DDX25在小鼠精子发生过程中的表达及其与生精细胞凋亡的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:目前,全世界有六分之一的夫妇受到不育症的困扰,其中一半以上是男性不育。相当比例的男性不育症患者的睾丸不能产生精子,通常被称为非梗阻性无精子症(NOA),此类患者的数量在成年男性中占1%左右。在中国,25%的男性不育症患者的长辈中有无精子症患者。多项研究也显示NOA与遗传有关。近年来与男性不育密切相关的基因突变或多态现象相继被发现并日益成为研究热点。因此,对调控精子发生的相关基因的深入研究,不仅有助于阐明特发性不育症的病因,还对男性不育症靶向治疗的发展和男性避孕有重要的理论及应用价值。
     促性腺激素调节的睾丸RNA解旋酶(DDX25/GRTH)属于DEAD-box家族成员,是目前唯一明确由激素调控的RNA解螺旋酶,由雄激素通过雄激素受体在不同发育阶段调节其转录和翻译水平,其调控途径分别是睾丸间质细胞分泌的雄激素直接作用或睾丸支持细胞中雄激素易感基因介导的间接作用。DDX25在睾丸中特异表达,主要高表达于精母细胞、圆形精子细胞和间质细胞中。DDX25基因敲除的雄性小鼠表现为不育,其形态学表现是精子形成过程被完全阻断在精子发生的第8/9阶段,圆形精子细胞无法变长,造成无精子症,同时还发生了严重的精母细胞凋亡。不同发育阶段及不同生殖细胞表达的差异表明DDX25可能在精子发生过程中的特定阶段发挥不可或缺的作用。也有研究发现,在NOA患者中发现DDX25的单核苷酸多态性,说明DDX25是导致男性不育的重要因素。
     哺乳动物的精子发生是一个高度精细和复杂的过程,依赖一系列相关基因在特定阶段的顺序表达,在维持生精细胞的增殖、分化和凋亡平衡的过程中伴随多种基因的短暂转录和翻译。目前,针对不育症相关基因的研究已经深入至信号分子水平,主要研究工具是转基因或基因敲除鼠。但是,条件基因的定向敲除不仅容易导致同一睾丸组织中相同细胞的不同表现,而且历时长、耗费巨大、动物易死亡。因此,RNA干扰技术已经成为研究基因功能的重要工具。同时,由于睾丸组织结构与功能的复杂性和特殊性,在整体情况下很难对生殖细胞的功能和与其他细胞间的相互作用进行深入研究。生精细胞体外培养技术的建立使深入阐明精子发生过程和细胞间的关系成为可能。
     目前为止,应用RNA干扰技术在体内外沉默DDX25基因进行作用的研究尚未见报道。本研究首先检测生后不同日龄即不同发育阶段小鼠睾丸组织中DDX25基因和蛋白表达的情况;其次应用RNA干扰技术在小鼠活体体内抑制DDX25的表达,检测睾丸组织中凋亡相关蛋白的表达变化;再次建立生精细胞的体外培养体系,应用siRNA沉默体外培养生精细胞中DDX25基因,检测沉默DDX25基因对生精细胞凋亡的影响和可能途径,为研究DDX25在精子发生中的功能和可能机制提供新的研究手段和技术方法。
     方法:
     1DDX25在正常小鼠睾丸发育中的表达
     以出生当天为d0,取出生后d5、d15、d21、d35、d42、d60和d120的C57BL/6J小鼠睾丸组织,4%多聚甲醛固定,制作石蜡切片进行HE染色,观察小鼠睾丸发育的形态结构特点;取60日龄小鼠睾丸组织石蜡切片进行PAS染色,观察精子发生过程中生精上皮的各个时相的形态特点和细胞组成;免疫组化检测DDX25蛋白在精子发生过程中的表达特性和细胞内的定位;免疫印迹检测DDX25在小鼠睾丸组织中的表达,明确DDX25蛋白的表达是否与免疫组织化学结果一致,以避免免疫组织化学产生非特异性着色影响实验结果;RT-qPCR检测DDX25的mRNA在不同日龄小鼠睾丸组织中的表达,明确DDX25基因在小鼠睾丸发育和精子发生过程中的表达特点。
     2体内抑制DDX25对生精细胞凋亡相关蛋白表达的影响
     将12周龄雄性C57BL/6J小鼠随机分为7组,⑴空白对照组:只加转染试剂;⑵阴性对照组:转染试剂和control siRNA-A;⑶无关对照组:未加siRNA和转染试剂;⑷阳性对照组:转染试剂和β-actin siRNA;⑸实验组:A组:0.125μg/μl siRNA转染组;B组:0.25μg/μl siRNA转染组;C组:0.5μg/μl siRNA转染组。每组18只小鼠,应用纳米级转染试剂溶解DDX25siRNA进行睾丸局部注射,于干扰后24、48和72h各取6只小鼠处死取双侧睾丸,一侧的睾丸固定于4%多聚甲醛中做石蜡切片,用于形态学观察;另一侧的睾丸快速放入液氮中冻存用于RNA和蛋白的提取。RT-qPCR检测干扰后各组小鼠睾丸组织中DDX25mRNA的表达变化,确定干扰效果与有效浓度;HE染色观察干扰后小鼠睾丸组织是否有改变;免疫组织化学、免疫荧光和免疫印迹检测转染前后DDX25蛋白在睾丸组织中的表达情况,确定最佳干扰浓度和作用时间;TUNEL检测睾丸组织中生精细胞的凋亡情况;免疫印迹检测0.25μg/μl siRNA转染组于转染72h后小鼠睾丸组织中Bid, Bad, Bak, Smac, p38MAPK,p-p38MAPK,p53,Bcl-2, Bcl-xL, p-Bad,Erk1/2和p-Erk1/2蛋白表达情况。
     3体外抑制DDX25对生精细胞凋亡及MAPK信号通路的影响
     取12周龄雄性C57BL/6J小鼠睾丸组织分别分离纯化睾丸间质细胞和支持细胞-生精细胞混合细胞团,将二者分别接种于Transwell小室和六孔板底进行双室培养,相差显微镜下观察细胞的生长情况;台盼蓝染色法检测生精细胞存活率;应用DDX25siRNA转染共培养的生精细胞,分组:无关对照组(未加siRNA和转染试剂);空白对照组(只加转染试剂);阴性对照组(control siRNA-A和转染试剂);阳性对照组:(β-actin siRNA和转染试剂);实验组(DDX25siRNA(12.5nM、25nM、50nM)和转染试剂)。倒置荧光显微镜检测有效干扰浓度;RT-qPCR、免疫组化、免疫荧光与免疫印迹检测评价干扰效能;台盼蓝染色法、流式细胞术、TUNEL法检测转染后生精细胞的凋亡情况;免疫印迹检测干扰前后生精细胞中Erk1/2,p-Erk1/2,p38MAPK和p-p38MAPK蛋白的表达情况。
     结果:
     1DDX25在正常小鼠睾丸发育中的表达
     ⑴DDX25蛋白的阳性表达首先出现于21日龄小鼠睾丸间质细胞的胞质中,呈弱阳性表达;在35日龄小鼠睾丸组织中DDX25蛋白则分别在睾丸间质细胞、精原细胞、精母细胞和圆形精子细胞的胞质中表达,其中间质细胞和精母细胞中的阳性表达较强(p<0.05);42日龄小鼠睾丸组织中DDX25蛋白表达于间质细胞的胞质,精原细胞、精母细胞和圆形精子细胞的胞核和胞质,其中精母细胞和圆形精子细胞的阳性表达更强(p<0.05);60日龄和120日龄小鼠睾丸组织中DDX25蛋白的表达与42日龄小鼠睾丸组织中的表达一致,无显著差异(p>0.05)。⑵对60日龄成年小鼠睾丸生精上皮的生精周期的各个时相进行免疫组织化学检测,结果显示,处于生精周期的12个时相的生精上皮中均有DDX25的阳性表达,其中以Ⅰ、Ⅲ、Ⅴ、Ⅵ、Ⅶ期的阳性表达程度较高。⑶免疫印迹检测结果显示,5日龄和15日龄小鼠睾丸组织总蛋白中无DDX25蛋白条带出现;21日龄睾丸组织总蛋白中分子量61KD处有条带出现;35日龄睾丸组织总蛋白中分子量61KD处有较21日龄灰度明显的单一条带(p<0.05);42、60和120日龄睾丸组织总蛋白中可见分子量61KD和56KD处两条条带,灰度值没有明显差异(p>0.05)。⑷RT-qPCR结果显示DDX25基因在不同日龄小鼠组织中均有表达,表达水平从21日龄开始升高,到35日龄表达水平显著上调(p<0.05),42日龄后表达上调缓慢,但各日龄小鼠睾丸中DDX25mRNA的表达水平无明显差异(p>0.05)。
     2体内抑制DDX25对生精细胞凋亡相关蛋白表达的影响
     ⑴DDX25siRNA干扰的效能评价:①RT-qPCR检测结果显示,0.125μg/μl siRNA实验组干扰48h和72h后DDX25mRNA表达低于各对照组,但差异不显著(p>0.05);干扰24h、48h和72h的0.25μg/μl siRNA实验组和0.5μg/μl siRNA实验组睾丸组织中DDX25mRNA表达均明显低于各对照组(p<0.05),但干扰24h,48h和72h的0.25μg/μl siRNA实验组DDX25mRNA的表达与0.5μg/μl siRNA实验组无明显差异(p>0.05)。②形态学观察结果显示:各组小鼠睾丸组织结构基本正常。③免疫组化与免疫印迹结果显示,0.125μg/μl siRNA实验组干扰72h后DDX25表达降低较无关对照组显著(p<0.05);干扰48h和72h的0.25μg/μl siRNA实验组和0.5μg/μl siRNA实验组DDX25蛋白的阳性表达均显著低于各对照组(p<0.05);干扰72h的50μg/μl siRNA实验组生精细胞内几乎没有DDX25蛋白的表达。⑵干扰DDX25表达对生精细胞凋亡的影响:TUNEL检测结果显示,干扰72h的0.5μg/μl siRNA实验组生精细胞凋亡率较无关对照组和其他实验组明显增高(p<0.05)。⑶Western blot检测结果显示,0.5μg/μl siRNA干扰72h后,Bid, Bad, Bak, Smac,p38MAPK,p-p38MAPK和p53的表达在干扰后显著增高(p<0.05);Bcl-2, Bcl-xL, p-Bad,Erk1/2和p-Erk1/2的表达在干扰后显著降低(p<0.05)。
     3体外抑制DDX25对生精细胞凋亡及MAPK信号通路的影响
     ⑴倒置相差显微镜观察,双室培养第5~10天,生精细胞生长状态较稳定,细胞存活率无明显降低(p>0.05)。⑵分离纯化的生精细胞中DDX25的表达:①免疫组化和免疫荧光结果显示,分离纯化的成年小鼠睾丸的生精细胞中可见DDX25蛋白的阳性表达,主要在精原细胞、精母细胞和圆形精子细胞中表达,其中精母细胞中的表达强度最高(p<0.05)。②免疫印迹结果显示,分离纯化的成年小鼠睾丸的生精细胞中有DDX25蛋白的阳性表达。⑶siRNA有效转染浓度的筛选:倒置荧光显微镜观察,与12.5nM转染组相比,转染24h后25nM转染组与50nM转染组绿色荧光强度均显著增强(p<0.05),但二者强度差别不大(p>0.05),转染效率可达95%以上。⑷DDX25siRNA干扰的效能评价:①RT-qPCR检测结果显示,干扰24h、48h和72h的25nM siRNA实验组DDX25mRNA表达均明显低于各对照组,(p<0.05),其中干扰24h和48h的25nM siRNA实验组DDX25mRNA的表达较干扰72h组降低更明显(p<0.05)。②免疫组化、免疫荧光与免疫印迹结果显示,干扰72h的25nM siRNA实验组和50nM siRNA实验组生精细胞中DDX25蛋白的阳性表达均显著低于各对照组(p<0.05)。⑸干扰DDX25表达对生精细胞凋亡的影响:①台盼蓝染色法检测结果显示,与无关对照组相比,干扰72h的50nM siRNA实验组和25nM siRNA实验组生精细胞存活率明显降低(p<0.05),但二者之间无显著差异(p>0.05)。②流式检测结果显示,参照无关对照组,空白对照组、阴性对照组和阳性对照组的生精细胞凋亡率无明显变化;干扰72h的25nM siRNA实验组和50nM siRNA实验组生精细胞凋亡率率明显增高(p<0.05),但二者之间无显著差异(p>0.05)。⑹Western blot检测结果显示,25nM siRNA实验组干扰72h后生精细胞中Erk1/2和p-Erk1/2的表达较无关对照组显著降低(p<0.05),p38MAPK和p-p38MAPK的表达较无关对照组显著升高(p<0.05)。
     结论:
     1DDX25基因和蛋白在小鼠精子发生过程中呈阶段特异性表达;DDX25主要在成年小鼠的精子发生过程中发挥转录后调控作用,主要作用于精母细胞和圆形精子细胞。
     2应用纳米材料通过睾丸局部直接注射方法将DDX25siRNA转染至小鼠体内,能有效抑制DDX25mRNA的表达,干扰效果良好且无毒性作用。可成为体内研究基因功能的有效方手段。
     3活体体内DDX25基因沉默后,小鼠睾丸组织中生精细胞的凋亡增多,多种凋亡相关蛋白表达发生改变。
     4将睾丸间质细胞与支持细胞-生精细胞进行双室培养,生精细胞可以存活达20天以上,可见部分生精细胞尾部出现鞭毛。
     5应用DDX25siRNA体外转染生精细胞抑制生精细胞中DDX25的表达使生精细胞凋亡增加; DDX25可能分别通过ERK1/2与p38MAPK途径抑制生精细胞分化和诱导生精细胞凋亡。
Objective: Male infertility accounts for about half of all infertility casesand affects one-sixth of couples worldwide. A substantial proportion of maleinfertility is accompanied by azoospermia, most often presenting asnon-obstructive azoospermia (NOA), which occurs in~1%of all adult men.Approximately25%of infertile men of Chinese ancestry exhibitazoospermia.Some researchers have suggested that NOA may result fromgenetic factors. The past several years have witnessed an explosion in thenumber of reports of gene mutations or polymorphisms that cause or arelinked to male infertility. Identifying genetic factors that influence maleinfertility will provide valuable insights into the causes of idiopathic infertilityand will aid the development of targeted therapies.
     Gonadotropin-regulated testicular RNA helicase (DDX25/GRTH), amember of the Glu-Asp-Ala-Glu (DEAD)-box protein family, is atestis-specific gonadotropin/androgen-regulated RNA helicase that isregulated by androgen occurs through direct actions of androgen in Leydigcells, and presumably in germ cells indirectly by the participation ofandrogen-responsive genes from Sertoli cells. DDX25is present in germ cells(meiotic spermatocytes and round spermatids) and Leydig cells. DDX25isessential for completion of spermatogenesis as a posttranscriptional regulatorof relevant genes during spermatogenic cellsdevelopment. Male mice lackingDDX25are sterile with spermatogenic arrest due to failure of roundspermatids to elongate, where striking structural changes and severe apoptosisof germ cells was also observed in spermatocytes entering the metaphase ofmeiosis. Several findings indicated that gene mutation of DDX25may beinvolved in male infertility of some patients with NOA, suggesting thatvariations of DDX25gene detected by single-nucleotide polymorphisms (SNPs) analysis may contribute to susceptibility to spermatogenic impairmentin humans.Here, we summarize the current status of findings on the essentialrole of DDX25/DDX25in spermatogenic cells development, with emphasison its multifunctional control of spermatogenesis.
     Spermatogenesis of mammalian is a highly specialized and complicateddevelopmental process, depending on the integrated expression of a series ofgenes that operate in a sequence to generate spermatozoa and requiring thebalance between spermatogenic cellsproliferation, differentiation andapoptosis. Gene expression during spermatogenesis undergoes temporaluncoupling of transcription and translation.Genetic breakthroughs inunderstanding the regulators and the causes of infertility in mammalianhave involved the studies of signaling pathway.Investigations of genes thatregulate spermatogenesis are being carried out mainly via the production andstudy of mice carrying transgenes or targeted gene disruptions. Conditionalgene targeting is labor intensive and time consuming and knockouts usuallyproduce different abnormalities in different cells at the same stage in a singletestis. Within the past few years, double-strand RNA-mediatedposttranscriptional gene silencing, or RNA interference (RNAi), has becomean important tool for studying the functions of genes in many organisms. Asthe structure and function of testis are complex, the physiology andbiochemistry function of spermatogenic cell is difficult to further research.Establish of spermatogenic cell culture system in vitro can provide a powerfultool to determin regulation of gene in spermatogenesis and study therelationship between spermatogenic cells and other cells.
     So far, DDX25null mice are common animal models for research, theeffect of DDX25on mouse spermatogenesis in vitro and in vivo has not beenstudied by using RNAi. In our study, the expression of gene and protein ofDDX25in mouse testis at different stages of spermatogenesis was firstlyinvestigated respectively; secondly, DDX25was knocked down in vivo inadult male mice using intratesticular injection of siRNA; and then,spermatogenic cellscoculture system was set up; finally siRNA with oligofectamine reagent was used to silience the gene expression of DDX25inthe co-cultured germ cells. In this study, the RNAi was firstly carried out toknockdown DDX25gene in in vitro and in vivo.The present research providesa new method and technology to investigate the role and potential signalpathways of DDX25in spermatogenesis.
     Methods:
     1Developmental expression of DDX25in mouse testes
     Male C57BL/6J mice were used from5to120postnatal days.⑴Paraffinsections were used with haematoxylin-eosin(H&E) staining and PAS stainingto show morphological structure of normal C57BL/6J mouse spermatogenesisat postnatal stages of the developing testis. Subsequently we undertook adetailed analysis of immunoreactive staining present in defferent types ofgerm cells during the spermatogenic cycle of the adult mouse testis.Testeswere individually collected from postnatal C57BL/6J mouse at different ages(P5,P15,P21,P35,P42,P60and P120).⑵Immunohistochemistry andimmunofluorescence were used to detect the expression and location ofDDX25in the testis of5,15,21,35,42,60,and120day-old C57BL/6J mouse toinvestigate the cellular expression patterns and localization of DDX25proteinin the seminiferous tubules during spermatogenesis.⑶Western blot wereused to observe the expression of DDX25protein in the testis of5,15,21,35,42,60and120day-old C57BL/6J mouse to prevent nonspecificstaining.⑷The mRNA expression of DDX25in the testis of5,15,21,35,42,60,and120day-old C57BL/6J mouse was detected by RT-qPCR.
     2The effect of RNAi against DDX25in vivo on cellular apoptotic factorsexpression of mouse testis
     60days,126male C57BL/6J mice were randomly divided into7groups:independent control group(without siRNA and transfection reagent); negativecontrol group(control siRNA-A and transfection reagent); vacuity controlgroup(transfection reagent); positive control group(β-Actin siRNA andtransfection reagent); experimental group(0.125μg/μl siRNA,0.25μg/μlsiRNA,0.5μg/μl siRNA).Inject siRNA into the testicular tissue. At24,48,72 hours, respectively, the mice were killed and the testes were removed. Oneportion of the testis tissues was fixed in4%paraformaldehyde in forhistological and immunohistochemical examinations, another portion of thetesticular tissue was used to abstract total RNA and protein. The structure oftesticular tissue was detected by H&E staining. Testicular spermatogenic cellsapoptosis was detected by TUNEL. The expression of DDX25were detectedby immunocytochemistry,immunofluoresence and Western blot. The mRNAlevels of DDX25were detected by RT-qPCR. The expression of Bid,Bad,Bak,Smac,p38MAPK,p-p38MAPK,p53,Bcl-2,Bcl-xL,p-Bad,Erk1/2andp-Erk1/2were detected by Western blot.
     3The effect of DDX25inhibition on apoptosis and MAPK pathway ofspermatogenic cells
     The testis were removed from60-day C57BL/6J mice and decapsulated forthe purification of germ cells and Leydig cells.The germ cells and Leydig cellswere seeded in culture plates or bicameral chambers and were co-cultured.Thegrowth and morphology of co-culture cells were monitored daily undercontrast phase microscope and the survival rate was determined bytrypan-blue staining. For RNAi research, the germ cells were divided into7groups: independent control group(without siRNA and transfection reagent);negative control group(control siRNA-A and transfection reagent); vacuitycontrol group(transfection reagent); positive control group(β-Actin siRNAand transfection reagent); experimental group(12.5nM siRNA;25nMsiRNA;50nM siRNA). Transfection was performed with EntransterTM-invitro reagent following the manufacturer’s protocol.All groups were incubatedfor24h,48h and72h. RT-qPCR,Immunocytochemistry andimmunofluorescence were used to detecte the effect of DDX25siRNAinhibition. The survival rate of germ cells were detected by trypan-bluestaining. The spermatogenic cells apoptosis induced by DDX25siRNA wasdetected by flow cytometry. The protein levels of Erk1/2, p-Erk1/2,p38MAPK和p-p38MAPK were measured by Western blot.
     Result:
     1. Developmental expression of DDX25in mouse testes
     ⑴The DDX25antigen was not detected in testis of5-day-old and15-day-old mouse. At P21, there is a low level of DDX25in Leydig cells. AtP35, DDX25staining was observed in Leydig cells, spermatocytes, and roundspermatids. Spermatogonia within the basal compartment were clearlynegative as the Sertoli cells. At P42,P60and P120, all types of germ cells andLeydig cells were immunopositive except sperm. Although cytoplasmic andplasma membrane-localized DDX25was evident in all spermatogeniccellssubtypes and Leydig cells, spermatogenic cells nuclear staining was notdetected at day21, but was present rarely at day35in pachytenespermatocytes,corresponding with the period in which they are meiotic.Nuclear signal was also observed in round spermatids. The Nuclearlocalization was not observed in some Leydig cells from5to120postnataldays.⑵Express level of DDX25mRNA situate at low relatively at postnatalP5, increased to a low level at P15, then increased obviously at P21andreached peak P35, then increase at P42and retained high afterwards.Expression of exhibited peak in testis of mice P35when round spermatidstransformed to elongate spermatids,which indicated DDX25may be involvedin spermiation and spermiogenesis.
     2The effect of RNAi against DDX25in vivo on cellular apoptotic factorsexpression of mouse testis
     ⑴To evaluate the efficiency of RNA interference:①The level of DDX25mRNA were detected by real-time PCR. Compared with control groups, theexpression of DDX25mRNA were significantly decreased in0.25μg/μlsiRNA experimental group and0.5μg/μl siRNA experimental group at24h(p<0.05). The level reached0.29to independent control group at24h.②Histological examination by H&E staining showed that the structure ofseminiferous tubules was normal without damage.③Immunocytochemistryshowed that the expression of DDX25in testis tissue with DDX25siRNAtreatment was lower than control groups. Western blot indicated that theexpression level of DDX25was lowest in0.25μg/μl siRNA experimental group and0.5μg/μl siRNA experimental group at72h (p<0.05).⑵TUNELindicated that the apoptosis of germ cells in0.25μg/μl siRNA experimentalgroup and0.5μg/μl siRNA experimental group at72h were markedlyincreased after RNAi (p<0.05).⑶The result of western blot showed that,compare with control groups, the expression levels of DDX25proteins weresignificantly decreased in0.25μg/μl siRNA experimental group and0.5μg/μlsiRNA experimental group at72h (p<0.05). The levels ofBid,Bad,Bak,Smac,p38MAPK,p-p38MAPK and p53proteins weresignificantly increased after RNAi(p<0.05). The protein levels of Bcl-2,Bcl-xL, p-Bad,Erk1/2and p-Erk1/2were decreased after RNAi(p<0.05).
     3The effect of DDX25inhibition on apoptosis and MAPK pathway ofspermatogenic cells
     ⑴In co-culture system, short flagella were seen emerging from one end ofsome spermatogenic cells after two weeks. After three weeks, a number ofgerm cells still attached on the surface of sertoli cell. From day5~10,Thesecells maintained an stable survival rate and growed well.Immunocytochemistry and immunofluoresence showed that the positivestaining for DDX25was observed in spermatogonia, spermatocytes andhaploid round spermatids, and the expression of DDX25was stronger inspermatocytes.②Western blot indicated that the expression of DDX25wasobserved in germ cells.⑶After comparison and analysis of the fluorescenceintensity,the effective transfection concentration was identified. Transfectionefficiency was reached0.95.⑷To evaluate efficiency of RNAi:①DDX25siRNA markedly reduced the expression of DDX25in spermatogenic cells.The result of RT-qPCR showed that, compare with control groups, theexpression levels of DDX25mRNA of spermatogenic cells were significantlydecreased in25nM siRNA experimental group and50nM siRNA experimentalgroup at24h,48h and72h(p<0.05). After24hours, the levels of DDX25mRNA of25nM siRNA experimental group and50nM siRNA experimentalgroup were significantly decreased, compared with12.5nM siRNAexperimental group (p<0.05).②The result of Immunocytochemistry, immunofluorescence and Western blot indicated that,compare with controlgroups, the expression levels of DDX25proteins were significantly decreasedin25nM siRNA experimental group and50nM siRNA experimental group at72h(p<0.05).⑸The effect of DDX25siRNA on apoptosis of spermatogeniccells:①The result of trypan-blue staining showed that, compare with controlgroups, the survival rate of spermatogenic cells were significantly decreased in25nM siRNA experimental group and50nM siRNA experimental group at48h and72h (p<0.05).②The results of flow cytometry showed that theapoptotic spermatogenic cells among transfected with DDX25siRNA in25nM siRNA experimental group and50nM siRNA experimental group at72h were markedly higher than that in untransfected spermatogenic cells andspermatogenic cells trasfected with12.5nM siRNA(p<0.05).⑹The proteinlevel of p38MAPK and p-p38MAPK significantly increased,but Erk1/2and p-Erk1/2significantly decreased in25nM siRNA experimental group at72h by Western blot(p<0.05).
     Conclusions:
     1The mRNA and protein was expressed in the testis of mice at differentstage during spermatogenesis.It indicated that DDX25may be involved inspermiation and spermiogenesis.
     2DDX25siRNA transfer into mice testis can efficially inhibited theDDX25gene expression in mouse testis in vitro without toxic effect.
     3The expression of cellular apoptotic factors of testes and the apoptoic rateof spermatogenic cells were changed by RNAi in vivo.
     4In co-culture system, the spermatogenic cells survived nearly as long asthree weeks, and some of them generated flagella, which stated clearly that theprocess of spermiogenesis could taken place in this co-culture system.
     5DDX25siRNA can efficially inhibited the gene expression of DDX25inco-cultured spermatogenic cells in vitro and may be induced apoptosis ofspermatogenic cells.These results suggested that DDX25may be involved inthe regulation of spermatogenic cell apoptosis by MAPK pathway.
引文
1Kovac JR,Pastuszak AW,Lamb DJ. The use of genomics, proteomics, andmetabolomics in identifying biomarkers of male infertility.Fertility andsterility,2013,99(4):998-1007
    2Zuccarello D,Ferlin A,Garolla A,Pati MA,Moretti A,CazzadoreC,Francavilla S,Foresta C. A possible association of a human tektin-t genemutation (A229V) with isolated non-syndromic asthenozoospermia: casereport.Human reproduction,2008,23(4):996-1001
    3Rucker GB,Mielnik A,King P,Goldstein M,Schlegel PN. Preoperativescreening for genetic abnormalities in men with nonobstructiveazoospermia before testicular sperm extraction.The Journal ofurology,1998,160(6Pt1):2068-2071
    4Tsai-Morris CH, Sheng Y, Gutti R, Li J, Pickel J, Dufau ML.Gonadotropin-regulated testicular RNA helicase (DDX25/DDX25) gene:cell-specific expression and transcriptional regulation by androgen intransgenic mouse testis. J Cell Biochem,2010,109(6):1142-1147
    5Tsai-Morris CH, Sheng Y, Lee E, Lei KJ, Dufau ML.Gonadotropin-regulated testicular RNA helicase (DDX25/DDX25) isessential for spermatid development and completion of spermatogenesis.Proc Natl Acad Sci U S A,2004,101(17):6373-6378
    6Sheng Y, Tsai-Morris CH, Dufau ML. Cell-specific and hormone-regulatedexpression of gonadotropin-regulated testicular RNA helicase gene(DDX25/DDX25) resulting from alternative utilization of translationinitiation codons in the rat testis. J Biol Chem,2003,278(30):27796-27803
    7Dufau ML, Tsai-Morris CH. Gonadotropin-regulated testicular helicase(DDX25/DDX25): an essential regulator of spermatogenesis. TrendsEndocrinol Metab,2007,18(8):314-320
    8Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML.Gonadotropin-regulated testicular RNA helicase (DDX25/DDX25) is atransport protein involved in gene-specific mRNA export and proteintranslation during spermatogenesis. J Biol Chem,2006,281(46):35048-35056
    9Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML. Genomicorganization and transcriptional analysis of gonadotropin-regulatedtesticular RNA helicase—GRTH/DDX25gene. Gene,2004,331:83-94
    10Yoshida S, Nabeshima Y, Nakagawa T. Stem cell heterogeneity: actual andpotential stem cell compartments in mouse spermatogenesis. Ann N YAcad Sci,2007,1120:47-58.
    11Sette C, Dolci S, Geremia R, Rossi P. The role of stem cell factor and ofalternative c-kit gene products in the establishment, maintenance andfunction of germ cells. Int J Dev Biol,2000,44(6):599-608
    12Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP,Dolci S.Repression of kit expression by Plzf in germ cells. Mol Cell Biol,2007,27(19):6770-6781
    13Geremia R, Boitani C, Conti M, Monesi V. RNA synthesis inspermatocytes and spermatids and preservation of meiotic RNA duringspermiogenesis in the mouse. Cell Differ,1977,5(5-6):343-355
    14Zhou Y;Chen Y;Yuan M;Xiang Z;Han X. In vivo study on the effects ofmicrocystin-LR on the apoptosis, proliferation and differentiation of rattesticular spermatogenic cells of male rats injected i.p. with toxins.TheJournal of toxicological sciences,2013,38(5):661-670
    15Kierszenbaum AL, Tres LL. Structural and transcriptional features of themouse spermatid genome. J Cell Biol,1975,65(2):258-270.
    16Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cells inthe mouse. Reproduction,2004,128(2):147-152
    17Tang PZ, Tsai-Morris CH,Dufau ML. A novel gonadotropin-regulatedtesticular RNA helicase.Anew member of the dead-box family. J BiolChem,1999,274(53):37932-37940
    18Sheng Y,Tsai-Morris CH,Dufau ML. Cell-specific and hormone-regulatedexpression of gonadotropin-regulated testicular RNA helicase gene(DDX25/DDX25) resulting from alternative utilization of translationinitiation codons in the rat testis.J Biol Chem,2003,278(30):27796-27803
    19Tang PZ, Tsai-Morris CH, Dufau ML. A novel gonadotropin-regulatedtesticular RNA helicase. A new member of the dead-box family. J BiolChem,1999,274(53):37932-37940
    20Linder P. Dead-box proteins: a family affair--active and passive players inRNP-remodeling. Nucleic Acids Res,2006,34(15):4168-4180
    21Schmid SR, Linder P. D-E-A-D protein family of putative RNAhelicases.Mol Microbiol,1992,6(3):283-291
    22Under P, Lasko PF, Ashbumer M, et al. Birth of the DEAD box. Nature,1989,337(6203):121
    23Cordin O,Banroques J, Tanner NIC, et al. The DEAD-box protein familyof RNA helicases.Gene,2006,367:17-37
    24Weston A, Sommerville J. Xp54and related (DDX6-like) RNA helicases:roles in messenger RNP assembly, translation regulation and RNAdegradation. Nucleic Acids Research,2006,34(10):3082-3094
    25Silverman E, Edwalds-Gilbert Q Lin RJ. DExD/H-box proteins and theirpartners: helping RNA helicases unwind. Gene,2003,312:1-16
    26De la Cruz J, Kressler D, Linder P. Unwinding RNA in Saccharomycescerevisiae: DEAD-box proteins and related families. Trends BiochemSci,1999,24(5):192-198
    27Silverman E, Edwalds-Gilbert G, Lin RJ. DExD/H-box proteins and theirpartners: helping RNA helicases unwind. Gene,2003,312:1-16
    1Meister G, Tuschl T. Mechanisms of gene silencing by double strandedRNA.Nature,2004,431:343-349
    2Deng Y,Wang CC,Choy KW,Du Q,Chen J,Wang Q,Li L,Chung TK,TangT.Therapeutic potentials of gene silencing by RNA interference: principles,challenges, and new strategies.Gene,2014,538(2):217-27
    3Fellmann C,Lowe SW. Stable RNA interference rules for silencing.Naturecell biology,2014,16(1):10-8
    4Bonduelle M, Legein J, Derde MP, et al. Comparative follow-up study of130children born after intracytoplasmic sperm injection and130childrenborn after in-vitro fertilization.Hum Reprod JT-Human reproduction,1995,10(12):3327-3331
    5Poller W,Tank J,Skurk C,Gast M. Cardiovascular RNA interferencetherapy: the broadening tool and target spectrum.Circulation research,2013,113(5):588-602
    6Ramachandran PV,Ignacimuthu S. RNA interference--a silent but anefficienttherapeutictool.Appliedbiochemistryandbiotechnology,2013,169(6):1774-1789
    7Castel SE,Martienssen RA. RNA interference in the nucleus: roles forsmall RNAs in transcription, epigenetics and beyond.Naturereviews.Genetics,2013,14(2):100-112
    8Kole R,Krainer AR,Altman S. RNA therapeutics: beyond RNAinterference and antisense oligonucleotides.Nature reviews. Drugdiscovery,2012,11(2):125-140
    9Sifuentes-Romero I,Milton SL,Garcia-Gasca A. Post-transcriptional genesilencing by RNA interference in non-mammalian vertebrate systems:where do we stand?Mutation research.,2011,728(3):158-171
    10Davidson BL,McCray PB Jr. Current prospects for RNAinterference-basedtherapies.Nature reviews. Genetics,2011,12(5):329-340
    11Durymanova Ono EA,Iamamoto K,Castilho JG,Carnieli P Jr,de NovaesOliveira R,Achkar SM,Carrieri ML,Kotait I,Brandao PE. In vitro and invivo inhibition of rabies virus replication by RNA interference.Brazilianjournal of microbiology,2013,44(3):879-882
    12Crystal RG. Transfer of genes to humans: early lessons and obstacles tosuccess. Science JT-Science,1995,270(5235):404-410
    13Son KK, Tkach D, Hall KJ. Efficient in vivo gene delivery by thenegatively charged complexes of cationic liposomes and plasmid DNA.Biochim Biophys Acta JT,2000,1468(1-2):6-10
    14Toprak U,Baldwin D,Erlandson M,Gillott C,Harris S,Hegedus DD. Invitro and in vivo application of RNA interference for targeting genesinvolved in peritrophic matrix synthesis in a lepidopteran system.Insectscience,2013Feb,20(1):92-100
    15Ohishi K,Nakano T. A forward genetic screen to study mammalian RNAinterference: essential role of RNase IIIa domain of Dicer1in3' strandcleavage of dsRNA in vivo.The FEBS journal,2012,279(5):832-843
    16Czabotar PE,Lessene G,Strasser A,Adams JM. Control of apoptosis by theBCL-2protein family: implications for physiology and therapy.Naturereviews. Molecular cell biology,15(1):49-63
    17Kale J,Liu Q,Leber B,Andrews DW. Shedding light on apoptosis atsubcellular membranes.Cell,2012,151(6):1179-1184
    18Saito M,Korsmeyer SJ,Schlesinger PH. BAX-dependent transport ofcytochrome c reconstituted in pure liposomes.Nature cell biology,2000,2(8):553-555
    19Rufini A,Tucci P,Celardo I,Melino G. Senescence and aging: the criticalroles of p53.Oncogene.2013,32(43):5129-5143
    20Li M W, Mruk D D, Cheng C Y. Mitogen-activated protein kinases inmale reproductive function. Trends Mol Med,2009,15:159–168
    21Zheng Y, Li JM, Guo JH, Shan YX, ZhuH, WangLR, Zhou ZM, Lin M,Sha JH. Cloning of spermatogenesis related gene-p38MAPK gene fromtestis tissue of mouse.JiepouXuebao (ActaAnat Sin),2001,32(3):260-263
    22Hu MC, Wang YP, Mikhail A, Qiu WR, TanTH. Murinep38δmitogen-activated protein kinase, a developmentally regulated proteinkinase that is activated by stress and proinflammatory cytokines.J BiolChem,1999,274(11):7095-7102
    23Lu Q, Sun QY, BreitbartH, Chen DY. Expression and phosphorylation ofmitogen-activated protein kinases during spermatogenesis and epididymalsperm maturation in mice.Arch Androl,1999,43(1):55-66
    1Maekawa M,Nishimune Y.Invitroproliferation of germ cells and supportingcells in the neonatal mouse testis.Cell Tissue Res,1991,265(3):551-554
    2Vigier M,Weiss M,Perrard M H,etal.The effects of FSH and of testosteroneon the completion of meiosis and the very early steps of spermiogenesis ofthe rat:anin vitrostudy.J Mol Endocrinol,2004,33(3):729-742
    3Steinberger A,Steinberger E.Differentiation of rats seminiferouseepithelium in organ culture·Differentiation of rat seminiferous epitheliumin organ culture.J Reprod Fertil,1965,9:243-248
    4Hue D,Staub C,Perrard-Sapori M H,et al.Meiotic differentiation ofgerminal cells in three-week cultures of whole cell population from ratseminiferous tubules.Biol Reprod,1998,59(2):379-387
    5Sousa M,Cremades N,Alves C,etal.Developmental potential of humanspermatogenic cells co-cultured with sertoli cells.HumReprod,2002,17(1):161-172
    6Li MW, Xia W, Mruk DD, et al.Tumor necrosis factor {alpha} reversiblydisrupts the blood-testis barrier and impairs Sertoli-spermatogeniccellsadhesion in the seminiferous epithelium of adult rat testes. JEndocrinol,2006,190(2):313-29
    7Sousa M,Cremades N,Alves C,etal.Developmental potential of humanspermatogenic cells co-cultured with sertoli cells.HumReprod,2002,17(1):161-72
    8Magueresse-Battistoni BL. Gerard N. Jegou B. Pachytene spermatocytescan achieve meiotic process in vitro. Biochem Biophys ResCommun,1991;179(2):1115-1121
    9Kierszenbaum AL. Mammalian spermatogenesis in vivo and in vitro: apartnership of spermatogenic and somatic cell lineages. Endocr Rev,1994,15(1):116-134
    10Orth JM, McGuinness MP, Qiu J, et al. Use of in vitro systems to studymale spermatogenic cellsdevelopment in neonatal rats.Theriogenology.1998,49(2):431-9
    11Tesarik J, Balaban B. In vitro spermatogenesis resumption in men withmaturation arrest: relationship with in vivo blocking stage and serum FSH.Hum Reprod,2000,15(6):1350-1354
    12KlinefelterGR, HallPF, EwingLL. Effectof luteinizing hormone deprivationin situ on steroidogenesis of rat Leydig cells purified by amultistepprocedure. BiolReprod,1987,36(3):769-783
    13刘建中,郭海彬,邓春华.大鼠睾丸Leydig细胞的培养和鉴定.中华男科学杂志,2006,12(1):14-17
    14成钢.哺乳动物睾丸间质细胞的分离及体外培养.中国畜牧兽医,2006,33(9):51-52
    15El-Alfy M,Luu-The V,Huang XF,Berger L,Labrie F,Pelletier G.Localization of type517beta-hydroxysteroid dehydrogenase,3beta-hydroxysteroid dehydrogenase, and androgen receptor in the humanprostate by in situ hybridization and immunocytochemistry.Endocrinology,1999,140(3):1481-1491
    16CremadesN, BernabeuR, BarrosA,etal.In-vitromaturation of roundspermatids using co-culture on Vero cells. Hum Reprod,1999,14(5):1287-1293
    17SousaM, CremadesN, AlvesC,et al. Developmental potential of humanspermatogenic cells co-culturedwith Sertoli cells. Hum Reprod,2002,17(1):161-172
    18Lee JH, Gye MC, Choi KW,et al.In vitro differentiation of germ cellsfrom nonobstructive azoospermic patients using three-dimensional culturein a collagen gelmatrix. FertilSteril,2007,87(4):824-833
    19Staub C. Hue D. Nicolle JC, et al.The whole meiotic process can occur invitro in untransformed rat spermatogenic cells. Exp Cell Res,2000,260(1):85-95
    20Fire A,Xu S,Montgomery MK, et a1.Potent and specific geneticinterference by double-strand RNA in Caenorhabditis elegans.Nature,1998,391(6669):806-811
    21Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recenttherapeutic targets for gene-silencing. Curr Drug Targets,2007,8(3):469-82
    22Zhang SL, Lu YM, Meng LR, et al. Inhibition of invasive and chemotacticabilities of SKOV3cells by human epithelial growth receptor-2smallinterfering RNA.Zhonghua Fu Chan Ke Za Zhi,2007,42(1):48-53
    23Kalota A, Opalinska JB. Design of antisense oligonucleotides and shortinterfering RNA duplexes (siRNA) targeted to BCL6mRNA: Towardsrational drug development for specific lymphoma subsets.Blood Cells MolDis,2007,38(3):199-203
    24Jain KK. Commercial potential of RNAi.Mol Biosyst,2006,2(11):523-6
    25Tang PZ, Tsai-Morris CH, Dufau ML. A novel gonadotropin-regulatedtesticular RNA helicase. A new member of the dead-box family. J BiolChem,1999,274(53):37932-37940
    26Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML. Genomicorganization and transcriptional analysis of gonadotropin-regulatedtesticular RNA helicase--GRTH/DDX25gene.Gene,2004,331:83-94
    27Sheng Y, Tsai-Morris CH, Dufau ML. Cell-specific and hormone-regulatedexpression of gonadotropin-regulated testicular RNA helicase gene(GRTH/DDX25) resulting from alternative utilization of translationinitiation codons in the rat testis. J Biol Chem,2003,278(30):27796-27803
    28Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML.Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is atransport protein involved in gene-specific mRNA export and proteintranslation during spermatogenesis. J Biol Chem,2006,281(46):35048-35056
    29Sato H,Tsai-Morris CH,Dufau ML.Relevance of gonadotropin-regulatedtesticular RNA helicase(GRTH/DDX25) in the structural integrity of thechromatoid body during spermatogenesis.Biochim Biophys Acta,2010,1803(5):534-543
    30Gutti RK, Tsai-Morris CH, Dufau ML. Gonadotropin-regulated testicularhelicase (DDX25), an essential regulator of spermatogenesis, preventstesticular spermatogenic cellsapoptosis. J Biol Chem,2008,283(25):17055-17064
    31Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formationis a consequence, not the cause, of RNA-mediated gene silencing. MolCell Biol,2007,27(11):3970-3981
    32Dufau ML, Tsai-Morris CH. Gonadotropin-regulated testicular helicase(GRTH/DDX25): an essential regulator of spermatogenesis. TrendsEndocrinol Metab,2007,18(8):314-320
    33Black SM, Kaplan SL, Bristow JD, et al. Nitric oxide synthesizedby gonadotropin–releasing hormone neurons is a mediator ofN-methyl-D-aspartate(NMDA)induced GnRH secretion. Endocrinology,1994,135(4):1709-1712
    34Pinilla L,Gonzalez D,Tena-Sempere M,et a1. Nitric oxide (NO)stimulates gonadotropin secretion in vitro through a calcium-dependent,cGMP-independent mechanism. Neuroendocrinology,1998,68(3):180-186
    35Moretto M,Lopez FJ,Negro-Vilar A. Nitric oxide regulates luteinizinghormone-releasing hormone secretion. Endocrinology,1993,133(5):2399-2402
    36Kohsaka A,Watanobe H,Kakizaki Y,et a1. A comparative study of theeffects of nitric oxide and carbon monoxide on the in vivo release ofgonadotropin-releasing hormone and neuropeptide Y from rathypothalamus during the estradiol-induced luteinizing hormone surge:estimation by push-pull perfusion. Neuroendocrinology,1999,69(4):245-253
    37Murphy LO,Blenis J. MAPK signal specificity: the right place at the righttime.Trends Biochem Sci,2006,31(5):268-275
    38Roux PP,Blenis J. ERK1/2and p38MAPK-activated protein kinases:afamily of protein kinases with diverse biological functions. Microbiol MolBiol Rev,2004,68(2):320-344
    39Yoon S,Seger R. The extracellular signal-regulated Kinase:multiplesubstrates regulate diverse cellular functions. Growth Fators,2006,24(1):21-44
    40A.S. Dhillon, S. Hagan,O. Rath,W. Kolch,MAP kinase signallingpathways in Cancer. Oncogene:2007,26:3279-3290
    41J.A. McCubrey, MM. Lahair, R.A. Franklin. Reactive oxygenspecies-induced activation of the MAP kinase signaling pathways.Antioxid.: Redox Signal,2006,8:1775-1789
    42Wong CH, Cheng CY. Mitogen-activated protein kinases, adherensjunction dynamics, and spermatogenesis: a review of recent data.Dev Biol,2005,286(1):1-15
    43Wang B, Wu YH, Yang Zh. The molecular characters and the biologyeffect of the MAPK/ERK1/2signal transduction pathway.Journal of theFourth Military Medical University,2005,26(Supple1):18-20
    44S. Torii, T. Yamamoto,Y. Tsuchiya, et aL ERK1/2MAP kinase in G cellcycle progression and cancer.Cancer Sci,2006,97:697-702
    45Wortzel, I. and R. Seger. The ERK1/2Cascade: Distinct Functions withinVarious Subcellular Organelles. Genes Cancer,2011,2(3):195-209
    46D.K. Morrison, R.J. Davis.Regulation of MAP kinase signaling modules byscaffold proteins in mammals. Annu. Rev: Cell Dev. Biol,2003,19:91-118
    47Li M W, Mruk D D, Cheng C Y. Mitogen-activated protein kinases in malereproductive function. Trends Mol Med,2009,15:159–168
    48Zheng Y, Li JM, Guo JH, Shan YX, ZhuH, WangLR, Zhou ZM, Lin M,Sha JH. Cloning of spermatogenesis related gene-p38MAPK gene fromtestis tissue of mouse.JiepouXuebao (ActaAnat Sin),2001,32(3):260-263
    49Hu MC, Wang YP, Mikhail A, Qiu WR, TanTH. Murinep38δmitogen-activated protein kinase, a developmentally regulated proteinkinase that is activated by stress and proinflammatory cytokines.J BiolChem,1999,274(11):7095-7102
    50Lu Q, Sun QY, BreitbartH, Chen DY. Expression and phosphorylation ofmitogen-activated protein kinases during spermatogenesis and epididymalsperm maturation in mice.Arch Androl,1999,43(1):55-66
    51Abe Y, MatsumotoS, KitoK, Ueda N. Cloning and expression of a novelMAPKK-like protein kinase, lymphokine-activated killer T-cell-originatedprotein kinase, specifically expressed in the testis and activated lymphoidcells.JBiol Chem,2000,275(28):21525-21531
    1Hargreave TB. Genetic basis of male fertility. Br Med Bull,2000,56(3):650-671
    2Stouffs K,Tournaye H,Liebaers I,et al. Male infertility and theinvolvement of the X chromosome. Hum Reprod Update,2009,15(6):623-637
    3Bhasin S. Approach to the infertile man. J Clin Endocrinol Metab,2007,92(6):1995-2004
    4McCarrey J R, O’Brien D A, Skinner M K. Construction and preliminarycharacterization of a series of mouse and rat testis cDNA libraries. JAndrol,1999,20:635–639
    5Su A I, Cooke M P, Ching K A, et al. Large-scale analysis of the humanand mouse transcriptomes. Proc Natl Acad Sci USA,2002,99:4465–4470
    6Tanaka K, Tamura H, Tanaka H, et al. Spermatogonia-dependentexpression of testicular genes in mice. Dev Biol,2002,246:466–479
    7Rockett J C, Christopher Luft J, Brian Garges J, et al. Development of a950-gene DNA array for examining gene expression patterns in mousetestis. Genome Biol,2001,2: RESEARCH0014
    8Sha J, Zhou Z, Li J, et al. Identification of testis development andspermatogenesis-related genes in human and mouse testes using cDNAarrays.Mol Hum Reprod,2002,8:511–517
    9Pang A L, Taylor H C, Johnson W, et al. Identification of differentiallyexpressed genes in mouse spermatogenesis. J Androl,2003,24:899–911
    10Pang A L, Johnson W, Ravindranath N, et al. Expression profiling ofpurified male germ cells: stage-specific expression patterns related tomeiosis and postmeiotic development. Physiol Genomics,2006,24:75–85
    11Yu Z, Guo R, Ge Y, et al. Gene expression profiles in different stages ofmouse spermatogenic cells during spermatogenesis. Biol Reprod,2003,69:37–47
    12Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expressioncharacteristics of differentially expressed genes during mousespermatogenesis. Mol Reprod Dev,2004,67:264–272
    13Clemente E J, Furlong R A, Loveland K L, et al. Gene expression study inthe juvenile mouse testis: identification of stage-specific molecularpathways during spermatogenesis. Mamm Genome,2006,17:956–975
    14Schultz N, Hamra F K, Garbers D L. A multitude of genes expressedsolely in meiotic or postmeiotic spermatogenic cells offers a myriad ofcontraceptive targets. Proc Natl Acad Sci USA,2003,100:12201–12206
    15Shima J E, McLean D J, McCarrey J R, et al. The murine testiculartranscriptome: characterizing gene expression in the testis during theprogression of spermatogenesis. Biol Reprod,2004,71:319–330
    16O’Shaughnessy P J, Fleming L, Baker P J, et al. Identification ofdevelopmentally regulated genes in the somatic cells of the mouse testisusing serial analysis of gene expression. Biol Reprod,2003,69:797–808
    17Wu S M, Baxendale V, Chen Y, et al. Analysis of mouse germ-celltranscriptome at different stages of spermatogenesis by SAGE: Biologicalsignificance. Genomics,2004,84:971–981
    18Yao J, Chiba T, Sakai J, et al. Mouse testis transcriptome revealed usingserial analysis of gene expression. Mamm Genome,2004,15:433–451
    19Almstrup K. Analysis of cell-type-specific gene expression during mousespermatogenesis. Biol Reprod,2004,70:1751–1761
    20Ellis P J, Furlong R A, Wilson A, et al. Modulation of the mouse testistranscriptome during postnatal development and in selected models ofmale infertility. Mol Hum Reprod,2004,10:271–281
    21Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Maleinfertility: role of genetic background. Reprod Biomed Online,2007,14(6):734–745
    22Martin M Matzuk, Dolores J Lamb. The biology of infertility: researchadvances and clinical challenges. Nature Medicine,2008,14(11):1197-1213
    23Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, Lenzi A,Foresta C. Molecular and clinical characterization of Y chromosomemicrodeletion in infertile men: a ten year experience in Italy. J ClinEndocrinol Metab,2007,92(3):762–770
    24Yen PH. Putative biological functions of the DAZ family.Int J Androl,2004,27(3):125–129
    25Ferlin A, Tessari A, Ganz F, Marchina E, Barlati S,Garolla A, Engl B,Foresta C. Association of partial AZFc region deletions withspermatogenic impairment and male infertility. J Med Genet,2005,42(3):209–213
    26Ferlin A, Vinanzi C, Garolla A, Selice R, Zuccarello D,Cazzadore C,Foresta C. Male infertility and androgen receptor gene mutations:clinicalfeatures and identification of seven novel mutations. Clin Endocrinol(Oxf),2006,65(5):606–610
    27Foresta C, Garolla A, Bartoloni L, Bettella A, Ferlin A.Geneticabnormalities among severely oligospermic men who are candidates forintracytoplasmic sperm injection. J Clin Endocrinol Metab,2005,90(1):152–156
    28Yun YJ, Park JH, Song SH, Lee S. The association of4a4b polymorphismof endothelial nitric oxide synthase (eNOS) gene with the spermmorphology in Korean infertile men.Fertil Steril,2008,90(4):1126–1131
    29Zhang W, Zhang SZ, Xiao CY, Yang Y, Zhoucun A. Muta tion screening ofthe FKBP6gene and its association study with spermatogenic impairmentin idiopathic infertile men.Reproduction,2007,133(2):511–516
    30Osborne EC, Lynch M, McLachlan R, Trounson AO, Cram DS.Microarray detection of Y chromosome deletions associated with maleinfertility. Reprod Biomed Online,2007,15(6):673–680
    31Zhu YJ, Liu SY, Wang H, Wei P, Ding XP. The prevalence of azoospermiafactor microdeletion on the Y chromosome of Chinese infertile mendetected by multi-analyte suspension array technology. Asian J Androl,2008,10(6):873–881
    32Lee S, Joo HS, Lee SH,Park JE, Kim JM, Hwang JH, Cho KS, Hwang SY.Application of DNA chip techniques for Yq microdeletion analysis ininfertile males. Exp Mol Med,2004,36(2):179–184
    33Holdcraft RW, Braun RE. Hormonal regulation of spermatogenesis. Int JAndrol,2004,27(6):335-342
    34Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cellsin the mouse. Reproduction,2004,128(2):147-152
    35Yomgogida K. Mammalian testis: A target of in vivo electroporation.Development Growth&Differentiation,2008,50:513-515
    36Sasaki H, Matsui Y. Epigenetic events in mammalian germ-celldevelopment:reprogramming and beyond. Nat Rev Genet,2008,9(2):129-140
    37Yoshida S, Nabeshima Y, Nakagawa T. Stem cell heterogeneity: actual andpotential stem cell compartments in mouse spermatogenesis. Ann N YAcad Sci,2007,1120:47-58
    38Sette C, Dolci S, Geremia R, Rossi P. The role of stem cell factor andofalternative c-kit gene products in the establishment, maintenance andfunction of germ cells. Int J Dev Biol,2000,44(6):599-608
    39Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP,Dolci S.Repression of kit expression by Plzf in germ cells. Mol Cell Biol,2007,27(19):6770-6781
    40Geremia R, Boitani C, Conti M, Monesi V. RNA synthesis inspermatocytes and spermatids and preservation of meiotic RNA duringspermiogenesis in the mouse. Cell Differ,1977,5(5-6):343-355
    41Monesi V, Geremia R, D'Agostino A, Boitani C. Biochemistry of malespermatogenic cellsdifferentiation in mammals: RNA synthesis in meioticand postmeiotic cells. Curr Top Dev Biol,1978,12:11-36
    42Kotaja N, Kimmins S, Brancorsini S, Hentsch D, Vonesch JL, Davidson I,Parvinen M, Sassone-Corsi P. Preparation, isolation and characterization ofstage-specific spermatogenic cells for cellular and molecular analysis.Nat Methods,2004,1(3):249-254
    43Ward JO,Reinholdt LG,Hartford SA,Wilson LA,Munroe RJ,SchimentiKJ,Libby BJ,O'Brien M,Pendola JK,Eppig J,Schimenti JC. Toward thegenetics of mammalian reproduction: induction and mapping ofgametogenesis mutants in mice. Biol. Reprod,2003,69(5):1615–1625
    44Zhou Q, Wang W. On the origin and evolution of new genes–a genomicand experimental perspective. J Genet Genomics,2008,35(11):639–648
    45Lynch M, Conery JS.The evolutionary fate and consequences of duplicategenes. Science,2000,290(5494):1151–1155
    46Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP,Dolci S.Repression of kit expression by Plzf in germ cells. Mol Cell Biol,2007,27(19):6770-6781
    47Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recenttherapeutic targets for gene-silencing. Curr Drug Targets,2007,8(3):469-82
    48Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S,Khochbin S.From meiosis to postmeiotic events: the secrets of histonedisappearance.Febs J,2010,277(3):599-604
    49Vogt PH.Molecular genetics of human male infertility:from genes to newtherapeutic perspectives.Curr Pharm Des,2004,10(5):471—500.
    50Lorsch JR.RNA chaperones exist and DEAD box protein get a life.Cell,2002,109(7):797-800
    51Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, SchnierJ,Slonimski PP. Birth of the D-E-A-D box. Nature,1989,337(6203):121-122
    52Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisonsand structure-function relationships. Current opinion in structural biology,1993,3(3):419-429
    53Lohman T M, Tomko E J,Wu C G. Non-hexameric DNA helicases andtranslocases:mechanisms and regulation. Nature Reviews Molecular CellBiology,2008,9(5):391-401
    54Singleton M R, Dillingham M S,Wigley D B. Structure and mechanism ofhelicases and nucleic acid translocases. Annu. Rev. Biochem,2007,76:23-50
    55Pyle A M. Translocation and unwinding mechanisms of RNA and DNAhelicases. Annu.Rev. Biophys.,2008,37:317-336
    56Leipe D D, Wolf Y I, Koonin E V,Aravind L. Classification and evolutionof P-loop GTPases and related ATPases. Journal of molecular biology,2002,317(1):41-72
    57Anantharaman V, Koonin E V,Aravind L. Comparative genomics andevolution of proteins involved in RNA metabolism[J]. Nucleic AcidsResearch,2002,30(7):1427-1464
    58Jankowsky E,Fairman M E. RNA helicases—one fold for many functions.Current Opinion in Structural Biology,2007,17(3):316-324
    59Cordin O,Banroques J, Tanner NIC, et al. The DEAD-box protein familyof RNA helicases.Gene,2006,367:17-37
    60Kadaré G,Haenni A-L. Virus-encoded RNA helicases. Journal of Virology,1997,71(4):2583
    61Fairman-Williams ME, Guenther UP, Jankowsky E. SFl and SF2helicases;family matters.Current opinion in structural biology,2010,20(3):313-324
    62Weston A, Sommerville J. Xp54and related (DDX6-like) RNA helicases:roles in messenger RNP assembly, translation regulation and RNAdegradation. Nucleic Acids Research,2006,34(10):3082-3094
    63Shiratori A, Shibata T,Arisawa M, et al. Systematic identification,classification, and characterization of the open reading frames whichencode novel helicase-related proteins in Saccharomyces cerevisiae bygene disruption and Northern analysis.Yeast,1999,15(3):219-253
    64Tuteja N, Tuteja R. Unraveling DNA helicases. Motif, structure,mechanism and function.Eur J Biochem,2004,271(10):1849-1863
    65Caruthers JM, McKay DB. Helicase structure and mechanism. Curt OpinStruct Biol,2002,12(1):123-133
    66Patel SS, Picha KM. Structure and function of hexameric helicases.AnnuRev Biochem,2000,69:651-697
    67de la Cruz J, Kressler D, Linder P. Unwinding RNA in Saccharomycescerevisiae: DEAD-box proteins and related families. Trends BiochemSci,1999,24(5):192-198
    68Silverman E, Edwalds-Gilbert G, Lin RJ. DExD/H-box proteins and theirpartners: helping RNA helicases unwind. Gene,2003,312:1-16
    69Ray BK, Lawson TQ Kramer JC, et al. ATP-dependent unwinding ofmessenger RNA structure by eukaryotic initiation factors. J Biol Chem,1985,260(12):7651-7658
    70Tanner NK, Linder P. DExD/H box RNA helicases; from generic motors tospecific dissociation functions. Mol Cell,2001,8(2):251-262
    71Tanner NK. The newly identified Q motif of DEAD box helicases isinvolved in adenine recognition. Cell Cycle,2003,2(1):16-17
    72Jarmoskaite I,Russell R. DEAD-box proteins as RNA helicases andchaperones. Vfiley Interdisciplinary Reviews: RNA,2011,2(1):135-152
    73Rocak S,Linder P. DEAD-box proteins: the driving forces behind RNAmetabolism. Nat Rev Mol Cell Biol,2004,5(3):232-241
    74Story RM, Steitz TA. Structure of the recA protein-ADP complex. Nature,1992,355(6358):374-376
    75Carmel AB, Matthews BW. Crystal structure of the BstDEAD N-terminaldomain: a novel DEAD protein from Bacillus stearothermophilus. RNA,2004,10(1):66-74
    76Story RM, Li H,Abelson JN. Crystal structure of a DEAD box proteinfrom the hyperthermophile Methanococcus jannaschii. Proc Natl Acad SciUSA,2001,98(4):1465-1470
    77Korolev S,Hsieh J, Gauss GH, et al. Major domain swiveling revealed bythe crystal structures of complexes of E. coli Rep helicase bound tosingle-stranded DNA and ADP. Cell,1997,90(4):635-647
    78Kim JL, Morgenstem KA, Griffith JP, et al. Hepatitis C virus NS3RNAhelicase domain with a bound oligonucleotide: the crystal structureprovides insights into the mode of unwinding.Structure,1998,6(1):89
    79Sheng Y, Tsai-Monis CH, Gutti R, et al. Gonadotropin-regulated testicularRNA helicase (GRTH/DDX25) is a transport protein involved ingene-specific mRNA export and protein translation duringspermatogenesis.Journal of Biological Chemistry,2006,281(46):35048-35056
    80Tang PZ, Tsai-Morris CH,Dufau ML. A novel gonadotropin-regulatedtesticular RNA helicase.Anew member of the dead-box family. J BiolChem,1999,274(53):37932-37940
    81Sheng Y,Tsai-Morris CH,Dufau ML. Cell-specific and hormone-regulatedexpression of gonadotropin-regulated testicular RNA helicase gene(GRTH/DDX25) resulting from alternative utilization of translationinitiation codons in the rat testis. J Biol Chem,2003,278(30):27796-27803
    82Tsai-Morris CH, Sheng Y, Gutti R, Li J, Pickel J, Dufau ML.Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)gene:cell-specific expression and transcriptional regulation by androgen intransgenic mouse testis. J Cell Biochem,2010,109(6):1142-1147
    83Tsai-Morris CH, Sheng Y, Lee E, Lei KJ, Dufau ML.Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) isessential for spermatid development and completion of spermatogenesis.Proc Natl Acad Sci U S A,2004,101(17):6373-6378
    84Tseng SS, Weaver PL, Liu Y, Hitomi M, Tartakoff AM, Chang TH. Dbp5p,a cytosolic RNA helicase, is required for poly(A)+RNA export. Embo J,1998,17(9):2651-2662
    85Hirling H, Scheffner M, Restle T, Stahl H. RNA helicase activityassociated with the human p68protein. Nature,1989,339(6225):562-564
    86Pause A, Sonenberg N. Mutational analysis of a DEAD box RNA helicase:the mammalian translation initiation factor eIF-4A. Embo J,1992,11(7):2643-2654
    87Tang PZ, Tsai-Morris CH, Dufau ML. A novel gonadotropin-regulatedtesticular RNA helicase. A new member of the dead-box family. J BiolChem,1999,274(53):37932-37940
    88Tsai-Morris CH, Lei S, Jiang Q, Sheng Y, Dufau ML. Genomicorganization and transcriptional analysis of gonadotropin-regulatedtesticular RNA helicase--GRTH/DDX25gene.Gene,2004,331:83-94.
    89Sheng Y, Tsai-Morris CH, Dufau ML. Cell-specific and hormone-regulatedexpression of gonadotropin-regulated testicular RNA helicase gene(GRTH/DDX25) resulting from alternative utilization of translationinitiation codons in the rat testis. J Biol Chem,2003,278(30):27796-27803
    90Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML.Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is atransport protein involved in gene-specific mRNA export and proteintranslation during spermatogenesis. J Biol Chem,2006,281(46):35048-35056
    91Sato H,Tsai-Morris CH,Dufau ML.Relevance of gonadotropin-regulatedtesticular RNA helicase(GRTH/DDX25) in the structural integrity of thechromatoid body during spermatogenesis.Biochim Biophys Acta.2010,1803(5):534-543
    92Gutti RK, Tsai-Morris CH, Dufau ML. Gonadotropin-regulated testicularhelicase (DDX25), an essential regulator of spermatogenesis, preventstesticular spermatogenic cells apoptosis. J Biol Chem,2008,283(25):17055-17064
    93Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formationis a consequence, not the cause, of RNA-mediated gene silencing. MolCell Biol,2007,27(11):3970-3981
    94Dufau ML, Tsai-Morris CH. Gonadotropin-regulated testicular helicase(GRTH/DDX25): an essential regulator of spermatogenesis. TrendsEndocrinol Metab,2007,18(8):314-320
    95Linder P. Dead-box proteins: a family affair--active and passive players inRNP-remodeling. Nucleic Acids Res,2006,34(15):4168-4180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700