MK调节MICA/B表达参与胃肿瘤免疫逃逸的机制及MK靶向疗效的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中期因子(Midkine, MK)是一种肝素结合的细胞因子或生长因子,它的基因主要在胚胎期表达,随着发育的进展其表达组织逐渐局限,表达量逐渐减少:成年期个体仅在肺、结肠、胃、肾和脾等器官中极低地表达。近年来的研究发现,MK高表达于多种肿瘤组织。我们实验室先前的研究已表明,MK在癌组织中高表达(表达率为94.6%),且与癌旁组织和正常组织的表达有显著差异;进一步发现,MK的表达与肿瘤的临床分期及远处转移相关,而与肿瘤的组织分化、大小及淋巴结转移情况无关;免疫组化定位分析发现,MK蛋白广泛存在于肿瘤细胞的细胞质,且明显表达细胞外组织的腺泡处。这些结果提示MK有望成为新型的肿瘤标志物。可是,MK的检测体系还不完善;MK是否参与肿瘤的免疫逃逸尚不清楚;MK靶向治疗肿瘤的新方法需要探索。因此,本论文在以下方面进行了研究:
     1、人中期因子(Midkine)单克隆抗体和ELISA检测试剂盒的研制:
     为探讨MK作为肿瘤标志的可能性,本研究用MK重组蛋白免疫Balb/c小鼠,3次免疫后取脾细胞与SP2/0细胞融合、筛选得到3株抗人MK单克隆抗体杂交瘤细胞株,其中1C5杂交瘤细胞株较好。进一步利用1C5杂交瘤细胞株的腹水纯化获得单抗,HRP标记后,运用交叉配对法建立了ELISA检测体系,并通过比较24例肿瘤患者血清与正常人血清中的MK浓度进行了检测,初步评价了该检测体系。另外,运用筛选得到的抗MK单克隆抗体进行免疫印记试验,证实在胃癌组织和癌旁组织中MK的蛋白含量高于正常的胃粘膜组织。
     2、MK参与肿瘤免疫逃逸机制的探讨:
     目前的研究认为,MK主要具有诱发瘤细胞发生、促纤溶和细胞趋化、促进肿瘤血管形成及增强肿瘤细胞耐药性等方面的作用。可是,在肿瘤微环境组织中也有许多免疫细胞浸润,MK是否参与肿瘤的免疫逃逸尚不清楚。因此,为了探索MK在肿瘤免疫逃逸中的作用,利用基因芯片技术对MK高表达肿瘤细胞株BGC-MK进行相关基因分析,结果表明,当MK高表达时,肿瘤杀伤细胞(主要为NK细胞和CD8+T细胞)的活化配体MIC A/B也高表达,并经过RT-PCR、Q-PCR、FCM和ELISA确证,BGC-MK细胞的细胞膜表面和可溶性的MIC A/B表达都增加。进一步经过免疫共沉淀和染色体免疫共沉淀等试验发现,MK通过P38信号通路提高转录因子CHOP的表达,CHOP能与AP-1结合加强MIC A/B的表达。这些结果首次揭示了MK参与肿瘤免疫逃逸的新机制。
     3、MK靶向治疗肿瘤的新方法的探索:
     基于在胃癌组织和癌旁组织中MK的蛋白含量高于正常的胃粘膜组织的发现,我们认为MK可作为肿瘤靶向治疗的生物靶标。通常认为,与单克隆抗体相比,单链抗体(SCFV)可将药物、毒素、放射性核素等导向肿瘤,具很大的临床应用潜能等特性。为此,我们设计通用引物,采用RT-PCR方法从1C5杂交瘤细胞株中扩增抗体轻链可变区基因VL和重链可变区基因VH,用重叠PCR把VH和VL用短肽(Ser4Gly)4连接起来,在c端引入6×His标签,与pMD18 T-vector连接测序正确后,将该片段克隆入大肠杆菌表达载体pET30a(+)中,转化大肠杆菌表达菌株BL21(DE3),筛选得到可诱导表达MK的SCFV重组蛋白工程菌株,经IPTG诱导及镍亲和柱纯化获得SCFV重组蛋白。进一步通过氧化葡聚糖的醛基与SCFV和阿霉素(DOX)的NH3反应,把SCFV和DOX连接起来形成靶向药物SCFV-DOX。体内外试验证明,SCFV-DOX能在MK高表达的肿瘤组织中有效富集,提高DOX抑制肿瘤生长的效应。这种MK靶向治疗肿瘤的新方法可望用于临床治疗。
     总之,本研究制备了人中期因子(Midkine)单克隆抗体,建立了MK的ELISA检测体系;首次揭示了MK通过调节MICA/B表达参与胃肿瘤免疫逃逸的新机制;利用MK单链抗体(SCFV)导向抗肿瘤药物的特性,探索了MK靶向治疗肿瘤的新方法。本研究为阐明MK在肿瘤发生用于发展中的作用机制及有效利用MK作为肿瘤靶向治疗的生物靶标都具有重要的意义。
Midkine (MK), a heparin-binding growth factor, is most strongly expressed in midgestation, with the progress of embryonic development, the expression of tissue gradually limitations, and is weakly expressed in the tissues of the lung, colon, stomach, kidney, and spleen, and not at all in the liver. Recently research found that MK expression in tumor tissues was higher than the corresponding adjacent normal tissues. Our previous research by RT-PCR and immunohistochemical analysis showed that compared with the healthy tissues, MK is highly expressed in gastric carcinoma tissues in Chinese patients. Which is related with the clicical stage and the far metastasis and mainly locate in the matrix of tumor cells. The research of MK expression characteristics and mechanism in tumor tissue of cancer patients, have provide new ways for tumor diagnosis and treatment to us.
     To explore the possibility of MK as a tumor marker, we have immunized Balb/c mice three times with the MK recombinant protein, and then, taked the mice's spleen cells to fuse with the SP2/0 cells. We got three anti-human-MK hybridoma cell lines by screening with HAT and HT, three kinds of monoclonal antibody and those labeled with HRP by these cells. By using hybrid matching method with those antibodies and the HRP labeled's, we established the ELISA detection system to detect the MK concentrations in the 24 cancer patient's serum and in the health's serum. Conclusion showed that this ELISA kits can be used to detect the level of MK in the patient serum and urine of patient in clinical.
     The current study showed that the roles of MK during the tumor formation, mainly were related to the occurrence of induced tumor cells, promote fibrinolysis and a chemotactic role in promoting tumor angiogenesis, increased drug resistance of tumor cells, have not MK and tumor immunity relevant aspects of the reported escape. In order to explore and study the occurrence of MK in the role of tumor immunity, using DNA microarray analysis of genes associated with the MK expression analysis found that high expression of the MK, the tumor killer cells (mainly NK cells and CD8+T cells) activation ligand MIC A/B high expression, and after RT-PCR, Q-PCR and FCM and ELISA tests to prove that MK expression of tumor cells, the cell surface and soluble MIC A/B expression were increased. After further study found, MK can increased the expression of transcription factor CHOP through the P38 signaling pathway, and then CHOP was combined with AP-1 together to promote the MIC A /B expression. We first found the new regulation mechanism of MIC A/B expression. We concluded that MK promot the MIC A/B expression in the tumor cells through the P38 signaling pathway to make tumor cells to escape from the immunal killing effect of NK cell and T cell killing effect.
     MK-SCFV-DOX, which is an immunoconjugate of doxorubicin (DOX) and a single-chain Fv fragment against human midkine (MK-SCFV), was used to target chemotherapy to a mouse tumor model expressing high levels of the human MK antigen. The recombinant MK-SCFV expressed in bacteria was purified by metal affinity chromatography and then conjugated to the DOX by using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was MK-SCFV(Dex)1.3(DOX)20. Apoptosis assay showed that the MK-SCFV-DOX had higher cytotoxicity against MK-over-expressed BGC823 cells (BGC823-MK cells) as compared to BGC823-3.1 cells. When given intravenously to tumor-bearing mice implanted with BGC823-MK cells, MK-SCFV-DOX suppressed tumor growth more effectively than free DOX (tumor growth inhibition rate of 51.83% as compared to 40.81%). Histologic analysis of the tumor tissue revealed that the MK-SCFV-DOX promoted more DOX accumulation in tumors and more tumor cell death than did free DOX. These results showed that MK-SCFV-DOX is more effective in the targeted inhibition of tumor growth and that MK-SCFV may be a competent drug-carrier.
引文
1 Milner PG, Shah D, Veile R, et al. Cloning, nucleotid sequence, and chromosome localizaion of the human pleiotrophin gene. Biochemistry 1992,31(48):12023-8.
    2 Kaname T, Kuwano A, Murano I, et al. Midkine gene (MDK), a gene for prenatal differentiation and neuroregulation, maps to band 11p 11.2 by fluorescence in situ hybridization. Genomics 1993,7(2): 514-5.
    3 Uehara K, Matsubara S, Kadomatsu K, et al. Genomic structure of human midkine (MK), a retinoic acid-responsive growth/differentiation factor. J Biochem 1992,111(5):563-7.
    4 黄雅玲,侯亚义。Midkine与肿瘤关系的研究进展[J]。肿瘤防治研究2007,34(2):161-163。
    5 Muramatsu T. Midkine and pleiotrophin:two related proteins involved in development, survival, inflammation and tumorigenesis. J. Biochem.2002,132:359-371.
    6 Muramatsu T. Midkine in Wiley Encyclopedia of Molecular Medicine 2002,2086-2088. John Wiley & Sons., Inc. New York, USA
    7 Mitsiadis TA, Salmivirta M, Muramatsu T, et al. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 1995,121:37-51.
    8 Kojima T, Katsumi A, Yamazaki T, et al. Human ryudocan from endotheliumlike cells binds basic fibroblast growth factor, midkine, and tissue factor pathway inhibitor. J Biol Chem.1996,271: 5914-5920.
    9 Nakanishi T, Kadomatsu K, Okamoto T, et al. Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with Midkine. J Biochem (Tokyo) 1997,121: 197-205.
    10 Maeda N, Ichihara-Tanaka K, Kimura T, et al. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta, J Biol Chem.1999,274:12474-12479.
    11 Muramatsu H, Zou K, Sakaguchi N, et al. LDL receptor-related protein as a component of the midkine receptor, Biochem Biophys Res Commun.2000,270:936-941.
    12 Stoica GE, Kuo A, Powers C, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types, J Biol Chem.2002,277:35990-35998.
    13 Muramatsu T. Chondroitin sulfate E in signaling of the growth factor midkine. 16. Kurtz A, Schulte AM, Wellstein A. Pleiotrophin and midkine in normal development and tumor biology. Crit Rev Oncol.1995,6:151-177. 17. Muramatsu T, Muramatsu H, Kaneda N, et al. Recognition of glycosaminoglycans by midkine. Methods Enzymol.2003,363:365-376.
    14 Perez-Pinera P, Garcia-Suarez O, Menendez-Rodriguez P, et al.The receptor protein tyrosine phosphatase (RPTP)beta/zeta is expressed in different subtypes of human breast cancer. Biochem Biophys Res Commun.2007,362(1):5-10.
    15 Deud TF, Zhang N, Yeh HJ, et al, Pleiotrophin:a cytokine with diverse functions and a novel signaling pathway. Arch Bioehem Biophys,2002,397(2):162—171.
    16 Tsutsui J, Kadomatsu K, Matsubara S, et al. A new family of heparin-binding growth/differentiation factors:increased midkine expression in Wilms'tumor and other human carcinomas, Cancer Res. 1993,53:1281-1285.
    17 Hodba M, Kadomau K, Nakamum E, et al. Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J Clin Invest.2000,105(4):489-495.
    18 Yoshida Y, Ikematsu S, Muramatsu H, et al. Expression of the heparin-binding growth factor midkine in the cerebrospinal fluid of patients with neurological disorders. Intern Med.2008,47(2):83-9.
    19 Sato W, Yuzawa Y. Midkine expression in the course of nephrogenesis and its role in ischaemic repefusion injury. J Nephrol Dial Transplant.2002,17(Suppl 9):52-54.
    20 Kosugi T, Yuzawa T. Growth factor midkine is involved in the pathogenesis of diabetic nephropathy. J American Journal of Pathology 2006,168(1):9-19.
    21 Sato W, Kadomatsu K, Yuzawa Y, et al. Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol.2001,167(6):3463-3469.
    22 Sato W, Takei Y, Yuzawa Y, et al. Midkine antisense oligodeoxyribonucleotide inhibits renal damage induced by ischemic reperfusion. Kidney Int.2005,67(4):1330-9.
    23 Sumi Y, Muramatsu H, Hata K, et al. Midkine enhances early stages of collagen gel contraction. J. Biochem.2000,127:247-251.
    24 Tsutsui J, Uehara K, Kadomatsu K, et al. A new family of heparin-binding factors:strong conservation of midkine (MK) sequences between the human and the mouse. Biochem Biophys Res Commun.1991,176:792-797.
    25 O'Brien T, Cranston D, Fuggle S, et al. The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res. 1996,56:2515-2518.
    26 Isao M, Tadashi K, Eisei S, et al. Midkine expression in human breast cancers:Expression of truncated form. Breast Cancer Res and Tr.1997,43:1-6.
    27 Lazar AJ, Das P, Tuvin D, et al. Angiogenesis-promoting gene patterns in alveolar soft part sarcoma. Clin Cancer Res.2007,13(24):7314-21.
    28 Fujita S, Seki S, Fujiwara M, et al. Midkine expression correlating with growth activity and tooth morphogenesis in odontogenic tumors. Hum Pathol.2008 Mar 7 [Epub ahead of print]
    29 Hidaka H, Yagasaki H, Takahashi Y, et al. Increased midkine gene expression in childhood B-precursor acute lymphoblastic leukemia. Leuk Res.2007,31(8):1045-51.
    30 Hye-Sung M, Won IP, Sun Hee S, et al. Immunohistochemical and quantitative competitive PCR analyses of midkine and pleiotrophin expression in cervical cancer. Gynecol Oncol.2003,88: 289-297.
    31 Krzystek-Korpacka M, Matusiewicz M, Diakowska D,et al. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin Chem Lab Med. 2008,46(3):359-64.
    32 Kaifi JT, Fiegel HC, Rafnsdottir SL, et al. Midkine as a prognostic marker for gastrointestinal stromal tumors. J Cancer Res Clin Oncol.2007,133(7):431-5.
    33 张春妮,万建美,李克等。妊娠中肾细胞因子mRNA在人食管癌组织中的表达[J]。临床检验 杂志,2002年20(3):137-138。
    34 黄亚红,王庆苓,王会等。肿瘤组织中Midkine细胞因子基因的克隆及其在大肠杆菌中的表达[J]。现代免疫学,2005年25(2):145-148。
    35 王庆苓,黄亚红,谢浩等。胃肿瘤组织中缺失型Midkine基因的克隆与表达[J]。卫生研究,2005,34(6):664-666。
    36 Huang YL, Cao GC, Wang H, et al. The expression and location of midkine in gastric carcinomas of Chinese patients. Cell Mol Immunol.2007,4 (2):135-140.
    37 Ikematsu S, Yano A, Aridome K, et al. Serum midkine levels are increased in patients with various types of carcinomas. Brit J Cancer.2000,83:701-706.
    38 Shimada H, Nabeya Y, Tagawa M, et al. Preoperative serum midkine concentration is a prognostic marker for esophageal squamous cell carcinoma. Cancer Sci.2003,94(7):628-32.
    39 Yuki O, Shogo K, Yingsong L, et al. Serum midkine concentrations and gastric cancer. Cancer Sci. 2005,96(1):54-56.
    40 Ikematsu S, Okamoto K, Yoshida Y, et al. High levels of urinary midkine in various cancer patients. Biochem Biophys Res Commun.2003,306:329-332.
    41 Bauer S, Groh V, Wu J, Steinle A, Phillips JH, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science.1999,285:727~729.
    42 Groh V, Rhinehart R, Randolph-habecker J, Topp MS, Riddell SR. Costimulation of CD8 alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells[J]. Nat Immunol.2001, 2:255~260.
    43 Ding Y, Sumitran S. Holgcrsson J. Direct binding of purified HLA class I antigens by soluble NKG2 / CD94 C-type lectins from natural killer cel!s[J]. Scan J Immunol,1999,49:459~465.
    44 Bahram S, et al. Nucleotide sequence of the human MHC class I MICA gene [J]. Immunogenetics, 1996,44(1); 80~81.
    45 Bahram S. et al. Genomic structure of the human MHC class I MICB gene [J]. Immunogenetics, 1996,45(2):161~162.
    46 Groh V, et al. Cell stress。regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium[J]. Proc Natl Acad Sci USA,1996,93:12445~12450.
    47 Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB[J]. Proc Natl Acad Sci USA,1999,96:6 879~6 884.
    48 Weber Kaare J, Rflo Geetha, et al. Increased expression of MIC A in serum of pancreatic cancer patients[J]. J Am coll Surg,2004,199(3):89.
    49 Vetter CS, Groh V, thor Straten P, Spies T, et al, Expression of stress-induced MHC class I related chain molecules on human melanoma[J]. J Invest Dermatol,2002,118(4):600-605.
    50 Jinushi M. Expression and role of MICA and MICB in human hepatocellullar carcinomas and their regulation by retinoic acid[J]. Int J Cancer,2003.104:354~361.
    51 Sutherland CL. Chalupny NJ. Schooley K, et al. UL16—binding proteins. novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells [J]. J. Immunol,2002,168(2):671~679.
    52 Groh V, Wu J. Yee C t et al. Tumor-derived soluable MIC ligands impair expression of NKG2D and T-cell activation[J]. Nature,2002,419:734~ 738.
    53 张彩,冯进波,王郡甫,等.膜型/分泌型MICA对NK细胞受体NKG2D的相反调节效应及其对NK细胞受体谱的影响[J].中华微生物和免疫学杂志,2004,24(2):107~111.
    54 Jennifer D, Wu, Lily M. Higgins, Alexander Steinle, et al. Prevalent expression of the imm ostimulatory MHC class 1 chain-related molecule iS counteractedby shedding in prostate cancer[J]. J Clin Invest,2004.114(4):560-568.
    55 NKG2D ligands:key targets of the immune response Trends in Immunology (2008) 9.48
    56 Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis Cancer Immunol Immunother (2009) 3.728
    57 Estradiol regulates MICA expression in human endometrial cells Clinical Immunology (2008) 3.552
    58 Selective Induction of Expression of a Ligand for the NKG2D Receptor by Proteasome Inhibitors Cancer Res (2009); 7.672
    1.IkematsuS, NakagawaraA, NakamuraY, etat. Corrdafion ofde—rated levd of blod midkine with poor prc rtk factors of human neuroblas. Br J Cancer,2003,88(10):1522—1526.
    2 Moon H, Park W, Sung W, et al.cal and quantitative competitive PCR analyses of midkine and pleiotrophin expression in cervical cancer. Elsevier Publiser(Gynecologie Onco logy),2003,88(3): 289—297.
    3 殷正丰,康晓燕,罗祥基,等.肝细胞癌高表达中期因子与肝癌细胞血行播散的关系[J].中国肿瘤临床,2004,31(7):361—364.
    4. YeC, QiM, Fan QW, etat. Expression ofmidkineinthe early stage of carcinogenesis in human color~at eanc~r. Br J Cancer,1999,79(1):179—184.
    5. CzubaykOF, SchulteAMBerchemGJetat. Melanomaangiogenesisandmetastasismodulated by rilx-ymetargeting ofthe secreted growthfactor pleiotrophin. Proc Natl Acad Sci USA 1996,93 (25):14753—14758.
    6. Stoica G, Kuo A, Powers C, et al. Midkine Binds to Anaplastic Lymphoma Kinase(ALK)and Acts as fl Growth Factor for Different Cell Types[J]. ASBMB (Biological Chemistry),2O02,277(39): 35990-35998.
    7. Shibata Y, Murama tsu T, Hirai M, et al. Nuclear targetin by the growth factor mi dkine, the American Society for Ce ll Biology (Mol. CelL Biol.),2002,22(19):6788-6796.
    8. Paul S, Mitsumoto T, Asano Y, et al. Detection of truncated midkine in W ilm tumor by fl monoelonal antibody ag ainst human recombinant truncated midkine. Elsevier Publiser (Ca ncer Letters.), 2001,163(2):245—251.
    9. Ikematsu S。Okamoto K, Yoshida Y, et al. High levels of urinary midkine in various cancer patients. Elsevier Publiser (Bioehem. Biophys. Res. Cornmur~),2003,306(2):329-332.
    10.邵刚,黄策,赵卫,何君.产气英膜杆菌毒素单克隆抗体诊断盒的研究.单克隆抗体通讯.1991,7(2):26—29.
    22.钟细苟,段载金康治雄猪瘟单克隆抗体诊断技术的推广应用.中国兽医科技.1999,29(2):37。
    23.卜维军.单克隆抗体技术诊断地方性牛白血病的研究中国兽医科技.1989,5:45—44.
    24.胡春艳,刘全忠.单克隆抗体制备技术及应用研究进展.安徽预防医学杂志.2001,8,14(5):116-118。
    25.张涛高静,王强,顾丽.单克隆抗体治疗肿瘤研究进展.包头医学院学报.2005,4(21):428。
    26.马巍娜,贾雷立,刘雪袜,宋宏彬单克隆抗体技术用于农兽药快速检测的研究进展.现代生物医学进展,2007,7(12);9—19.
    27.杨敦启.奶粉掺杂物检测技术研究进展.中国乳液,2008,4。
    28.佥涌.单克隆抗体技术及其在食品卫生检验中的应用。农牧产品开发:2001,9—11。
    1. 龚卫娟,范丽安.MICA基因研究进展.国外医学:遗传学分册,2001,24(4):184
    2. Wu J,Song Y,Bakker A B, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science,1999,285:7302732.
    3. Groh V,W u J,Yee C,et al.Tumor derived soluble MIC ligands impair expression of NKG2D and T cell activation. Nature,2002,419:7342738.
    4. Purbhoo M A, Irvine D J, Huppa J B, et al. T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunology,2004,5:5242530.
    5. Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004,204:127-143.
    6. Kaifi JT, Fiegel HC, Rafnsdottir SL, et al. Midkine as a prognostic marker for gastrointestinal stromal tumors. J Cancer Res Clin Oncol 2007,133:431-435.
    7. Obata Y, Kikuchi S, Lin Y, et al. Serum midkine concentrations and gastric cancer. Cancer Sci 2005,96: 54-56 [PMID:15649256]
    8. Ruan M, Ji T, Wu Z, et al. Evaluation of expression of midkine in oral squamous cell carcinoma and its correlation with tumour angiogenesis. Int J Oral Maxillofac Surg 2007,36(2):159-64.
    9. Miyashiro I, Kaname T, Nakayama T, et al. Expression of truncated midkine in human colorectal cancers. Cancer Lett 1996,106 (2):287-91.
    10. Miyashiro I, Kaname T, Shin E, et al. Midkine expression in human breast cancers:expression of truncated form. Breast Cancer Res Treat 1997,43:1-6.
    11. Paul S, Mitsumoto T, Asano Y, et al. Detection of truncated midkine in Wilms' tumor by a monoclonal antibody against human recombinant truncated midkine. Cancer Lett 2001,163:245-251.
    12. Kato M, Shinozawa T, Kato S, et al. Immunohistochemical localization of truncated midkine in developing human bile ducts. Histol Histopathol 2003,18:129-134.
    13. Ratovitski EA, Burrow CR. Midkine stimulates Wilms' tumor cell proliferation via signaling receptor. Cell Mol Biol (Noisy-le-grand) 1997,43 (3):425-31.
    14. Friedrich C, Holtkamp N, Cinatl J Jr, et al Overexpression of Midkine in malignant peripheral nerve sheath tumor cells inhibits apoptosis and increases angiogenic potency. Int J Oncol 2005,27(5):1433-40.
    15. Tong Y, Mentlein R, Buhl R, et al. Overexpression of midkine contributes to anti-apoptotic effects in human meningiomas. J Neurochem 2007,100(4):1097-107.
    16. Kadomatsu K, Hagihara M, Akhter S, et al. Midkine induces the transformation of NIH3T3 cells. Br J Cancer 1997,75 (3):354-9.
    17. Ohuchida T, Okamoto K, Akahane K, et al. Midkine Protects Hepatocellular Carcinoma Cells against TRAIL-Mediated Apoptosis through Down-Regulation of Caspase-3 Activity. Cancer 2004,100: 2430-2436.
    18. Rha SY, Noh SH, Kim TS, et al. Modulation of biological phenotypes for tumor growth and metastasis by target-specific biological inhibitors in gastric cancer. Int J Mol Med 1999,4(2):203-12.
    19. Yin Z, Luo X, Kang X, et al. Correlation between midkine protein overexpression and intrahepatic metastasis in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi 2002,24(1):27-9.
    20. Trojan L, Schaaf A, Steidler A, et al. Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res 2005,25(1A):183-91.
    21. Salama RH, Muramatsu H, Zou P, et al. Midkine, a heparin-binding growth factor, produced by the host enhances metastasis of Lewis lung carcinoma cells. Cancer lett 2006,20;233(1):16-20.
    22. Aridome K, Takao S, Kaname T, et al. Truncated midkine as a marker of diagnosis and detection of nodal metastases in gastrointestinal carcinomas, Br J Cancer 1998,78:472-477.
    23. Nobata S, Shinozawa T, Sakanishi A. Truncated midkine induces transformation of cultured cells and short latency of tumorigenesis in nude mice. Cancer Lett 2005,19:83-89.
    24. Groh V, W u J, Yee C, et al. Tumor2derived solubleM IC ligands impair exp ression of N KG2D and T2cell activation [J]. N ature,2002,419:734-738.
    1. Aaronson SA. Growth factors and cancer. Science.1991,254,1146-1153.
    2. Muramatsu T. Midkine and pleiotrophin:two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem.2002,132,359-371.
    3. Muramatsu T. Midkine In:Wiley Encyclopedia of Molecular Medicine. John Wiley & Sons.2002,2086-2088.
    4. Kadomatsu K, Tomomura M, Muramatsu T. cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun. 1988,151,1312-1318.
    5. Dai LC. Midkine translocated to nucleoli and involved in carcinogenesis. World J Gastroenterol.2009,15,412-416.
    6. Huang Y, Cao G, Wang H, Wang Q, and Hou Y. The expression and location of midkine in gastric carcinomas of Chinese patients. Cell Mol Immunol.2007,4,135-140.
    7. Wang QL, Wang H, Zhao SL, Huang YH, Hou YY. Over-expressed and truncated midkines promote proliferation of BGC823 cells in vitro and tumor growth in vivo. World J Gastroenterol.2008,21,1858-1865.
    8. Wang Q, Huang Y, Ni Y, Wang H, Hou Y. siRNA targeting midkine inhibits gastric cancer cells growth and induces apoptosis involved caspase-3,8,9 activation and mitochondrial depolarization. J Biomed Sci.2007,14,783-795.
    9. Ibusuki M, Fujimori H, Yamamoto Y, Ota K, Ueda M, Shinriki S, Taketomi M, et al. Midkine in plasma as a novel breast cancer marker. Cancer Sci.2009.
    10. Hiroki Maehara, Tadashi Kaname, Kumiko Yanagi, Hiroaki Hanzawa, Ichiro Owan, Takao Kinjou, et al. Midkine as a novel target for antibody therapy in osteosarcoma. Biochemical and Biophysical Research Communications.2007,358,757-762.
    11. Mario Sznol, Thomas Davis. Tumor antigens as targets for anticancer drug development. Anticancer Drug Development,2002,Pages 157-170
    12. Stanislav Jaracz, Jin Chen, Larisa V, Kuznetsova and Iwao Ojima. Recent advances in tumor-targeting anticancer drug conjugates. Bioorganic & Medicinal Chemistry.2005, 13,5043-5054.
    13. Huston JS, Mudgett-Hunter M, Tai MS, McCartney J, Warren F, Haber E, et al. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol.1991, 203,46-88.
    14. Hudson PJ. Recombinant antibody fragments. Curr Opin Biotechnol.9,395-402.
    15. Chester KA, Robson L, Keep PA, Pedley RB, Boden JA, Boxer GM, et al. Production and tumour-binding characterization of a chimeric anti-CEA Fab expressed in Escherichia coli. Int J Cancer.1994,57,67-72.
    16. Schier R, Bye J, Apell G, McCall A, Adams GP, Malmqvist M, et al. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol.1996,255,28-43.
    17. Dougan DA, Malby RL, Gruen LC, Kortt AA, Hodson PJ. Effects of substitutions in binding surface of an antibody on antigen affinity. Protein Eng.1998,11,65-74.
    18. Sanchez L, Ayala M, Freyre F, Pedroso I, Bell H, Falcon V, et al. High cytoplasmic expression in E.coli, purification, and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. J Biotechnol.1999,72,13-20.
    19. Shuli Z, Hui W, Qingling W, Guangfeng Z, Yayi H. Production and characterization of a bacterial single-chain Fv fragment specific to human midkine.5'th Internal Forum on Post-genome Technologies.2007,48-50.
    20. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol.1999,57,727-741.
    21. Dansithong W, Paul S, Mitsumoto T, Saruhashi S, Shinozawa T. Production and characterization of a bacterial single-chain Fv fragment specific to human truncated midkine. Cancer Lett.2001,164,169-176.
    22. Inoh K, Muramatsu H, Torii S, Ikematsu S, Oda M, Kumai H, et al. Doxorubicin-Conjugated Anti-Midkine Monoclonal Antibody as a Potential Anti-Tumor Drug. Jpn J Clin Oncol.2006,36,207-211.
    23. Esther AR, Esther H, Francoise B, Joseph S and Michael S. Inhibition of human tumor growth in nude mice by a conjugate of doxorubicin with monoclonal antibodies to epidermal growth factor receptor. Proc. Nati. Acad. Sci. USA Vol.1989,86,3778-3781.
    24. Shouval D, Adler R, Wands JR, Hurwitz E, Isselbacher KJ, Sela M. Doxorubicin conjugates of monoclonal antibodies to hepatoma-associated antigens. Proc. Nati. Acad. Sci. USA Vol.1988,85,8276-8280.
    25. Rakestraw SL. Tompkins RG and Yarmush ML. Antibody-targeted photolysis:In vitro studies with Sn(Ⅳ) chlorin e6 covalently bound to monoclonal antibodies using a modified dextran carrier. Proc. Nati. Acad. Sci. USA Vol.1990,87,4217-4221.
    26. Arap W, Pasqualini R and Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in mouse model. Science.1998,279,377-80.
    27. Hurwitz E, Levy R, Maron R, Wilchek M, Arnon R and Slea M. The covalent binding of daunomycin and adriamycin to antibodies with retention of both drug and antibody activities. Cancer Res.1975,35,1175-1181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700