环氧化二十碳三烯酸对血管内皮细胞和肿瘤细胞活性氧产生的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     环氧化二十碳三烯酸(epoxyeicosatrienoic acids,EETs)是花生四烯酸(arachidonicacid,AA)的表氧化酶代谢产物。它们由细胞色素P450表氧化酶代谢产生,作为参与体内多种生物活动的重要脂质中介物。EETs对于调节心血管稳态发挥了重要的作用,它能促进内皮型一氧化氮合酶的表达和提高其活性以增加一氧化氮(nitric oxide,NO)的合成从而保护内皮功能;能抑制内皮细胞炎症因子和粘附分子的表达;能促进内皮细胞的增殖和血管生成;能抑制血管平滑肌细胞的增殖和移行;还能促进组织型纤溶酶原激活物的表达促进纤溶而发挥抗凝血的效应,这些都证明了EETs对于心血管系统起广泛的保护作用。氧化应激(oxidative stress)与机体的多种疾病联系紧密,包括神经退行性疾病、糖尿病、肾病以及肿瘤等。近年来的研究发现,活性氧(reactive oxygenspecies,ROS)具有灭活NO从而损害内皮依赖的血管舒张反应、促进炎症细胞的粘附、促进血管平滑肌细胞的增殖和迁移等效应。这些效应使得ROS促进了动脉粥样硬化、高血压、血管形成术后再狭窄、心血管重塑、心衰等心血管疾病的病理生理过程的发生和发展。既然EETs在维持心血管稳态中起到了重要的作用,而氧化应激和活性氧是心血管的“不稳定因素”之一,这二者之间是否有联系?目前还未有研究。探讨EETs对心血管系统氧化应激及ROS产生的影响,可以明确EETs的生理作用、为心血管系统疾病的防治提供靶点和理论依据。同时,我们还首次发现EETs促进人类肿瘤细胞的增殖和转移,并具有抑制肿瘤细胞凋亡的作用。而ROS亦是肿瘤细胞凋亡信号的重要调节分子,在缺氧、药物、受体介导等各种因素诱导的肿瘤细胞凋亡中起到重要作用。ROS升高可以诱发肿瘤细胞凋亡,抗氧化剂可以抑制凋亡。因此,本文还研究了EETs抑制肿瘤细胞凋亡是否和ROS有关,以期完善我们前期的研究成果,深化EETs对肿瘤细胞的作用机制。
     实验方法:
     体外培养的牛主动脉内皮细胞(bovine arotic endothelial cells,BAECs)用EETs预处理24小时,接着用血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)处理1小时,使其胞内ROS升高,用流式细胞仪检测细胞内的ROS产生。用western blot的方法检测不同时间EET处理的内皮细胞NAD(P)H氧化酶各亚单位的表达和抗氧化酶超氧化物歧化酶和过氧化氢酶的表达,用生化方法检测其活性。分离细胞胞浆和胞膜蛋白,用westernblot的方法分别检测胞浆和胞膜NAD(P)H氧化酶各亚单位的分布和Racl GTP酶的膜转位。在肿瘤细胞中,用三氧化二砷(arsenic trioxide,ATO)诱导人舌鳞癌细胞Tca-81 13 ROS的产生和细胞凋亡。同样用流式细胞仪检测细胞内的ROS产生和细胞凋亡,用比色法测定caspase活性,JC-1测定线粒体膜电位,western blot检测抗氧化酶的表达和氧化还原敏感的相关信号通路的改变。
     实验结果:
     1.EETs对体外培养的BAECs活性氧产生的作用及机制
     通过流式细胞仪检测发现:用EETs预处理的24h后,能明显抑制AngⅡ诱导的BAECs的ROS生成。通过western blot检测发现这一效应可能是通过抑制NAD(P)H氧化酶的亚单位gp91phox的表达;抑制NAD(P)H氧化酶的胞浆组份p47phox和racl的膜转位和上调抗氧化酶超氧化物歧化酶的表达和活性来实现的。
     2.EET对肿瘤细胞的活性氧产生的作用及机制
     EET同样能抑制ATO导致的肿瘤细胞的活性氧产生以及细胞凋亡,它还能抑制ATO导致的线粒体膜电位的丢失、caspase 9和3的激活以及P38、JNK等信号通路的激活。抑制CYP2J2的活性能和ATO起到协同作用,增加肿瘤细胞的ROS产生和促进肿瘤细胞凋亡。
     结论:
     本实验通过体外培养的内皮细胞和肿瘤细胞,利用分子生物学和细胞生物学技术,对EET在活性氧的调节及其机制进行了研究,得出以下结论:
     1.EET抑制AngⅡ诱导的BAECs活性氧产生,其机制可能是抑制了NAD(P)H氧化酶主要亚单位的表达和膜转位以及上调抗氧化酶的表达和活性,AMPK、PPAR-γ、ERK途径可能是EET发挥抗氧化效应的机制。
     2.EET同时也抑制了肿瘤细胞内由ATO诱导的ROS产生。还能抑制ROS介导的线粒体途径的细胞凋亡,完善了关于EET抑制细胞凋亡的相关机制。同时,抑制CYP2J2能够增强ATO对肿瘤细胞的作用,为临床肿瘤的防治提供了新的策略。
Background
     Cytpchrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET, that function as the critical lipid mediators involved in several biological events in human body. EETs play a crucial role in cardiovascular homeostasis that have been considered including mechanisms 1) to preserve endothelial function by increasing NO bioavailability, 2) to inhibit the expression of inflammation and adhesion factors in endothelial cells, 3) to promote endothelial cells proliferation and angiogenesis, 4) to inhibit vascular smooth muscle cells (VSMC) proliferation and migration, 5) to increase fibrolysis. These evidences indicated that EET extensively protect the cardiovascular system. Oxidative stress has been associated with diverse pathophysiological events, including neurodegeneration, diabetes mellitus, renal disease and cancer. Reactive oxygen species (ROS) elicit direct cellular damage and mitogenicity, serve as intracellular second messengers, scavenge vasoprotective NO, increase inflammatory cells adhesion, and promote VSMC proliferation and migration. Recently, it has been verified ROS also play a critical role in the incidence and development of vasculopathies, including atherosclerosis, hypertension and restenosis after angioplasty. Now that the EET maintained cardiovascular homeostasis, whereas ROS has been served as the "unstable factors", whether or not EET reduces ROS injury in vascular walls is not clear. Investigating the action of EET on oxidative stress and ROS generation in cardiovascular system could definite the physiological role of EET and provide the theoretical basis and the target for the prevention and treatment of cardiovascular diseases. At the meantime, we revealed for the first time that EETs promote human tumor cells proliferation and metastasis, and inhibit tumor cells apoptosis. ROS are the critical regulating molecules of apoptosis in tumor cells, and extensive evidence indicates that ROS plays a piotal role in tumor cell apoptosis whether induced by ischemia, drugs, or receptor mediated factors. For this reason, we investigated whether EET inhibits tumor cells apoptosis correlated with ROS generation.
     Methods
     After treating with EET for 24 hours, bovine arotic endothelial cells (BAECs) was treated with angiotensin II (Ang II) for 1 hour. The generation of ROS was measured by flowcytometry. The expression of NAD(P)H oxidase subunits, superoxide dismutases (SOD) and catalase (CAT) were detected by western blot. The activity of SOD and CAT were measured by biochemical assays. Following cytoplasmic and membrane protein separation, the NAD(P)H oxidase subunit p47phox and Rac1 GTPase translocation were detected by western blot. ROS and apoptosis were induced by arsenic trioxide (ATO) in Tca-8113 human tumor cells, and were measured by flowcytometry. Caspase activity was measured by colorimetry assay. Mitochondrial membrane potential was measured by JC-1 assay. The involved cell signal molecular changes were detected by western blot.
     Results
     1. EETs alleviate reactive oxygen species generation in BAECs and the mechanisms
     24 hours pretreatment of EETs significantly inhibited Ang II-induced ROS generation in BAECs. This effect may be mediated by inhibiting NAD (P) H oxidase subunits: gp91phox expression, reduced translocation of p47phox and rac1 and by increasing SOD expression and its activity.
     2. EETs reduce reactive oxygen production in tumor cells and the mechanisms
     EETs can inhibit the tumor cells reactive oxygen generation and apoptosis induced by ATO. EETs can also attenuate the loss of mitochondrial membrane potential, caspase 9 and 3 activation as well as P38, JNK signaling pathway activation caused by ATO. Inhibition of CYP2J2 activity cooperated with ATO increased ROS generation and apoptosis in tumor cells.
     Conclusion
     Using molecular and cellular biology techniques, we investigated the regulation of reactive oxygen by EETs and the mechanisms in vitro in cultured endothelial cells and tumor cells. We found that:
     1. EETs inhibited Ang II-induced reactive oxygen species generation through inhibiting NAD(P)H oxidase subunits expression and translocation and through increasing SOD expression as well as its activity. These effects may dependent on AMPK, PPAR-γ, ERK signaling pathway.
     2. EETs also inhibited the ROS generation induced by ATO in tumor cells. Moreover, EETs can inhibit ROS-mediated mitochondrial pathway of apoptosis, which enriched the mechanisms of EETs act on tumor cell apoptosis. Meanwhile, inhibition of CYP2J2 enhanced the effect of ATO on tumor cells, which raise a new strategy for the prevention and treatment of clinical oncology.
引文
[1] Fang X, Kaduce TL, Weintraub NL, et al. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition. J Biol Chem 2001 ;276( 18): 14867-74.
    [2] Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 2001;276(39):36059-62.
    [3] Campbell WB, Falck JR. Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 2007;49(3):590-6.
    [4] Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999;285(5431):1276-9.
    [5] Node K, Ruan XL, Dai J, et al. Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 2001 ;276( 19): 15983-9.
    [6] Sun J, Sui X, Bradbury JA, Zeldin DC, Conte MS, Liao JK. Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ Res 2002;90(9): 1020-7.
    [7] Wang H, Lin L, Jiang J, et al. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther 2003;307(2):753-64.
    [8] Yang S, Lin L, Chen JX, et al. Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol 2007;293(1):H142-51.
    [9] Wang Y, Wei X, Xiao X, et al. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J Pharmacol Exp Ther 2005;314(2):522-32.
    [10]Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87(10):840-4.
    [11] Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K.Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002;346(25): 1954-62.
    [12]Dimmeler S, Zeiher AM. Reactive oxygen species and vascular cell apoptosis in response to angiotensin Ⅱ and pro-atherosclerotic factors. Regul Pept 2000;90(1-3):19-25.
    [13]Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 2003;92(11):e80-6.
    [14]Kinugawa S, Tsutsui H, Hayashidani S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 2000;87(5):392-8.
    [15]Feuerstein G, Yue TL, Ma X, Ruffolo RR. Novel mechanisms in the treatment of heart failure: inhibition of oxygen radicals and apoptosis by carvedilol. Prog Cardiovasc Dis 1998;41(1 Suppl 1): 17-24.
    [16] Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40(3):426-32.
    [17]Azevedo LC, Pedro MA, Souza LC, et al. Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis.Cardiovasc Res 2000;47(3):436-45.
    [18]Yang B, Graham L, Dikalov S, et al Overexpression of cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol 2001 ;60(2):310-20.
    [19]Jiang JG, Chen CL, Card JW, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 2005;65(11 ):4707-15.
    [20] Jiang JG, Ning YG, Chen C, et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res 2007;67(14):6665-74.
    [21]Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004;7(2):97-110.
    [1] Wu S, Chen W, Murphy E, et al. Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Cheml997;272(19):12551-9.
    [2] Wu S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996;271(7):3460-8.
    [3] Fleming I, Michaelis UR, Bredenkotter D, et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001;88(1):44-51.
    [4] Yang B, Graham L, Dikalov S, et al. Overexpression of cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol 2001 ;60(2):310-20.
    [5] Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999;285(5431):1276-9.
    [6] Yang J, Marden JJ, Fan C, et al. Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol Ther 2003;7(3):341-53.
    [7] Sun J, Sui X, Bradbury JA, Zeldin DC, Conte MS, Liao JK. Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ Res 2002;90(9):1020-7.
    [8] Archer SL, Gragasin FS, Wu X, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation 2003;107(5):769-76.
    [9] Feletou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol 2006;26(6):1215-25.
    [10]Larsen BT, Miura H, Hatoum OA, et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol 2006;290(2):H491-9.
    [11]Fleming I, Rueben A, Popp R, et al. Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 2007;27(12):2612-8.
    [12] Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996;78(3):415-23.
    [13] Wang H, Lin L, Jiang J, et al. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther 2003;307(2):753-64.
    [14]Hercule HC, Schunck WH, Gross V, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol 2009;29(1):54-60.
    [15] Node K, Ruan XL, Dai J, et al. Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 2001 ;276(19): 15983-9.
    [16] Yang S, Lin L, Chen JX, et al. Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol 2007;293(1):H142-51.
    [17] Wang Y, Wei X, Xiao X, et al. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J Pharmacol Exp Ther 2005;314(2):522-32.
    [18]Delles C, Miller WH, Dominiczak AF. Targeting reactive oxygen species in hypertension. Antioxid Redox Signal 2008; 10(6): 1061 -77.
    [19] Hamilton CA, Miller WH, Al-Benna S, et al. Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 2004; 106(3):219-34.
    [20]Wasserberg N, Pileggi A, Salgar SK, et al. Heme oxygenase-1 upregulation protects against intestinal ischemia/reperfusion injury: a laboratory based study. Int J Surg 2007;5(4):216-24.
    [21]Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 2008;5(6):338-49.
    [22]Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L1005-28.
    [23] Mueller CF, Laude K, McNally JS, Harrison DG. ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vase Biol 2005;25(2):274-8.
    [24]Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120(4):483-95.
    [25]Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 2000;87(1):26-32.
    [26]Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features,expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003;285(2):R277-97.
    [27]Brandes RP, Schroder K. Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 2008; 19(5):513-8.
    [28]Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1 ):245-313.
    [29] Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 2004; 109(14): 1795-801.
    [30] Wagner AH, Schroeter MR, Hecker M. 17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 2001 ;15(12):2121-30.
    [31] Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM. Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 2005;288(4):C899-905.
    [32]Inoue I, Goto S, Matsunaga T, et al. The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 2001 ;50(1):3-11.
    [33] Li JM, Mullen AM, Yun S, et al. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res 2002;90(2): 143-50.
    [34]Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin Ⅱ. Hypertension 2002;40(4):511-5.
    [35]Baumer AT, Ten Freyhaus H, Sauer H, et al. Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem 2008;283(12):7864-76.
    [36]Jiang F, Roberts SJ, Datla S, Dusting GJ. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension 2006;48(5):950-7.
    [37]Sacerdoti D, Colombrita C, Di Pascoli M, et al. 11,12-epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins Other Lipid Mediat2007;82(1-4):155-61.
    [38]Zanetti M, Sato J, Jost CJ, Gloviczki P, Katusic ZS, O'Brien T. Gene transfer of manganese superoxide dismutase reverses vascular dysfunction in the absence but not in the presence of atherosclerotic plaque. Hum Gene Ther 2001;12(11):1407-16.
    [39]Zanetti M, Sato J, Katusic ZS, O'Brien T. Gene transfer of superoxide dismutase isoforms reverses endothelial dysfunction in diabetic rabbit aorta. Am J Physiol Heart Circ Physiol 2001 ;280(6):H2516-23.
    [40] Woo YJ, Zhang JC, Vijayasarathy C, et al. Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 1998;98(19 Suppl):Ⅱ255-60;discussion Ⅱ60-1.
    [1] Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 1999;93(1):268-77.
    [2] Kang YH, Yi MJ, Kim MJ, et al. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 2004;64(24):8960-7.
    [3] Hail N, Jr. Mitochondria: A novel target for the chemoprevention of cancer.Apoptosis 2005;10(4):687-705.
    [4] Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004;287(4):C817-33.
    [5] Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000;5(5):415-8.
    [6] Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 2006;1757(5-6):509-17.
    [7] Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood 2001;98(9):2603-14.
    [8] Verma A, Mohindru M, Deb DK, et al. Activation of Racl and the p38 Mitogen-activated Protein Kinase Pathway in Response to Arsenic Trioxide. J Biol Chem 2002;277(47):44988-95.
    [9] Davison K, Mann KK, Waxman S, Miller WH, Jr. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 2004;103(9):3496-502.
    [10]Kang YH, Lee SJ. The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J Cell Physiol 2008;217(1):23-33.
    [11] Liu WH, Chang LS. Reactive oxygen species and p38 mitogen-activated protein kinase induce apoptotic death of U937 cells in response to Naja nigricollis toxin gamma. J Cell Mol Med 2008.
    [12] Huang J, Wu L, Tashiro S, Onodera S, Ikejima T. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci 2008;107(4):370-9.
    [13]Giafis N, Katsoulidis E, Sassano A, et al. Role of the p38 mitogen-activated protein kinase pathway in the generation of arsenic trioxide-dependent cellular responses. Cancer Res 2006;66(13):6763-71.
    [14]Sacerdoti D, Colombrita C, Di Pascoli M, et al. 11,12-epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins Other Lipid Mediat2007;82(1-4):155-61.
    [15] Yi J, Yang J, He R, et al. Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res 2004;64(1):108-16.
    [16]Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 1999;94(6):2102-11.
    [17]Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 2007;9(12):2099-117.
    [18]Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumors: is it a false friend?Antioxid Redox Signal 2007;9(12):2099-117.
    [19] Yi J, Gao F, Shi G, et al. The inherent cellular level of reactive oxygen species: one of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide. Apoptosis 2002;7(3):209-15.
    [20] Jiang JG, Chen CL, Card JW, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 2005;65(11):4707-15.
    [21] Chen C, Li G, Liao W, et al. Selective Inhibitors of CYP2J2 Related to Terfenadine Exhibit Activity Strongly against Human Cancers in vitro and in vivo. J Pharmacol Exp Ther 2009.
    [1]王迪浔,金惠铭。人体病理生理学[M].北京:北京人民卫生出版社,2002,515-516.
    [2]McCord JM,Fridovich I.Superoxide dismutase.An enzymic function for erythrocuprein(hemocuprein).J Biol Chem.1969;244:6049-6055
    [3]Taylor WR.Hypertensive vascular disease and inflammation: mechanical and hum oral mechanisms.Cur Hypertension Rep.1999;1:96-101.
    [4]Wallpolla PL,Goalies AI,Cybulsky MI,et al.Expression of ICAM-1 and VCAM-land monocots adherence in arteries exposed to altered shear stress.Arterioscler Thromb Vasc Biol.1995;15:2-10.
    [5]Berk BC,Abe JI,Min W,et al.Endothelial atheroprotective and anti-inflammatory mechanisms.Ann N Y Acad Sci.2001;947:93-109
    [6]Hwang J,Saha A,Boo YC,et al.Oscillatory shear stress stimulates endothelial production of O2_ from p47phoxdependent NADPH oxidizes,leading to monocyte adhesion.J Biol Chem.2003;278:47291-47298.
    [7]陈槐卿,陈友琴,张文胜等。 过氧化氢对内皮细胞表面黏附分子表达的影响。华西医科大学学报,2002,33(3):364-367.
    [8]Bauersachs J,Popp R,Hecker M,et al.Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor.Circulation.1996;94:3341-3347.
    [9]Kathrin J J,Johnson C,Magid R,et al.Vascular oxidant stress enhances progression and angiogenesis of experimental athermancy.Circulation.2004; 109:520-525.
    [10]Xia Z,Liu M,Wu Y,et al.N-acetylcys-teine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression.Euro J Pharmacology.2006;550:134-142.
    [11]Madesh M, Hawkins BJ, Milovanova T, et al. Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Bio.2005; 1170:1079-1090.
    [12]Pollman MJ, Hall JL, Gibbons GH. Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury. Influence of redox state and cell phenotype. Circ Res. 1999; 84:113-121.
    [13] Brunt KR, Fenrich KK, Kiani G, et al. Protection of human vascular smooth muscle cells from H2O2-induced apoptosis through functional codependence betweenHO-1 and AKT. Arterioscler Thromb Vase Biol.2006; 26:2027-2034.
    [14]Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H_2O_2 for platelet-derived growth factor signal transduction. Science .1995; 70:296-299.
    [15] Weber DS, Taniyama Y, Rocic P, et al. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res.2004; 94:1219-1226.
    [16] Ten Freyhaus H, Huntgeburth M, Wingler K, et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation.Cardiovasc Res. 1999; 71:331-341.
    [17]Castier Y, Brandes RP, Leseche G, et al. p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ Res. 2005; 97:533-540
    [18]Lo IC, Shih JM, Jiang MJ. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci .2005; 12:377-388.
    [19] Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell mediated collagen organization. Arteri oscler Thromb Vasc Biol.2004; 24:54-60.
    [20] Johnson JL, George SJ, Newby AC, et al. Divergent effects of matrix metalloproteinases3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA.2005; 102:15575-15580.
    [21] Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996; 98:2572-2579.
    [22] Luchtefeld M, Grote K, Grothusen C, et al. Angiotensin Ⅱ induces MMP-2 in a p47phox-dependent manner. Biochem Biophys Res Commun.2005;328:183-188.
    [23]Kong G, Lee S, Kim KS. Inhibition of racl reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells. J Korean Med Sci.2001; 16:712-718.
    [24] Ten Freyhaus H, Huntgeburth M, Wingler K., et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res. 1999; 71:331-341.
    [25] Patterson C, Ruef J, Madamanchi NR, et al. Stimulation of a vascular smooth muscle cell NADPH oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem.1999;274:19814-19822.
    [26]Durand E, Al Haj Zen A, Addad F, e t al.Adenovirus-mediated gene transfer of superoxide dismutase and catalase decreases restenosis after balloon angioplasty.J Vasc Res.2005; 42:255-265.
    [27]Ozumi K, Tasaki H, Takatsu H, et al. Extracellular superoxide dismutase over expression reduces cuff-induced arterial neointimal formation.Atherosclerosis.2005; 181: 55-62.
    [28]Deshpande NN, Sorescu D, Seshiah P, et al. Mechanism of hydrogen peroxide induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal.2002;4:845-854.
    [29] Rao GN, Katki KA, Madamanchi NR, et al. JunB forms the majority of the AP-1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. J Biol Chem.1999; 274: 6003-6010.
    [30]Bleeke T, Zhang H, Madamanchi N, et al. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res.2004; 94:37-45.
    [31] Kim S, Iwao H. Stress and vascular responses: mitogen-activated protein kinases and activator protein-1 as promising therapeutic targets of vascular remodeling. J Pharmacol Sci.2003; 91:177-181.
    [32]Katakami N, Kaneto H, Hao H, et al. Role of pim-1 in smooth muscle cell proliferation. J Biol Chem. 2004; 279:54742-54749.
    [33] Li L, Mamputu JC, Wiernsperger N, et al. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes.2005;54:2227-2234.
    [34] Shin HJ, Oh J, Kang SM, et al. Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells. Biochem Biophys Res Commun.2005; 329:18-24.
    [35] Duffy SJ, Gokce N, Holbrook M, et al. Treatment of hypertension with ascorbic acid. Lancet. 1999;354:2048-2049.
    [36]Neri S, Signorelli SS, Torrisi B, et al. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: a single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther.2005; 27:1764-1773.
    [37]Vivekananthan DP, Penn MS, Sapp SK, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet.2003;361:2017-2023.
    [38]Podmore ID, Griffiths HR, Herbert KE, et al. Vitamin C exhibits pro-oxidant properties. Nature. 1998; 392:559.
    [39]Weinberg RB, VanderWerken BS, Anderson RA, et al. Pro-oxidant effect of vitamin E in cigarette smokers consuming a high polyunsaturated fat diet. Arterioscler Thromb Vase Biol.2001 ;21:1029-1033.
    [40]Boschi D, Tron GC, Lazzarato L, et al. NO-donor phenols: a new class of products endowed with antioxidant and vasodilator properties. J Med Chem.2006;49:2886-2897.
    [41]Serebruany V, Malinin A, Scott R. The in vitro effects of a novel vascular protectant, AGI-1067, on platelet aggregation and major receptor expression in subjects with multiple risk factors for vascular disease. J Cardiovasc Pharmacol Ther.2006; 11:191-196.
    [42]Cifuentes ME , Pagano PJ . Targeting reactive oxygen species in hypertension. Curr OpinNephrol Hypertens, 2006,15: 179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700