrane, GBM)肾炎的治疗作用,并探讨其可能的作用机制。
     方法:
     1.提取大鼠GBM抗原,免疫家兔制备兔抗大鼠GBM抗血清,免疫球蛋白预免疫加尾静脉注射抗血清法建立大鼠抗GBM肾炎模型。
     2.将抗GBM肾炎模型大鼠随机分为不同的处理组,包括PLNPK 200、400μg/kg/d剂量组和生理盐水组,另设正常对照组。观察PLNPK对肾炎模型大鼠24小时尿蛋白、血生化指标及肾指数的影响,同时应用HE病理染色、透射电镜和免疫荧光的方法,研究PLNPK对大鼠抗GBM肾炎是否具有治疗作用。
     3.将给药一周后的各组大鼠的肾组织切片用CD68免疫组化染色的方法检测肾小球内聚集的巨噬细胞(macrophage, Mφ)的数量,观察PLNPK对大鼠抗GBM肾炎模型动物肾小球内Mφ聚集的影响。
     4.提取各组大鼠的肾皮质内RNA和总蛋白,通过Real-Time PCR和Western Blot检测PLNPK对肾皮质内单核细胞趋化蛋白(monocyte chemoattractant protein, MCP-1)的表达水平的影响。
     5.建立大鼠肾小球系膜细胞(mesangial, MC)体外培养体系,培养扩增大鼠系膜细胞系RMC。重组大鼠IL-1β刺激MC及RMC细胞,提取RNA和蛋白,通过Real-Time PCR和Western Blot检测PLNPK对MC及RMC中MCP-1表达的影响。
     6.利用Western Blot检测PLNPK对MC及RMC细胞内p38促分裂原激活的蛋白激酶(mitogen-activated protein kinase, p38 MAPK)磷酸化的影响。
     结果:
     1.从注射抗血清的第二天,模型组大鼠24小时尿蛋白持续升高,和正常对照组相比P<0.01,抗血清注射两周后,肾小球内可见新月体形成,家兔异种抗体和大鼠自身抗体沿GBM呈线性沉积,表明该大鼠抗GBM肾炎模型成立。
     2. PLNPK (200、400μg/kg/d)在给药2周后,能够降低肾炎模型大鼠24小时尿蛋白,6周后,能够升高血清总蛋白和白蛋白,降低血中尿素氮及胆固醇水平,但是对血清甘油三酯和肌酐水平的影响不明显。PLNPK可以降低肾指数,减少肾小球内新月体的形成数量。免疫荧光研究发现,200和400μg/kg/d的PLNPK可以明显减少肾小球基底膜自身抗体的沉积,透射电镜结果显示,PLNPK可以降低肾小球基底膜增厚和足细胞足突融合的程度。
     3.大鼠抗GBM肾炎模型建立一周后,生理盐水组肾小球内可见大量Mφ聚集,正常对照组大鼠肾小球内未见Mφ。给予PLNPK (200、400μg/kg/d)治疗一周后,肾小球内Mφ聚集的数量明显减少,和生理盐水组相比P<0.01。
     4.大鼠抗GBM肾炎模型建立一周后,生理盐水组肾皮质内MCP-1 mRNA转录水平和蛋白表达水平明显高于正常对照组,P<0.01。给予PLNPK (200. 400μg/kg/d)治疗一周后,肾皮质内MCP-1 mRNA转录水平和蛋白的表达水平明显降低,和生理盐水组相比P<0.01。
     5.MC细胞和RMC细胞在受到大鼠IL-1β刺激作用5小时,MCP-1 mRNA转录水平明显升高,接受刺激12小时后,MCP-1蛋白水平已明显升高,PLNPK (1.6、3.2、6.4mg/ml)对于MC和RMC两种细胞MCP-1 mRNA转录和蛋白的表达均有明显的抑制作用,和IL-1β刺激组相比P<0.01。
     6.MC细胞和RMC细胞在受到大鼠IL-1β刺激作用30minsp38 MAPK的磷酸化水平明显升高,用PLNPK (1.6、3.2、6.4mg/ml)预处理能够抑制MC和RMC两种细胞接受IL-1β刺激作用后p38 MAPK的磷酸化,和IL-1β刺激组相比P<0.01。
     结论:PLNPK对大鼠抗GBM肾炎具有治疗作用,其可能的机制是:通过抑制大鼠肾小球系膜细胞p38 MAPK的磷酸化,从而抑制肾小球系膜细胞的活化,降低MCP-1的表达,进而减少肾小球内Mφ的聚集,减轻肾组织的损伤程度。
Objective:
     To observe the therapeutic effect of pentapeptide compound PLNPK on anti-glomerular basement memberane (GBM) glomerularnephritis in rats, and investigate its possible therapeutic mechanism.
     Methods:
     1. The GBM antigen was extracted from the renal cortex of Wistar rats. The rabbits were immunized by rat GBM antigen to prepare the rabbit anti rat GBM serum. Glomerulonephritis was induced in male Wistar rats by preimmunization via an i.p. injection of rabbit IgG and followed by an intravenous injection of anti-GBM serum.
     2. The rats with nephritis were divided into 3 treatment groups, which received i.p. injections of PLNPK (400μg/kg/d), PLNPK (200μg/kg/d) and normal saline (N.S.) respectively, another group of healthy rats served as a healthy control group. The therapeutic effect of PLNPK was evaluated by urinary protein detection, serumal biochemical indexes detection, renal index, renal histology, immunofluorescence, and ultrastructure examination by transmission electron microscopy.
     3. The macrophages (Mφ) infiltrated into glomeruli were detected by CD68 immunohistological stain 7 days after the nephritis had been induced, and a quantitive analysis was performed to invest whether or not PLNPK could inhibite Mcp infiltration into glomeruli.
     4. Total RNA and protein were extracted from renal cortex, monocyte chemoattractant protein (MCP)-1 mRNA and protein expression were detected by Real-Time PCR and Western Blot in order to observe whether PLNPK has any influence on MCP-1 expression in kidney.
     5. Rat glomerular mesangial cells (MC) and rat glomerular mesangial cell strain, RMC, were cultured, and after stimulated by recombined rat IL-1β, Real-Time PCR and Western Blot were performed to detecte whether PLNPK could down regulate the expression of MCP-1 in above cells in vitro.
     6. The effect of PLNPK on p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in MC and RMC was detected by Western Blot.
     Results:
     1. The 24hrs urinary protein of glomerular nephritis (GN) control group was much higher than that of healthy control from the second day after heterologous antibody had been injected (P<0.01), crescents could be observed in glomeruli, and heterologous antibody and auto-antibody deposited along GBM, which indicated that rat anti-GBM nephritis had been successfully induced.
     2. After treated with PLNPK (200、400μg/kg/d) for 2 weeks, the urinary protein level of rats with nephritis was markedly reduced.6 weeks after the nephritis was induced, PLNPK could raise the level of serumal total protein (TP) and albumin (ALB), reduce serumal total cholesterol (TC) and serumal urea nitrogen (BUN), but the effect on serumal triglyceride (TG) and creatinine (Cr) was not significant. PLNPK could degrade the kidney index of the GN rats, reduce the formation of cerescents in glomeruli, lessened the deposition of auto-antibodies on the GBM. Ultrastructural analysis showed that PLNPK could ameliorate the injury of GBM, reduce the level of GBM thickening and foot processes fusion.
     3. Considerable Mφinfiltrated into glomeruli one week after anti-GBM serum injection in GN control group, but no Mφwere seen in glomeruli of healthy rats. PLNPK (200 and 400μg/kg/d) could reduce the number of Mφin glomeruli (P<0.01 vs nephritis-induced group).
     4. The expression of MCP-1 mRNA and protein was up regulated significantely in GN control group one week after nephritis was induced, P<0.01 vs healthy control. After treated with PLNPK (200、400μg/kg/d), both mRNA and protein expression of MCP-1 was reduced, P<0.01 vs GN control group.
     5. The MCP-1 mRNA and protein expression was enhanced after stimulated by recombined rat IL-1βfor 5 and 12 hours respectively in MC and RMC, PLNPK (1.6,3.2,6.4mg/ml) reduced the IL-1βstimulated MCP-1 mRNA and protein expression in above cells, P<0.01 compared with IL-1βstimulated control.
     6. The phosphorylation of p38 MAPK was inhanced after stimulated by rat IL-1βfor 30 minutes in MC and RMC, PLNPK (1.6、3.2、6.4mg/ml) pretreatment could reduce the phosphorylation level of p38 MAPK in those cells, P<0.01 vs IL-1βstimulated control.
     Conclusion:
     PLNPK can ameliorate rat anti-GBM glomerular nephritis, the possible mechanism (at least partly) is though inhibiting the phosphorylation of p38 MAPK, blocking the activation of MC, to reduce the expression of MCP-1 in MC, and decrease the Mφinfiltration into glomeruli, then reduced the injury of kidney.
引文
[1]武忠弼.病理学(第四版)[M].北京:人民卫生出版社,1998:333.
    [2]陈濒珠,李宗明.内科学(第四版)[M].北京:人民卫生出版社,1999:469-482.
    [3]陈灏珠,李宗明.内科学(第四版)[M].北京:人民卫生出版社,1999:463.
    [4]Lan HY, Nikolic-Paterson DJ, Mu W, er al. Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat [J]. Kidney Int.1995,47(5):1303-1309.
    [5]Chadban SJ, Tesch GH, Lan HY, et al. Effect of interleukin-10 treatment on crescentic glomerulonephritis in rats [J]. Kidney Int.1997,51(6):1809-1817.
    [6]Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis [J]. Kidney Int.2005,67(5):1812-1820.
    [7]汤仁仙,简洁,王迎伟,等.大鼠抗GBM肾炎模型的建立及不同病期的生化指标和肾组织病理学观察[J].徐州医学院学报,2003,23(1):9-13.
    [8]HAMMER DK, DIXON FJ. Experimental glomerulonephritis. Ⅱ. Immunologic events in the pathogenesis of nephrotoxic serum nephritis in the rat [J]. J Exp Med.1963,117:1019-1034.
    [9]Magil AB, Wadsworth LD. Monocyte involvement in glomerular crescents:a histochemical and ultrastructural study [J]. Lab Invest.1982, (2):160-166.
    [10]Tang WW, Qi M, Warren JS. Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN [J]. Kidney Int.1996, 50(2):665-671.
    [11]Nakamura K, Oka M, Shirai M, et al. Source of reactive oxygen species in anti-Thy1 nephritis [J]. Ren Fail.1998,20(2):399-405.
    [12]Kaneko Y, Sakatsume M, Xie Y, et al. Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis [J]. J Immunol.2003,170(6):3377-3385.
    [13]Rovin BH, Tan LC. Role of protein kinase pathways in IL-1-induced chemoattractant expression by human mesangial cells [J]. Kidney Int.1994, 46(4):1059-1068.
    [14]Yu XQ, Fan JM, Nikolic-Paterson DJ, et al. IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat [J]. Am J Pathol.1999,154(3):833-841.
    [15]Nikolic-Paterson DJ, Lan HY, Hill PA, et al. Suppression of experimental glomerulonephritis by the interleukin-1 receptor antagonist:inhibition of intercellular adhesion molecule-1 expression [J]. J Am Soc Nephrol.1994, 4(9):1695-1700.
    [16]Pai R, Bassa B, Kirschenbaum MA, et al. TNF-alpha stimulates monocyte adhesion to glomerular mesangial cells. The role of intercellular adhesion molecule-1 gene expression and protein kinases [J]. J Immunol.1996, 156(7):2571257-9
    [17]Eberhardt W, Huwiler A, Beck KF, et al. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways [J]. J Immunol.2000,165(10):5788-5797.
    [18]Chen YM, Ng YY, Lin SL, et al. Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats. Nephrol Dial Transplant [J].2004,19(5):1106-15.
    [19]Eitner F, Bucher E, van Roeyen C, PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis [J]. J Am Soc Nephrol.2008, 19(2):281-289.
    [20]Ostendorf T, Kunter U, Grone HJ, Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis [J]. J Am Soc Nephrol. 2001,12(5):909-918.
    [21]Isome M, Fujinaka H, Adhikary LP, et al. Important role for macrophages in induction of crescentic anti-GBM glomerulonephritis in WKY rats [J]. Nephrol Dial Transplant.2004,19(12):2997-3004.
    [22]周光炎.免疫学原理[M].上海:上海科学技术出版社,2007:92-94.
    [23]Liu ZH, Chen SF, Zhou H, et al. Glomerular expression of C-C chemokines in different types of human crescentic glomerulonephritis [J]. Nephrol Dial Transplant.2003,18(8):1526-1534.
    [24]Panzer U, Thaiss F, Zahner G, et al. Monocyte chemoattractant protein-1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis [J]. Kidney Int.2001,59(5):1762-1769.
    [25]Schneider A, Panzer U, Zahner G, et al. Monocyte chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-beta [J]. Kidney Int.1999,56(1):135-144.
    [26]Chikaraishi A, Hirahashi J, Takase O, et al. Tranilast inhibits interleukin-1beta-induced monocyte chemoattractant protein-1 expression in rat mesangial cells [J]. Eur J Pharmacol.2001 Sep 14;427(2):151-158. Rovin BH, Wilmer WA, Danne M, et al. The mitogen-activated protein kinase
    [27]p38 is necesssary for interleukin 1beta-induced monocyte chemoattractant protein 1 expression by human mesangial cells [J]. Cytokine.1999, 11(2):118-126.
    [28]郝希山,马腾骧,韩瑞发,等.免疫肾脏病学(第二版)[M].沈阳:辽宁科学技术出版社,2006:590-592.
    [29]Westberg NG, Michael AF. Human glomerular basement membrane preparation and composition[J]. Biochem.1970,9(19):3837-3846.
    [30]Bhan AK, Schneeberger EE, Collins AB, et al. Evidence for a pathogenic role of a cell-mediated immune mechanism in experimental glomerulonephritis [J]. J Exp Med.1978,148(1):246-260.
    [31]Stambe C, Atkins RC, Tesch G.H, et al. Blockade of p38alpha MAPK ameliorates acute inflammatory renal injury in rat anti-GBM glomerulonephritis [J]. J Am Soc Nephrol 2003,14(12):338-351.
    [32]王海燕.肾脏病学(第二版)[M].北京:人民卫生出版社,1996:531-532.
    [33]Kovalenko P, Fujinaka H, Yoshida Y, et al. Fc receptor-mediated accumulation of macrophages in crescentic glomerulonephritis induced by anti-glomerular basement membrane antibody administration in WKY rats [J]. Int Immunol. 2004,16(5):625-34.
    [34]Chen YM, Ng YY, Lin SL, et al. Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats [J]. Nephrol Dial Transplant.2004, 19(5):1106-1115.
    [35]陈灏珠,李宗明.内科学(第四版)[M].北京:人民卫生出版社,1999:476.
    [36]武忠弼.病理学(第四版)[M].北京:人民卫生出版社,1998:349.
    [37]Robertson JL, Hill GS, Rowlands DT Jr, et al. Tubulointerstitial nephritis and glomerulonephritis in Brown-Norway rats immunized with heterologous glomerular basement membrane [J]. Am J Pathol.1977,88(1):53-68.
    [38]Ohnuki T. Crescentic glomerulonephritis induced in the goat by immunization with homologous or heterologous glomerular basement membrane antigen [J]. cta Pathol Jpn.1975,25(3):319-31.
    [39]Shirato I, Sakai T, Kimura K, et al. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis [J]. Am J Pathol. 1996,148(4):1283-1296.
    [40]Magil AB, Wadsworth LD. Monocyte involvement in glomerular crescents:a histochemical and ultrastructural study [J]. Lab Invest.1982,47(2):160-166.
    [41]Ikezumi Y, Hurst L, Atkins RC, et al. Macrophage-mediated renal injury is dependent on signaling via the JNK pathway [J]. J Am Soc Nephrol.2004, 15(7):1775-1784.
    [42]Garcia GE, Xia Y, Harrison J, et al. Mononuclear cell-infiltrate inhibition by blocking macrophage-derived chemokine results in attenuation of developing crescentic glomerulonephritis [J]. Am J Pathol.2003,162(4):1061-1073.
    [43]Masaki T, Chow F, Nikolic-Paterson DJ, et al. Heterogeneity of antigen expression explains controversy over glomerular macrophage accumulation in mouse glomerulonephritis [J]. Nephrol Dial Transplant.2003,18(1):178-181.
    [44]Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins [J]. Blood.1993,81(6):1607-1613.
    [45]郝希山,马腾骧,韩瑞发,等.免疫肾脏病学(第二版)[M].沈阳:辽宁科学技术出版社,2006:570-574.
    [46]Hagiwara S, Makita Y, Gu L, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice:involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation [J]. Nephrol Dial Transplant.2006,21(3):605-615.
    [47]Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[J]. Anal Biochem, 1987,162(1):156-159.
    [48]卢圣栋.现代分子生物学实验技术(第二版)[M].中国协和医科大学出版社,2004,202-206.
    [49]Peinnequin A, Mouret C, Birot O, et al. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green [J]. BMC Immunol.2004,5:5:3.
    [50]Ball TB, Plummer FA, HayGlass KT. et al. Improved mRNA quantitation in LightCycler RT-PCR [J]. Int Arch Allergy Immunol.2003,130(1):82-86.
    [51]Peng KF, Wu XF, Zhao HW, et al. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells [J]. Chin Med J (Engl).2006,119(13):1088-1093.
    [52]Yaoita E, Oguri K, Okayama E, et al. Isolation and characterization of proteoglycans synthesized by cultured mesangial cells [J]. J Biol Chem.1990, 265(1):522-531.
    [53]Chikaraishi A, Hirahashi J, Takase O, et al. Tranilast inhibits interleukin-1 beta-induced monocyte chemoattractant protein-1 expression in rat mesangial cells [J]. Eur J Pharmacol.2001,427(2):151-158.
    [54]Rovin BH, Wilmer WA, Danne M, et al. The mitogen-activated protein kinase p38 is necesssary for interleukin 1 beta-induced monocyte chemoattractant protein 1 expression by human mesangial cells [J]. Cytokine.1999, 11 (2):118-26.
    [55]陈丽娟,周春雷,陆融,等.MAPK途径与巨噬细胞介导的肾损伤[J].国际泌尿系统杂志,2007,27(5):683-686.
    [56]王海燕肾脏病学(第二版)[M].北京:人民卫生出版社,1996:457.
    [57]顾勇,范虹.急进性肾小球肾炎的诊断进展[J],诊断学理论与实践,2003,2(4):261-263.
    [58]杨晓,孙世澜.2001年肾小球肾炎诊治指南[J],内科急危重症杂志,2002,8(3):172-174.
    [59]王海燕.肾脏病学(第二版)[M].北京:人民卫生出版社,1996:623-625.
    [60]王吉耀.内科学(第五版)[M].北京:人民卫生出版社,2001,573-574.
    [61]叶任高,李幼姬.在自身免疫疾病中使用环胞素A的现状[J].国外医学内科学分册,1990,17(4):162-174.
    [62]Sundaram R, Dakappagari NK, Kaumaya PT. Synthetic peptides as cancer vaccines. Biopolymers [J].2002,66(3):200-216.
    [63]FDA"MAY 27 1999 9423'99 JN-2 P1:22"号文件,USA,1999.
    [64]冯仁田,张天民,王凤山.猪脾来源的免疫抑制提取物的研究[J].山东医科大学学报,1993,31(3):258-260.
    [65]郝希山,马腾骧,韩瑞发,等.免疫肾脏病学(第二版)[M].沈阳:辽宁科学技术出版社,2006:873-878.
    [66]Hellmark T, Johansson C, Wieslander J, et al. Characterization of anti-GBM antibodies involved in Goodpasture's syndrome [J]. Kidney Int.1994, 46(3):823-829.
    [67]辛岗,赵明辉.两种方法分离人抗肾小球基底膜抗体靶抗原[J].汕头大学医学院学报,2005,18(1):13-14.
    [68]Bogdonoff MO, Linhart J, et al. The effect of albumin infusion upon lipid mobilization in the nephritic syndrome in man [J]. J Clin Invest.1961, 40:1024.
    [69]Garber DW, Gottlieb BA, Marsh JB, et al. Catabolism of very low density lipoproteins in experimental nephrosis [J]. J Clin Invest.1984, 74(4):1375-1383.
    [70]Kaysen GA, Gambertoglio J, Felts J, et al. Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients [J]. Kidney Int.1987,31 (6):1368-1376.
    [71]武忠弼.病理学(第四版)[M].北京:人民卫生出版社,1998:343.
    [72]戚人铎.诊断学(第三版)[M].北京:人民卫生出版社,1999:367-368.
    [73]Grcevska L, Petrusevska G, Polenakovic M, et al. Proximal tubular cells: potential role in macrophage migration and crescent formation [J]. Nephrol Dial Transplant,2003,18(12):2684-2685.
    [74]Ayman M. Karkar, Jennifer Smith, Charles D. Pusey. Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor-a [J]. Nephrol Dial Transplant,2001,16:518-524.
    [75]Lan HY, Mitsuhashi H, Ng YY, et al. Macrophage apoptosis in rat crescentic glomerulonephritis [J]. Am J Pathol.1997,151(2):531-538.
    [76]郝希山,马腾骧,韩瑞发,等.免疫肾脏病学(第二版)[M].沈阳:辽宁科学技术出版社,2006:575-581.
    [77]Allen AR, McHale J, Smith J, et al. Endothelial expression of VCAM-1 in experimental crescentic nephritis and effect of antibodies to very late antigen-4 or VCAM-1 on glomerular injury [J]. J Immunol.1999, 162(9):5519-5527.
    [78]Viedt C, Orth SR. Monocyte chemoattractant protein-1 (MCP-1) in the kidney:does it more than simply attract monocytes [J]? Nephrol Dial Transplant.2002,17(12):2043-2047.
    [79]Rovin BH, Doe N, Tan LC. Monocyte chemoattractant protein-1 levels in patients with glomerular disease [J]. Am J Kidney Dis.1996,27(5):640-646.
    [80]Schadde E, Kretzler M, Banas B, Expression of chemokines and their receptors in nephrotoxic serum nephritis [J]. Nephrol Dial Transplant.2000, 15(7):1046-1053.
    [81]Luo Y, Lloyd C, Gutierrez-Ramos JC, et al. Chemokine amplification in mesangial cells [J]. J Immunol.1999,163(7):3985-3992.
    [82]D W Hommes, M P Peppelenbosch and SJH van Deventer. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets [J]. Gut.2003,52(1):144-151.
    [83]Kanegae K, Tamura M, Kabashima N, et al. Synergistic induction of monocyte chemoattractant protein-1 by integrins and platelet-derived growth factor via focal adhesion kinase in mesangial cells [J]. Nephrol Dial Transplant.2005, 20(10):2080-2088.
    [84]Wu SH, Wu XH, Lu C, et al. Lipoxin A4 inhibits connective tissue growth factor-induced production of chemokines in rat mesangial cells [J]. Kidney Int. 2006,69(2):248-256.
    [85]Suda T, Osajima A, Tamura M, et al. Pressure-induced expression of monocyte chemoattractant protein-1 through activation of MAP kinase [J]. Kidney Int. 2001,60(5):1705-1715.
    [86]Zhang AH, Huang SM, Ding GX, et al. Induction of monocyte chemoattractant protein-1 expression in human mesangial cells by angiotensin II:role of c-Jun N-terminal kinase-c-Jun/activator protein-1 signal pathway [J]. Zhonghua Bing Li Xue Za Zhi.2004,33(6):550-554.
    [87]Hudkins KL, Giachelli CM, Eitner F, et al. Osteopontin expression in human crescentic glomerulonephritis [J]. Kidney Int,2000,57(1):105-116.
    [88]余学清,李涌泉,李晓燕,等.白细胞介素1 p通过p38信号通路上调大鼠肾小球系膜细胞骨调素mRNA的表达[J].中华肾脏病杂志,2003,9(5):305-309.
    [89]李涌泉,余学清,李晓燕,等.白细胞介素1通过p38信号通路上调系膜细胞表达白细胞介素6[J],中国免疫学杂志,2004,20(6):389-395.
    [1]Isome M, Fujinaka H, Adhikary LP, et al. Important role for macrophages in induction of crescentic anti-GBM glomerulonephritis in WKY rats [J]. Nephrol Dial Transplant,2004,19(12):2997-3004.
    [2]Grcevska L, Petrusevska G, Polenakovic M, et al. Proximal tubular cells: potential role in macrophage migration and crescent formation [J]. Nephrol Dial Transplant,2003,18(12):2684-2685.
    [3]Liu ZH, Chen SF, Zhou H, et al. Glomerular expression of C-C chemokines in different types of human crescentic glomerulonephritis [J]. Nephrol Dial Transplant,2003,18(8):1526-1534.
    [4]Viedt C, Orth SR. Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes [J]? Nephrol Dial Transplant,2002, 17(12):2043-2047.
    [5]Schadde E, Kretzler M, Banas B, et al. Expression of chemokines and their receptors in nephrotoxic serum nephritis [J]. Nephrol Dial Transplant,2000, 15(7):1046-1053.
    [6]Zhang AH, Huang SM, Ding GX, et al. Expression of monocyte chemoattractant protein-1 in experimental rat glomerulonephritis is mediated by NF-kappaB/IkappaB signal pathway [J]. Zhonghua Bing Li Xue Za Zhi, 2003,32(6):548-552.
    [7]Lucio-Cazana J, Nakayama K, Xu Q, et al. Suppression of constitutive but not I1-1beta-inducible expression of monocyte chemoattractant protein-1 in mesangial cells by retinoic acids:intervention in the activator protein-1 pathway [J]. J Am Soc Nephrol,2001,12(4):688-694.
    [8]Zhang AH, Huang SM, Ding GX, et al. Induction of monocyte chemoattractant protein-1 expression in human mesangial cells by angiotensin II:role of c-Jun N-terminal kinase-c-Jun/activator protein-1 signal pathway [J]. Zhonghua Bing Li Xue Za Zhi,2004,33(6):550-554.
    [9]Panzer U, Thaiss F, Zahner G, et al. Monocyte chemoattractant protein-1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis [J]. Kidney Int,2001,59(5):1762-1769.
    [10]Sakai N, Wada T, Furuichi K, et al. p38 MAPK phosphorylation and NF-kappa B activation in human crescentic glomerulonephritis [J]. Nephrol Dial Transplant,2002,17(6):998-1004.
    [11]Garcia GE, Xia Y, Harrison J, et al. Mononuclear cell-infiltrate inhibition by blocking macrophage-derived chemokine results in attenuation of developing crescentic glomerulonephritis [J]. Am J Pathol,2003,162(4):1061-1073.
    [12]Nakamura H, Kitazawa K, Honda H, et al. Roles of and correlation between alpha-smooth muscle actin, CD44, hyaluronic acid and osteopontin in crescent formation in human glomerulonephritis [J]. Clin Nephrol,2005, 64(6):401-411.
    [13]Hudkins KL, Giachelli CM, Eitner F, et al. Osteopontin expression in human crescentic glomerulonephritis [J]. Kidney Int,2000,57(1):105-116.
    [14]Lan HY, Yang N, Nikolic-Paterson DJ, et al. Expression of macrophage migration inhibitory factor in human glomerulonephritis [J]. Kidney Int,2000, 57(2):499-509.
    [15]Nikolic-Paterson DJ, Atkins RC. The role of macrophages in glomerulonephritis [J]. Nephrol Dial Transplant,2001,16(5):3-7.
    [16]Lendemans S, Rani M, Selbach C, et al. GM-CSF priming of human monocytes is dependent on ERK1/2 activation [J]. J Endotoxin Res,2006, 12(1):10-20.
    [17]Woo KJ, Park JW, Kwon TK. Proteasome inhibitor-induced cyclooxygenase-2 expression in Raw264.7 cells is potentiated by inhibition of c-Jun N-terminal kinase activation [J]. Biochem Biophys Res Commun,2006, 342(4):1334-1340.
    [18]Ikezumi Y, Hurst L, Atkins RC, et al. Macrophage-mediated renal injury is dependent on signaling via the JNK pathway [J]. J Am Soc Nephrol,2004, 15(7):1775-1784.
    [19]Qin LH, Kong L, Shi GJ, et al. Andrographolide inhibits the production of TNF-alpha and interleukin-12 in lipopolysaccharide-stimulated macrophages: role of mitogen-activated protein kinases [J]. Biol Pharm Bull,2006, 29(2):220-224.
    [20]Wilson HM, Chettibi S, Jobin C, et al. Inhibition of Macrophage Nuclear Factor-κB Leads to a Dominant Anti-Inflammatory Phenotype that Attenuates Glomerular Inflammation in Vivo [J]. Am J Pathol,2005,167(1):27-37.
    [21]Kaneko Y, Sakatsume M, Xie Y, et al. Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis [J]. J Immunol,2003,170(6):3377-3385.
    [22]Swindle EJ, Hunt JA, Coleman JW. A comparison of reactive oxygen species generation by rat peritoneal macrophages and mast cells using the highly sensitive real-time chemiluminescent probe pholasin:inhibition of antigen-induced mast cell degranulation by macrophage-derived hydrogen peroxide [J]. J Immunol,2002,169(10):5866-5873.
    [23]Gwinner W, Grone HJ. Role of reactive oxygen species in glomerulonephritis [J]. Nephrol Dial Transplant,2000,15(8):1127-1132.
    [24]Timoshanko JR, Kitching AR, Iwakura Y, et al. Leukocyte-derived interleukin-lbeta interacts with renal interleukin-1 receptor I to promote renal tumor necrosis factor and glomerular injury in murine crescentic glomerulonephritis [J]. Am J Pathol,2004,164(6):1967-1977.
    [25]Luo Y, Lloyd C, Gutierrez-Ramos JC, et al. Chemokine amplification in mesangial cells [J]. J Immunol,1999,163(7):3985-3992.
    [26]Lucio-Cazana J, Nakayama K, Xu Q, et al. Suppression of constitutive but not I1-1beta-inducible expression of monocyte chemoattractant protein-1 in mesangial cells by retinoic acids:intervention in the activator protein-1 pathway [J]. J Am Soc Nephrol,2001,12(4):688-694.
    [27]Yu XQ, Fan JM, Nikolic-Paterson DJ, et al. IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat [J]. Am J Pathol,1999,154(3):833-841.
    [28]Karkar AM, Smith J, Pusey CD. Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor-alpha [J]. Nephrol Dial Transplant,2001,16(3):518-524.
    [29]Chen YM, Ng YY, Lin SL, et al. Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats [J]. Nephrol Dial Transplant,2004, 19(5):1106-1115.
    [1]D W Hommes, M P Peppelenbosch and SJH van Deventer. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets [J]. Gut,2003,52:144-151.
    [2]Shinji Hagiwara, Yuichiro Makita, Leyi Gu, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: Involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation [J]. Nephrol Dial Transplant,2006; 21:605-615.
    [3]Philippe P. Roux and John Blenis. ERK and p38 MAPK-ctivated protein kinase:a family of protein kinase with diverse biological functions [J]. Microbiology and molecular biology reviewa,2004;320-344.
    [4]Shinji Hagiwara, Yuichiro Makita, Leyi Gu, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation [J]. Nephrol Dial Transplant,2006,21(3):605-615.
    [5]Wu SH,Wu XH,Lu C, et al. Lipoxin A4 inhibits connective tissue growth factor-induced production of chemokines in rat mesangial cells [J]. Kidney Int, 2006,69(2):248-256.
    [6]Myung-Ja Lee, Chul Woo Yang, Dong Chan Jin, et al. Bone Morphogenetic Protein-7 Inhibits Constitutive and Interleukin-1β-Induced Monocyte Chemoattractant Protein-1 Expression in Human Mesangial Cells:Role for JNK/AP-1 Pathway [J]. The Journal of Immunology,2003,170:2557-2563.
    [7]Akihiro Chikaraishi,Junichi Hirahashi,Osamu Takase, et al. Tranilast inhibits interleukin-1beta-induced monocyte chemoattractant protein-1 expression in rat mesangial cells [J]. Eur J Pharmacol,2001,427(2):151-158.
    [8]Rovin BH, Wilmer WA, Danne M, et al. The mitogen-activated protein kinase p38 is necesssary for interleukin 1beta-induced monocyte chemoattractant protein 1 expression by human mesangial cells [J]. Cytokine,1999, 11(2):118-126.
    [9]Norihiko Sakai,Takashi Wada,Kengo Furuichi,et al. p38 MAPK phosphorylation and NF-kappa B activation in human crescentic glomerulonephritis [J]. Nephrol Dial Transplant,2002,17(6):998-1004.
    [10]Perez OD, Mitchell D, Nolan GP. Differential role of ICAM ligands in determination of human memory T cell differentiation [J]. BMC Immunol, 2007,8:2.
    [11]Fu P,Wang Jq,Yang Lch, et al. Correlation of JNK/SAPK Acitivity and the Production of ICAM-1 on Renal Mesangial Cells in Vitro [J]. J WCUMS, 2001,32(2):277-280.
    [12]Lin FS, Lin CC, Chien CS, et al, Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1 beta-induced ICAM-1 expression in human pulmonary epithelial cells [J]. J Cell Physiol,2005,202(2):464-473.
    [13]Yan W, Zhao K, Jiang Y, et al. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide [J]. Shock,2002, 17(5):433-438.
    [14]YOHEI IKEZUMI, LYN HURST, ROBERT C, et al. Macrophage-mediated renal injury is dependent on signaling via the JNK pathway [J]. J Am Soc Nephrol,2004,15(7):1775-1784.
    [15]Hyun Jeong Kwak, Jin Sook Song, Jun Young Heo, et al. Roflumilast Inhibits Lipopolysaccharide-Induced Inflammatory Mediators via Suppression of Nuclear Factor-κB, p38 Mitogen-Activated Protein Kinase, and c-Jun NH2-Terminal Kinase Activation [J]. J Pharmacol Exp Ther,2005,315:1188-1195.
    [16]RAJESH KUMAR SHARMA, AJIT SODHI, HARSH VARDHAN BATRA. Involvement of c-Jun N-terminal kinase in rF1 mediated activation of murine peritoneal macrophages in vitro [J]. J Clin Immunol,2005,25(3):215-223.
    [17]Sven Lendemans, Meenakshi Rani, Christian Selbach, et al. GM-CSF priming of human monocytes is dependent on ERK1/2 activation [J]. Journal of Endotoxin Research,2006,12(1):10-12.
    [18]Yi Y, McNerney M, Datta SK. Regulatory defects in Cb1 and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells [J]. J Immunol,2000,165(11):6627-6634.
    [19]Li J, Campanale NV, Liang RJ, et al. Inhibition of p38 mitogen-activated protein kinase and transforming growth factor-beta1/Smad signaling pathways modulates the development of fibrosis in adriamycin-induced nephropathy [J]. Am J Pathol, 2006,169(5):1527-1540.
    [20]Prakash J, Sandovici M, Saluja V, et al. Intracellular delivery of the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1 H-imidazole] in renal tubular cells:a novel strategy to treat renal fibrosis [J]. J Pharmacol Exp Ther, 2006,319(1):8-19.
    [21]Wada T, Azuma H, Furuichi K, et al. Reduction in chronic allograft nephropathy by inhibition of p38 mitogen-activated protein kinase[J]. Am J Nephrol.2006,26(4):319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700