非洛地平和厄贝沙坦抗动脉粥样硬化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分非洛地平抑制高胆固醇饮食ApoE KO小鼠动脉粥样硬化形成机制的研究
     目的:氧化应激和炎症参与了动脉粥样硬化(As)的发生与发展。研究发现部分钙通道阻断剂(CCB)有抗As的作用,然而其具体机制尚未明了。本研究旨在探讨非洛地平对载脂蛋白E基因敲除(ApoE KO)小鼠As斑块发生发展的影响及其分子机制。
     方法:ApoE KO小鼠随机分为普食组(ND组)、高胆固醇饮食组(HCD组)、高胆固醇饮食+非洛地平组(HCD+Fel组),每组15只,分别予蒸馏水、蒸馏水、非洛地平5mg/kg/d灌胃12周,内眦取血检测血清总胆固醇、甘油三酯水平;冰冻切片光镜下定位主动脉根部,油红O染色计算斑块面积;Western Blot检测胞浆胞核核因子-кB(NF-кB)p50,p65和I-кB的表达;实时定量PCR和Western Blot方法检测主动脉烟酰胺腺嘌呤二核苷酸[NAD(P)H]氧化酶亚基p47phox和Rac-1及炎症因子肿瘤坏死因子-α(TNF-α)、单核细胞趋化因子-1(MCP-1)和血管细胞黏附分子-1(VCAM-1)的表达。
     结果:(1)高胆固醇饮食的ApoE KO小鼠血脂水平明显高于普食的ApoE KO小鼠。(2)无论普食还是高胆固醇饮食的ApoE KO小鼠均有明显的斑块形成;且HCD组斑块面积明显高于ND组;与HCD组相比,HCD+Fel组斑块面积明显减小。(3)非洛地平可以降低斑块内NF-κB的激活。(4)非洛地平降低斑块内NAD(P)H氧化酶亚基p47phox和Rac-1以及炎症因子TNF-α、MCP-1、VCAM-1的表达。
     结论:CCB非洛地平可以抑制As进展,其机制可能为通过抑制NF-κB的激活,阻断氧化应激和炎症信号通路激活后级联反应,从而降低炎症因子的表达,抑制炎症反应,阻止了As进一步发展。
     第二部分厄贝沙坦抑制高胆固醇饮食ApoE KO小鼠动脉粥样硬化斑块形成的机制研究
     目的:As是一种慢性炎症性疾病,肾素-血管紧张素系统(RAS)在其发生发展中扮演重要的角色。研究发现血管紧张素Ⅱ受体1拮抗剂(ARB)有抗As的作用,然而其具体机制尚未明了。本研究旨在探讨ARB厄贝沙坦对ApoE KO小鼠As斑块发生发展的影响及其分子机制。
     方法:ApoE KO小鼠随机分为普食组(ND组)、高胆固醇饮食组(HCD组)、高胆固醇饮食+厄贝沙坦组(HCD+Irb组),每组15只,分别予蒸馏水、蒸馏水、厄贝沙坦10mg/kg/d灌胃12周。内眦动脉取血检测血清胆固醇和甘油三脂水平;冰冻切片光镜下定位主动脉根部,油红O染色评估斑块大小;Western blot方法检测信号转导通路蛋白细胞外信号调节激酶1/2(ERK1/2)、Janus激酶2(JAK2)、信号传导子和激活子3(STAT3)、I-кB和胞浆胞核NF-κB的表达,实时定量PCR和Western blot方法检测主动脉NAD(P)H氧化酶亚基p47phox和Rac-1及炎症因子TNF-α、MCP-1、白介素-6(IL-6)和VCAM-1的表达。
     结果:(1)高胆固醇饮食的ApoE KO小鼠血脂水平明显高于普食的ApoE KO小鼠。(2)无论普食还是高胆固醇饮食的ApoE KO小鼠均有明显的斑块形成;HCD组斑块面积明显高于ND组;与HCD组相比,HCD+Irb组斑块面积明显减小。(3)厄贝沙坦可以降低信号转导通路蛋白ERK1/2、JAK2、STAT3和NF-κB的激活;(4)厄贝沙坦显著降低p47phox和Rac-1以及炎症因子TNF-α、IL-6、MCP-1和VCAM-1的表达。
     结论:ARB厄贝沙坦有显著的抑制As进展作用,其机制可能为抑制NAD(P)H氧化酶生成,降低信号通路蛋白ERK1/2、JAK2、STAT3和NF-κB的激活,阻断氧化应激和炎症信号通路,降低炎症因子的表达,从而达到抑制As发生发展的目的。
     第三部分低剂量非洛地平和厄贝沙坦联合治疗动脉粥样硬化的作用与机制
     目的:探讨低剂量CCB非洛地平和ARB厄贝沙坦联合使用对高胆固醇饮食ApoE KO小鼠As形成的影响及机制。
     方法:ApoE KO小鼠随机分为普食组(ND组)、高胆固醇饮食组(HCD组)、高胆固醇饮食+非洛地平+厄贝沙坦组(HCD+Fel+Irb组),每组15只,分别予蒸馏水、蒸馏水、非洛地平2.5mg/kg/d+厄贝沙坦5mg/kg/d灌胃12周。内眦动脉取血检测血清胆固醇和甘油三脂水平;冰冻切片光镜下定位主动脉根部,油红O染色评估斑块大小;实时定量PCR和Western blot方法检测主动脉中NAD(P)H氧化酶亚基p47phox和Rac-1及炎症因子TNF-α、IL-6、MCP-1和VCAM-1的表达。
     结果:(1)高胆固醇饮食的ApoE KO小鼠血脂水平明显高于普食的ApoE KO小鼠。(2)无论普食还是高胆固醇饮食的ApoE KO小鼠均有明显的斑块形成;且HCD组斑块面积明显高于ND组;与HCD组相比,HCD+Fel+Irb组斑块面积明显减小。(3)低剂量非洛地平+厄贝沙坦联合使用可以明显降低NAD(P)H氧化酶亚基p47phox和Rac-1及炎症因子TNF-α、IL-6、MCP-1、VCAM-1的表达。
     结论:低剂量非洛地平和厄贝沙坦联合使用同样可以抑制As进展,其机制可能是通过干预氧化应激和降低炎症因子的表达,抑制炎症反应,阻止了As进一步发展。
Part I Molecular Mechanisms of Felodipine Suppressing Atherosclerosis in High Cholesterol-diet Apolipoprotein E Knock-out Mice
     Objective: Oxidative stress and inflammation processes are key components of atherosclerosis (As), from fatty streak formation to plaque rupture and thrombosis. Evidence has revealed that calcium channel blockers (CCBs) could retard atherogenesis, but the exact mechanisms have not been fully elucidated. The present study was undertaken to investigate the potential effects and molecular mechanisms of a calcium channel blocker felodipine on the process of As in high cholesterol-diet (HCD) apolipoprotein E knock-out (ApoE KO) mice.
     Methods: Adult male ApoE KO mice were divided into three groups randomly (n=15 each): normal diet (ND) group, HCD group and HCD plus felodipine (HCD+Fel) group. They were given ND or HCD and randomized to no treatment or felodipine 5mg/kg/d for 12 weeks. The plasma total cholesterol and triglyceride concentration were measured by autoanalyzer. Atherosclerotic lesion area in arotic root was evaluated by oil red O staining. Nuclear factor-κB (NF-κB) and inhibitors ofκB (IκB) were measured by western blot. Nicotinamide-adeninedinucleotide phosphate [NAD(P)H] oxidase subunits and inflammatory cytokines were measured by real-time reverse-transcription polymerase chain reaction (PCR) and western blot.
     Results: (1) The ApoE KO mice with HCD were associated with a marked increase in plasma lipid levels, and felodipine treatment didn’t affect the plasma lipid levels. (2) Atherosclerotic lesion size was larger in HCD group than those in ND group or HCD+Fel group. (3) Felodipine treatment can decrease the activity of NF-κB in atherosclerotic lesion. (4) Felodipine treatment can decrease the expression of NADPH oxidase subunits (p47phox and Rac-1). (5) Felodipine treatment also decreased the expression of cytokines such as tumor necrosis-α(TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1).
     Conclusion: The results suggest that felodipine could inhibit As. This effect is partly related to the decrease of NF-κB activity, inhibition of oxidative stress and inflammatory signal transduction pathways, which leads to the decrease in the expression of inflammatory cytokines.
     Part II Molecular Mechanisms of Irbesartan Suppressing Atherosclerosis in High Cholesterol-diet Apolipoprotein E Knock-out Mice
     Objective: As is a chronic inflammatory disease in which the renin-angiotensin system (RAS) plays an important role. Evidences indicate that the angiotensin type 1 receptor blockers (ARBs) can suppress atherogenesis, but the exact mechanisms have not been fully elucidated. The present study was undertaken to investigate the potential effects and molecular mechanisms of an ARB irbesartan on the process of As in HCD ApoE KO mice.
     Methods: Adult male ApoE KO mice were divided into three groups randomly (n=15 each): normal diet (ND) group, HCD group and HCD plus irbesartan (HCD+Irb) group. Those mice were given ND or HCD and randomized to receive no treatment or irbesartan 10 mg/kg/d for 12 weeks. The plasma total cholesterol and triglyceride concentration were measured by autoanalyzer. Atherosclerotic lesion area in arotic root was evaluated by oil red O staining. NF-κB, IκB, extracellular signal-regulated kinase 1/2 (ERK1/2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. NAD(P)H oxidase subunits and inflammatory cytokines were measured by real-time reverse-transcription PCR and western blot.
     Results:(1) The ApoE KO mice with HCD were associated with a marked increase in plasma lipid levels, and irbesartan treatment didn’t affect the plasma lipid levels. (2) Atherosclerotic lesion size was larger in HCD group than those in ND group or HCD+Irb group. (3) Irbesartan treatment can decrease the activity of NF-κB as well as the activity of ERK1/2, JAK2, STAT3 in atherosclerotic lesion. (4) Irbesartan treatment attenuated the expression of NADPH oxidase subunits (p47phox and Rac-1) in the aortas. (5) Irbesartan treatment decreased the expression of cytokines such as TNF-α, interleukin 6 (IL-6), MCP-1 and VCAM-1 in the aortas.
     Conclusions: The results suggest that irbesartan can attenuate As. The effects maybe relate to the decrease of the activity of signal transcriptional factors such as NF-κB, ERK1/2, JAK2 and STAT3, thus leading to the inhibition of oxidative stress and inflammatory signal transduction pathways which eventually leads to the reduction of inflammatory cytokines expression.
     Part III Effect and Mechanism of Combination of Low Dose Felodipine and Irbesartan on Atherosclerosis in High Cholesterol-diet Apolipoprotein E Knock-out Mice
     Objective: To investigate the potential effect and mechanism of combination of low dose felodipine and irbesartan on the process of As in HCD ApoE KO mice.
     Methods: Adult male ApoE KO mice were divided into three groups randomly (n=15 each): normal diet (ND) group, HCD group and HCD plus felodipine and irbesartan (HCD+Fel+Irb) group. Those mice were given ND or HCD and randomized to receive no treatment or felodipine 2.5 mg/kg/d plus irbesartan 5mg/kg/d for 12 weeks. The plasma total cholesterol and triglyceride concentration were measured by autoanalyzer. Atherosclerotic lesion area in arotic root was evaluated by oil red O staining. NAD(P)H oxidase subunits and inflammatory cytokines were measured by real-time reverse- transcription PCR and western blot.
     Results:(1) The ApoE KO mice with HCD were associated with a marked increase in plasma lipid levels, and the drug treatment didn’t affect the plasma lipid levels. (2) Atherosclerotic lesion size was larger in HCD group than those in ND group or HCD+Fel+Irb group. (3) HCD feeding increased the expression of NADPH oxidase subunits (p47phox and Rac-1) and cytokines such as TNF-α, IL-6, MCP-1 and VCAM-1 in the aortas. These changes were suppressed in mice that were treated with low dose of felodipine and irbesartan.
     Conclusions: The results suggest that combination of low dose of felodipine and irbesartan could also inhibit As, and this effect maybe partly relates to the inhibition of oxidative stress and inflammatory cytokines expression.
引文
1 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med, 1999, 340: 115-26.
    2 Schulze PC, Lee RT. Oxidative stress and atherosclerosis. Curr Atheroscler Rep, 2005,7:242-8.
    3 Libby P. Inflammation in atherosclerosis. Nature, 2002,420:868-74.
    4 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation, 2002,105:1135-43.
    5 Davi G, Falco A. Oxidant stress, inflammation and atherogenesis. Lupus, 2005,14:760-4.
    6 Binder CJ, Chang MK, Shaw PX, et al. Innate and acquired immunity in atherogenesis. Nat Med, 2002,8:1218-26.
    7 Hansson GK, Libby P, Schonbeck U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res, 2002,91:281-91.
    8 Getz GS. Thematic review series: the immune system and atherogenesis. Immune function in atherogenesis. J Lipid Res, 2005,46:1-10.
    9 Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004,84:1381-478.
    10 Yung LM, Leung FP, Yao X, et al. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets, 2006,6:1-19.
    11 Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension, 2003,42:1075-81.
    12 Saini HK, Xu YJ, Arneja AS, et al. Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med, 2005,9:818-39.
    13 Dendorfer A, Dominiak P, Schunkert H. ACE inhibitors and angiotensin II receptor antagonists. Handb Exp Pharmacol, 2005:407-42.
    14 Mancini GB. Antiatherosclerotic effects of calcium channel blockers. Prog Cardiovasc Dis, 2002,45:1-20.
    15 Bertrand ME. Provision of cardiovascular protection by ACE inhibitors: a review of recent trials. Curr Med Res Opin, 2004,20:1559-69.
    16 Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 1992,258:468-71.
    1 Shishehbor MH, Hazen SL. Inflammatory and oxidative markers in atherosclerosis: relationship to outcome. Curr Atheroscler Rep, 2004,6:243-50.
    2 Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology, 2006,13: 129-42.
    3 Libby P. Inflammation in atherosclerosis. Nature, 2002,420:868-74.
    4 Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol, 2004,24:23-8.
    5 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation, 2002,105:1135-43.
    6 Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis. J Clin Invest, 2001,107:255-64.
    7 Pollaud-Cherion C, Vandaele J, Quartulli F, et al. Involvement of calcium and arachidonate metabolism in acetylated-low-density-lipoprotein-stimulated tumor- necrosis-factor-alpha production by rat peritoneal macrophages. Eur J Biochem, 1998,253:345-53.
    8 Li Q, Tallant A, Cathcart MK. Dual Ca2+ requirement for optimal lipid peroxidation of low density lipoprotein by activated human monocytes. J Clin Invest, 1993,91: 1499-506.
    9 Mancini GB. Antiatherosclerotic effects of calcium channel blockers. Prog Cardiovasc Dis, 2002,45:1-20.
    10 Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 1992,258:468-71.
    11 Iwai M, Chen R, Li Z, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation, 2005,112:1636-43.
    12 Paigen B, Morrow A, Holmes PA, et al. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis, 1987,68:231-40.
    13 Ni W, Egashira K, Kitamoto S, et al. New anti-monocyte chemoattractant protein-1gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2001,103:2096-101.
    14 Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2002,106:2700-6.
    15 Chen Y, Arrigo AP, Currie RW. Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock?. Am J Physiol Heart Circ Physiol, 2004,287:H1104-14.
    16 Li Z, Iwai M, Wu L, et al. Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension, 2004,44:758-63.
    17 Uetake Y, Shimosawa T. Antiatherosclerotic hopes of calcium channel blockers. Clin Calcium, 2005,15:1689-94.
    18 Simon A, Levenson J. Effects of calcium channel blockers on atherosclerosis: new insights. Acta Cardiol, 2002,57:249-55.
    19 Cristofori P, Lanzoni A, Quartaroli M, et al. The calcium-channel blocker lacidipine reduces the development of atherosclerotic lesions in the apoE-deficient mouse. J Hypertens, 2000,18:1429-36.
    20 Candido R, Allen TJ, Lassila M, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation, 2004,109:1536-42.
    21 Jinno T, Iwai M, Li Z, et al. Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. Hypertension, 2004,43:263-9.
    22 Jeong HJ, Hong SH, Lee DJ, et al. Role of Ca(2+) on TNF-alpha and IL-6 secretion from RBL-2H3 mast cells. Cell Signal, 2002,14:633-9.
    23 Kempe S, Kestler H, Lasar A, et al. NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res, 2005,33:5308-19.
    24 Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem, 2004,264:85-97.
    25 Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol, 2005,25:29-38.
    26 Sorescu D, Szocs K, Griendling KK. NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc Med, 2001,11:124-31.
    27 Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest, 2001,108:1513-22.
    28 Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res, 2006,98:453-62.
    29 Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res, 2001,88:888-94.
    30 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 2000,86:494-501.
    31 Barter P. The inflammation: lipoprotein cycle. Atheroscler Suppl, 2005,6:15-20.
    32 Cook-Mills JM. VCAM-1 signals during lymphocyte migration: role of reactive oxygen species. Mol Immunol, 2002,39:499-508.
    33 Branen L, Hovgaard L, Nitulescu M, et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol, 2004,24:2137-42.
    34 Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 2003,23: 656-60.
    35 Elhage R, Clamens S, Besnard S, et al. Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice. Atherosclerosis, 2001,156:315-20.
    36 Monaco C, Paleolog E. Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res, 2004,61:671-82.
    37 de Winther MP, Kanters E, Kraal G, et al. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol, 2005,25:904-14.
    1 Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-74.
    2 Grote K, Drexler H, Schieffer B. Renin-angiotensin system and atherosclerosis. Nephrol Dial Transplant 2004;19:770-73.
    3 Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000;52:11-34.
    4 Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 2005;11:RA155-62.
    5 Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292:C82-97.
    6 Higuchi S, Ohtsu H, Suzuki H, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007;112:417-28.
    7 Dandona P, Dhindsa S, Ghanim H, et al. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007;21:20-27.
    8 Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit 2005;11:RA194-205.
    9 Nickenig G, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part II: AT(1) receptor regulation. Circulation 2002;105:530-36.
    10 Nickenig G, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis. Circulation 2002;105: 393-96.
    11 Iwai M, Chen R, Li Z, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation 2005;112:1636-43.
    12 Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 2002;106:2700-06.
    13 Paigen B, Morrow A, Holmes PA, et al. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 1987;68:231-40.
    14 Ni W, Egashira K, Kitamoto S, et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 2001 ;103:2096-101.
    15 Tsai SH, Liang YC, Lin-Shiau SY, et al. Suppression of TNF-alpha-mediated NFkappaB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells. J Cell Biochem 1999;74:606-15.
    16 Bea F, Kreuzer J, Preusch M, et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:2787-92.
    17 Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 2002;91:406-13.
    18 Chen Y, Arrigo AP, Currie RW. Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock?. Am J Physiol Heart Circ Physiol, 2004,287:H1104-14.
    19 Schubert SY, Neeman I, Resnick N. A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J 2002;16:1931-33.
    20 Saini HK, Xu YJ, Arneja AS, et al. Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med 2005;9:818-39.
    21 Fries R, Bohm M. From risk factors to symptomatic coronary artery disease. Update cardiology 2001/2002--part I. Med Klin (Munich) 2003;98:218-25.
    22 Elisaf M. The treatment of coronary heart disease: an update. Part 1: An overview of the risk factors for cardiovascular disease. Curr Med Res Opin 2001;17:18-26.
    23 Daugherty A, Rateri DL, Lu H, et al. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 2004;110:3849-57.
    24 Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia andarterial lesions in mice lacking apolipoprotein E. Science 1992;258:468-71.
    25 Suzuki J, Iwai M, Mogi M, et al. Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 2006;26:917-21.
    26 Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 2004;264: 85-97.
    27 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494-501.
    28 Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002;40:511-15.
    29 Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 2004;24:23-28.
    30 Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001;88:888-94.
    31 Won SM, Park YH, Kim HJ, et al. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Exp Mol Med 2006;38:525-34.
    32 Chen XL, Tummala PE, Olbrych MT, et al. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952-59.
    33 Schieffer B, Luchtefeld M, Braun S, et al. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000;87:1195 -1201.
    34 Pfitzner E, Kliem S, Baus D, et al. The role of STATs in inflammation and inflammatory diseases. Curr Pharm Des 2004;10:2839-50.
    35 Nam KW, Kim J, Hong JJ, et al. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin inhyperlipidemic mice. Atherosclerosis 2005;180:27-35.
    36 de Winther MP, Kanters E, Kraal G, et al. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005;25:904-14.
    37 Branen L, Hovgaard L, Nitulescu M, et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004;24:2137-42.
    38 Schmieder RE, Hilgers KF, Schlaich MP, et al. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369:1208-19.
    39 Cook-Mills JM. VCAM-1 signals during lymphocyte migration: role of reactive oxygen species. Mol Immunol 2002;39:499-508.
    1 Saini HK, Xu YJ, Arneja AS, et al. Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med, 2005,9:818-39.
    2 Libby P. Inflammation in atherosclerosis. Nature, 2002,420:868-74.
    3 Iwai M, Chen R, Li Z, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation, 2005,112:1636-43.
    4 Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2002,106:2700-6.
    5 Paigen B, Morrow A, Holmes PA, et al. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis, 1987,68:231-40.
    6 Ni W, Egashira K, Kitamoto S, et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2001,103:2096-101.
    7 Tsai SH, Liang YC, Lin-Shiau SY, et al. Suppression of TNFalpha-mediated NF-kappaB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells. J Cell Biochem, 1999,74:606-15.
    8 Chen Y, Arrigo AP, Currie RW. Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock. Am J Physiol Heart Circ Physiol, 2004,287:H1104-14.
    9 Schubert SY, Neeman I, Resnick N. A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J, 2002,16:1931-3.
    10 Mancia G, De Backer G, Dominiczak A, et al. ESH/ESC 2007 Guidelines for the management of arterial hypertension. Rev Esp Cardiol, 2007,60:968.e1-94.
    11 Waeber B. Very-low-dose combination: a first-line choice for the treatment of hypertension. J Hypertens Suppl, 2003,21:S3-10.
    12 Nagahama S, Norimatsu T, Maki T, et al. The effect of combination therapy with an L/N-Type Ca(2+) channel blocker, cilnidipine, and an angiotensin II receptor blockeron the blood pressure and heart rate in Japanese hypertensive patients: an observational study conducted in Japan. Hypertens Res, 2007,30:815-22.
    13 Saito F, Fujita H, Takahashi A, et al. Renoprotective effect and cost-effectiveness of using benidipine, a calcium channel blocker, to lower the dose of angiotensin receptor blocker in hypertensive patients with albuminuria. Hypertens Res, 2007,30:39-47.
    14 Schulze PC, Lee RT. Oxidative stress and atherosclerosis. Curr Atheroscler Rep, 2005,7:242-8.
    15 Mancini GB. Antiatherosclerotic effects of calcium channel blockers. Prog Cardiovasc Dis, 2002,45:1-20.
    16 Uetake Y, Shimosawa T. Antiatherosclerotic hopes of calcium channel blockers. Clin Calcium, 2005,15:1689-94.
    17 Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit, 2005,11:RA155-162.
    18 Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol, 2007,292: C82-97.
    19 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 2000,86:494-501.
    20 Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension, 2002,40:511-5.
    21 Seshiah PN, Weber DS, Rocic P, et al. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res, 2002,91:406-13.
    22 Cook-Mills JM. VCAM-1 signals during lymphocyte migration: role of reactive oxygen species. Mol Immunol, 2002,39:499-508.
    23 Branen L, Hovgaard L, Nitulescu M, et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol, 2004,24:2137-42.
    24 Schmieder RE, Hilgers KF, Schlaich MP, et al. Renin-angiotensin system and cardiovascular risk. Lancet, 2007,369:1208-19.
    1 Schulze PC, Lee RT. Oxidative stress and atherosclerosis. Curr Atheroscler Rep, 2005,7:242-8.
    2 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med, 1999,340:115-26.
    3 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation, 2002,105:1135-43.
    4 Libby P. Inflammation in atherosclerosis. Nature, 2002,420:868-74.
    5 Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest, 2001,107:1255-62.
    6 Lee RT, Yamamoto C, Feng Y, et al. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem, 2001,276:13847-51.
    7 Li M, Zhang Y, Ren H, et al. Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis, 2007,194:348-56.
    8 Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation, 2001,104:365-72.
    9 Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation, 2001,103:1718-20.
    10 Hodis HN, Mack WJ, Krauss RM, et al. Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: clinical aspects. Clin Cardiol, 1999,22:II15-20.
    11 Oorni K, Pentikainen MO, Ala-Korpela M, et al. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J Lipid Res, 2000,41:1703-14.
    12 Steinberg D. Hypercholesterolemia and inflammation in atherogenesis: two sides of the same coin. Mol Nutr Food Res, 2005,49:995-8.
    13 Hazen SL, Hsu FF, Gaut JP, et al. Modification of proteins and lipids by myeloperoxidase. Methods Enzymol, 1999,300:88-105.
    14 Sugiyama S, Okada Y, Sukhova GK, et al. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis andimplications in acute coronary syndromes. Am J Pathol, 2001,158:879-91.
    15 Singh U, Devaraj S. Vitamin E: inflammation and atherosclerosis. Vitam Horm, 2007,76:519-49.
    16 Boos CJ, Lip GY. Elevated high-sensitive C-reactive protein, large arterial stiffness and atherosclerosis: a relationship between inflammation and hypertension. J Hum Hypertens, 2005,19:511-3.
    17 Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit, 2005,11:RA194-205.
    18 Price CL, Knight SC. Advanced glycation: a novel outlook on atherosclerosis. Curr Pharm Des, 2007,13:3681-7.
    19 Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res, 2007,4:84-8.
    20 Ndumele CE, Pradhan AD, Ridker PM. Interrelationships between inflammation, C-reactive protein, and insulin resistance. J Cardiometab Syndr, 2006,1:190-6.
    21 Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA, 1997,277:1775-81.
    22 Konecky N, Malinow MR, Tunick PA, et al. Correlation between plasma homocyst(e)ine and aortic atherosclerosis. Am Heart J, 1997,133:534-40.
    23 Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal, 2007,9:1941-58.
    24 Eldibany MM, Caprini JA. Hyperhomocysteinemia and thrombosis: an overview. Arch Pathol Lab Med, 2007,131:872-84.
    25 Jacobs P, Wood L, Bick R. Homocysteine in vascular disease: an emerging clinical perspective. Cardiovasc J S Afr, 2006,17:135-9.
    26 Guthikonda S, Haynes WG. Homocysteine: role and implications in atherosclerosis. Curr Atheroscler Rep, 2006,8:100-6.
    27 Zhou J, Werstuck GH, Lhotak S, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation, 2004,110:207-13.
    28 Au-Yeung KK, Woo CW, Sung FL, et al. Hyperhomocysteinemia activates nuclearfactor-kappaB in endothelial cells via oxidative stress. Circ Res, 2004,94:28-36.
    29 Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease: is there a link?. Lancet, 1997,350:430-6.
    30 Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology, 2007,50:535-46.
    31 Behle JH, Papapanou PN. Periodontal infections and atherosclerotic vascular disease: an update. Int Dent J, 2006,56:256-62.
    32 Rabczynski M, Adamiec R. Chronic bacterial infection as a risk factor for atherogenesis. The role of heat shock protein. Przegl Lek, 2004,61:102-4.
    33 Kol A, Bourcier T, Lichtman AH, et al. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest, 1999,103:571-7.
    34 Pradhan A. Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders. Nutr Rev, 2007,65:S152-6.
    35 Jiao K, Liu H, Chen J, et al. Roles of plasma interleukin-6 and tumor necrosis factor-alpha and FFA and TG in the development of insulin resistance induced by high-fat diet. Cytokine, 2008.
    36 Pupe A, Moison R, De Haes P, et al. Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-alpha, IL-1alpha, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes. J Invest Dermatol, 2002,118:692-8.
    37 Alizadeh Dehnavi R, de Roos A, Rabelink TJ, et al. Elevated CRP levels are associated with increased carotid atherosclerosis independent of visceral obesity. Atherosclerosis, 2008.
    38 Davi G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA, 2002,288:2008-14.
    39 Davi G, Falco A. Oxidant stress, inflammation and atherogenesis. Lupus, 2005,14:760-4.
    40 Binder CJ, Chang MK, Shaw PX, et al. Innate and acquired immunity in atherogenesis. Nat Med, 2002,8:1218-26.
    41 Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immuneresponse. Nature, 2000,406:782-7.
    42 Faure E, Equils O, Sieling PA, et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem, 2000,275:11058-63.
    43 Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997,386:292-6.
    44 Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med, 2002,8:1235-42.
    45 King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice. Arterioscler Thromb Vasc Biol, 2002,22:456-61.
    46 Hauer AD, Uyttenhove C, de Vos P, et al. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation, 2005,112:1054-62.
    47 Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004,84:1381-478.
    48 Yung LM, Leung FP, Yao X, et al. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets, 2006,6:1-19.
    49 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 2000,86:494-501.
    50 Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem, 2004,264:85-97.
    51 Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol, 2005,25:29-38.
    52 Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest, 2001,108:1513-22.
    53 Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res, 2006,98:453-62.
    54 Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb VascBiol, 2004,24:23-8.
    55 Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res, 2001,88:888-94.
    56 Napoli C, de Nigris F, Williams-Ignarro S, et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide, 2006,15:265-79.
    57 Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond), 2007,113:47-63.
    58 Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol, 2004,24:998-1005.
    59 Bonomini F, Tengattini S, Fabiano A, et al. Atherosclerosis and oxidative stress. Histol Histopathol, 2008,23:381-90.
    60 Schroder K, Vecchione C, Jung O, et al. Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free Radic Biol Med, 2006,41:1353-60.
    61 Shao B, Oda MN, Oram JF, et al. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol, 2006,21:322-8.
    62 Nambi V. The use of myeloperoxidase as a risk marker for atherosclerosis. Curr Atheroscler Rep, 2005,7:127-31.
    63 Victor VM, Rocha M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des, 2007,13:845-63.
    64 Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation, 2002,106:544-9.
    65 Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond), 2005,109:217-26.
    66 Giannotti G, Landmesser U. Endothelial dysfunction as an early sign of atherosclerosis. Herz, 2007,32:568-72.
    67 Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol, 2003,23:168-75.
    68 Thomson MJ, Puntmann V, Kaski JC. Atherosclerosis and oxidant stress: the end ofthe road for antioxidant vitamin treatment. Cardiovasc Drugs Ther, 2007,21:195-210.
    69 Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res, 2006,71:216-25.
    70 Jin ZG, Berk BC. Role of secreted oxidative stress-induced factors (SOXFs) in the pathogenesis of atherosclerosis. Arch Mal Coeur Vaiss, 2004,97:1256-9.
    71 Li J, Su J, Li W, et al. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes. Neurosci Lett, 2003,350:173-7.
    72 Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev, 2004,9:43-51.
    73 Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension, 2003,42:1075-81.
    74 Matsuura E, Kobayashi K, Tabuchi M, et al. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res, 2006,45:466-86.
    75 Galle J, Hansen-Hagge T, Wanner C, et al. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis, 2006,185:219-26.
    76 Kutuk O, Basaga H. Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol Med, 2003,9:549-57.
    77 Collot-Teixeira S, Martin J, McDermott-Roe C, et al. CD36 and macrophages in atherosclerosis. Cardiovasc Res, 2007,75:468-77.
    78 Nicholson AC, Han J, Febbraio M, et al. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci, 2001,947:224-8.
    79 Chisolm GM 3rd, Chai Y. Regulation of cell growth by oxidized LDL. Free Radic Biol Med, 2000,28:1697-707.
    80 Relou IA, Hackeng CM, Akkerman JW, et al. Low-density lipoprotein and its effect on human blood platelets. Cell Mol Life Sci, 2003,60:961-71.
    81 Chen YJ, Wang JS, Chow SE. Resveratrol protects vascular endothelial cell from ox-LDL-induced reduction in antithrombogenic activity. Chin J Physiol, 2007,50:22-8.
    82 Robbesyn F, Salvayre R, Negre-Salvayre A. Dual role of oxidized LDL on the NF-kappaB signaling pathway. Free Radic Res, 2004,38:541-51.
    1 Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 1997,349: 1498-504.
    2 Hopkins PN, Williams RR. A survey of 246 suggested coronary risk factors. Atherosclerosis, 1981,40:1-52.
    3 Kannel WB, Wilson PW. An update on coronary risk factors. Med Clin North Am, 1995,79:951-71.
    4 Gotto AM Jr. Statin therapy: where are we? Where do we go next? Am J Cardiol, 2001,87:13B-18B.
    5 Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002,106:3143-421.
    6 Grundy SM. Alternative approaches to cholesterol-lowering therapy. Am J Cardiol, 2002,90:1135-8.
    7 Li JJ, Zheng X, Li J. Statins may be beneficial for patients with slow coronary flow syndrome due to its anti-inflammatory property. Med Hypotheses, 2007,69:333-7.
    8 Huang Y, Walker KE, Hanley F, et al. Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet. Circulation, 2004,109:97-102.
    9 Saini HK, Arneja AS, Dhalla NS. Role of cholesterol in cardiovascular dysfunction. Can J Cardiol, 2004,20:333-46.
    10 Kawakami A, Yoshida M. Remnant lipoproteins and atherogenesis. J Atheroscler Thromb, 2005,12:73-6.
    11 Gelosa P, Cimino M, Pignieri A, et al. The role of HMG-CoA reductase inhibition in endothelial dysfunction and inflammation. Vasc Health Risk Manag, 2007,3:567-77.
    12 Rudijanto A. The expression and down stream effect of lectin like-oxidized low density lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones, 2007,39:36-43.
    13 Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology, 2006,13: 129-42.
    14 Zineh I. Pharmacogenetics of response to statins. Curr Atheroscler Rep, 2007,9:187-94.
    15 Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med, 1995,333:1301-7.
    16 Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA, 1998,279:1615-22.
    17 Pedersen TR, Kjekshus J, Berg K, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. Atheroscler Suppl, 2004,5:81-7.
    18 Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet, 1994,344:1383-9.
    19 Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med, 1996,335:1001-9.
    20 Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med, 1998,339:1349-57.
    21 Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet, 2003,361:2005-16.
    22 Mascitelli L, Pezzetta F. The PROSPER trial. Lancet, 2003,361:427; author reply 428.
    23 Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA, 2002,288:2998-3007.
    24 Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet,2003,361:1149-58.
    25 Rouleau J. Improved outcome after acute coronary syndromes with an intensive versus standard lipid-lowering regimen: results from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) trial. Am J Med, 2005,118 Suppl 12A:28-35.
    26 Mays ME, Dujovne CA. Pleiotropic effects: should statins be considered an essential component in the treatment of dyslipidemia?. Curr Atheroscler Rep, 2008,10:45-52.
    27 Robinson JG. Models for describing relations among the various statin drugs, low-density lipoprotein cholesterol lowering, pleiotropic effects, and cardiovascular risk. Am J Cardiol, 2008,101:1009-15.
    28 Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med, 2008,14:37-44.
    29 Jasinska M, Owczarek J, Orszulak-Michalak D. Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep, 2007,59:483-99.
    30 Brinton EA. Does the addition of fibrates to statin therapy have a favorable risk to benefit ratio?. Curr Atheroscler Rep, 2008,10:25-32.
    31 Usman M, Peter R. Fibrate therapy: safety considerations. Curr Opin Lipidol, 2007,18:702-4.
    32 Lipka LJ. Ezetimibe: a first-in-class, novel cholesterol absorption inhibitor. Cardiovasc Drug Rev, 2003,21:293-312.
    33 Athyros VG, Tziomalos K, Kakafika AI, et al. Effectiveness of ezetimibe alone or in combination with twice a week Atorvastatin (10 mg) for statin intolerant high-risk patients. Am J Cardiol, 2008,101:483-5.
    34 Davidson MH, Toth PP. Comparative effects of lipid-lowering therapies. Prog Cardiovasc Dis, 2004,47:73-104.
    35 El Harchaoui K, van der Steeg WA, Stroes ES, et al. The role of CETP inhibition in dyslipidemia. Curr Atheroscler Rep, 2007,9:125-33.
    36 Shah PK. Inhibition of CETP as a novel therapeutic strategy for reducing the risk of atherosclerotic disease. Eur Heart J, 2007,28:5-12.
    37 Perez-Castrillon JL, Duenas-Laita A. New approaches to atherosclerotic cardiovascular disease. the potentialities of torcetrapib. Recent Patents Cardiovasc Drug Discov, 2006,1:109-14.
    38 Kuivenhoven JA, de Grooth GJ, Kawamura H, et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am J Cardiol, 2005,95:1085-8.
    39 Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med, 2007,357:2109-22.
    40 Komori T. CETi-1. AVANT. Curr Opin Investig Drugs, 2004,5:334-8.
    41 Saini HK, Xu YJ, Arneja AS, et al. Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med, 2005,9:818-39.
    42 Llaverias G, Laguna JC, Alegret M. Pharmacology of the ACAT inhibitor avasimibe (CI-1011). Cardiovasc Drug Rev, 2003,21:33-50.
    43 Terasaka N, Miyazaki A, Kasanuki N, et al. ACAT inhibitor pactimibe sulfate (CS-505) reduces and stabilizes atherosclerotic lesions by cholesterol-lowering and direct effects in apolipoprotein E-deficient mice. Atherosclerosis, 2007,190:239-47.
    44 Raal FJ, Marais AD, Klepack E, et al. Avasimibe, an ACAT inhibitor, enhances the lipid lowering effect of atorvastatin in subjects with homozygous familial hypercholesterolemia. Atherosclerosis, 2003,171:273-9.
    45 Srivastava RA, Jahagirdar R, Azhar S, et al. Peroxisome proliferator-activated receptor-alpha selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Mol Cell Biochem, 2006,285:35-50.
    46 Izzat NN, Deshazer ME, Loose-Mitchell DS. New molecular targets for cholesterol- lowering therapy. J Pharmacol Exp Ther, 2000,293:315-20.
    47 Kitayama K, Nakai D, Kono K, et al. Novel non-systemic inhibitor of ileal apical Na+-dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur J Pharmacol, 2006,539:89-98.
    48 Kramer W, Glombik H. Bile acid reabsorption inhibitors (BARI): novel hypolipidemic drugs. Curr Med Chem, 2006,13:997-1016.
    49 Marcovina SM, Koschinsky ML. Evaluation of lipoprotein(a) as a prothrombotic factor: progress from bench to bedside. Curr Opin Lipidol, 2003,14:361-6.
    50 Nakamura A, Harada N, Takahashi A, et al. NO-1886, a lipoprotein lipase activator, attenuates vascular smooth muscle contraction in rat aorta. Eur J Pharmacol, 2007,554:183-90.
    51 Cai M, Yin W, Li Q, et al. Effects of NO-1886 on inflammation-associated cytokines in high-fat/high-sucrose/high-cholesterol diet-fed miniature pigs. Eur J Pharmacol, 2006,540:139-46.
    52 Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev, 2004,84:1381-478.
    53 Yung LM, Leung FP, Yao X, et al. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets, 2006,6:1-19.
    54 Cherubini A, Vigna GB, Zuliani G, et al. Role of antioxidants in atherosclerosis: epidemiological and clinical update. Curr Pharm Des, 2005,11:2017-32.
    55 Thomson MJ, Puntmann V, Kaski JC. Atherosclerosis and oxidant stress: the end of the road for antioxidant vitamin treatment?. Cardiovasc Drugs Ther, 2007,21:195-210.
    56 Salonen RM, Nyyssonen K, Kaikkonen J, et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation, 2003,107: 947-53.
    57 Choy K, Beck K, Png FY, et al. Processes involved in the site-specific effect of probucol on atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol, 2005,25:1684-90.
    58 Meng CQ. Inflammation in atherosclerosis: new opportunities for drug discovery. Mini Rev Med Chem, 2005,5:33-40.
    59 Itoh N, Yoshida Y, Hayakawa M, et al. Inhibition of plasma lipid peroxidation by anti-atherogenic antioxidant BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2, 2-dipentylbenzofuran. Biochem Pharmacol, 2004,68:813-8.
    60 Patel TN, Shishehbor MH, Bhatt DL. A review of high-dose statin therapy: targeting cholesterol and inflammation in atherosclerosis. Eur Heart J, 2007,28:664-72.
    61 Dendorfer A, Dominiak P, Schunkert H. ACE inhibitors and angiotensin II receptor antagonists. Handb Exp Pharmacol, 2005:407-42.
    62 Yoshii T, Iwai M, Li Z, et al. Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions. Hypertens Res, 2006, 29:457-66.
    63 Li M, Zhang Y, Ren H, et al. Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis, 2007, 194:348-56.
    64 Blaschke F, Spanheimer R, Khan M, et al. Vascular effects of TZDs: new implications. Vascul Pharmacol, 2006,45:3-18.
    65 Wasserman MA, Sundell CL, Kunsch C, et al. Chemistry and pharmacology of vascular protectants: a novel approach to the treatment of atherosclerosis and coronary artery disease. Am J Cardiol, 2003,91:34A-40A.
    66 Kunsch C, Luchoomun J, Grey JY, et al. Selective inhibition of endothelial and monocyte redox-sensitive genes by AGI-1067: a novel antioxidant and anti-inflammatory agent. J Pharmacol Exp Ther, 2004,308:820-9.
    67 Serebruany VL, Malinin A, Eisert C, et al. AGI-1067, a novel vascular protectant, anti-inflammatory drug and mild antiplatelet agent for treatment of atherosclerosis. Expert Rev Cardiovasc Ther, 2007,5:635-41.
    68 Sundell CL, Somers PK, Meng CQ, et al. AGI-1067: a multifunctional phenolic antioxidant, lipid modulator, anti-inflammatory and antiatherosclerotic agent. J Pharmacol Exp Ther, 2003,305:1116-23.
    69 Cayatte AJ, Rupin A, Oliver-Krasinski J, et al. S17834, a new inhibitor of cell adhesion and atherosclerosis that targets nadph oxidase. Arterioscler Thromb Vasc Biol, 2001,21:1577-84.
    70 Higuchi S, Ohtsu H, Suzuki H, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond), 2007,112:417-28.
    71 Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit, 2005,11:RA155-162.
    72 Bertrand ME. Provision of cardiovascular protection by ACE inhibitors: a review of recent trials. Curr Med Res Opin, 2004,20:1559-69.
    73 Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med, 2000,342: 145-53.
    74 Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med, 2001,345:1667-75.
    75 Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med, 2003,349:1893-906.
    76 Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 2001,345:861-9.
    77 Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet, 2002,359:995-1003.
    78 Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet, 2003,362:759-66.
    79 Tulenko TN, Laury-Kleintop L, Walter MF, et al. Cholesterol, calcium and atherosclerosis: is there a role for calcium channel blockers in atheroprotection?. Int J Cardiol, 1997,62 Suppl 2:S55-66.
    80 Pollaud-Cherion C, Vandaele J, Quartulli F, et al. Involvement of calcium and arachidonate metabolism in acetylated-low-density-lipoprotein-stimulated tumor- necrosis-factor-alpha production by rat peritoneal macrophages. Eur J Biochem, 1998,253:345-53.
    81 Simon A, Levenson J. Effects of calcium channel blockers on atherosclerosis: new insights. Acta Cardiol, 2002,57:249-55.
    82 Mancini GB. Antiatherosclerotic effects of calcium channel blockers. Prog Cardiovasc Dis, 2002,45:1-20.
    83 Candido R, Allen TJ, Lassila M, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation, 2004,109:1536-42.
    84 Jinno T, Iwai M, Li Z, et al. Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. Hypertension, 2004,43:263-9.
    85 Massberg S, Schulz C, Gawaz M. Role of platelets in the pathophysiology of acute coronary syndrome. Semin Vasc Med, 2003,3:147-62.
    86 Patrono C, Garcia Rodriguez LA, Landolfi R, et al. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med, 2005,353:2373-83.
    87 Tiran A, Gruber HJ, Graier WF, et al. Aspirin inhibits Chlamydia pneumoniae-induced nuclear factor-kappa B activation, cytokine expression, and bacterial development in human endothelial cells. Arterioscler Thromb Vasc Biol, 2002,22:1075-80.
    88 Rott D, Zhu J, Burnett MS, et al. Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice. J Am Coll Cardiol, 2003,41:1812-9.
    89 Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med, 2005,352: 1092-102.
    90 Di Virgilio F, Solini A. P2 receptors: new potential players in atherosclerosis. Br J Pharmacol, 2002,135:831-42.
    91 Jacobson AK. Platelet ADP receptor antagonists: ticlopidine and clopidogrel. Best Pract Res Clin Haematol, 2004,17:55-64.
    92 Bhatt DL, Bertrand ME, Berger PB, et al. Meta-analysis of randomized and registry comparisons of ticlopidine with clopidogrel after stenting. J Am Coll Cardiol, 2002,39: 9-14.
    93 Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med, 2001,345:494-502.
    94 Nguyen TA, Diodati JG, Pharand C. Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol, 2005,45:1157-64.
    95 Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med, 1994,330:956-61.
    96 Randomised placebo-controlled trial of effect of eptifibatide on complications of percutaneous coronary intervention: IMPACT-II. Integrilin to Minimise Platelet Aggregation and Coronary Thrombosis-II. Lancet, 1997,349:1422-8.
    97 Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade. Lancet, 1998,352:87-92.
    98 Randomised placebo-controlled trial of abciximab before and during coronary intervention in refractory unstable angina: the CAPTURE Study. Lancet, 1997,349:1429-35.
    99 Effects of platelet glycoprotein IIb/IIIa blockade with tirofiban on adverse cardiac events in patients with unstable angina or acute myocardial infarction undergoing coronary angioplasty. The RESTORE Investigators. Randomized Efficacy Study of Tirofiban for Outcomes and REstenosis. Circulation, 1997,96:1445-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700