大尺度水文模型及其与陆面模式的耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了确定大尺度区域水文循环及能量收支、能够根据GCM给出的气候预测,研究和解决变化环境中的水文水资源问题,评估和监测大流域的径流过程和水资源量的动态变化规律,需要研制和建立大尺度分布式水文模型。气候变化中陆面水文过程既是重要的参与者,同时也受到这些变化的影响。对气候模型中陆面水文过程的了解和模拟能力,依然是气候变化可靠预测的前提。目前气候模式中对水文过程处理相当粗糙,尤其是对径流作过分简单的处理。为了改善全球环流模型中对陆面水文过程的描述,提高气候模型的模拟预测精度,有必要实现大尺度水文模型与气候模型的联结耦合。
     为了研究变化环境中的水文水资源问题以及改善陆面模式中对水文过程的描述,以提高GCM的模拟预测精度,本文主要进行了以下研究内容:
     (1)分布式大尺度水文模型的研制及应用。以新安江流域水文模型为基础,建立了以网格为计算单元适合大尺度应用、时间尺度为月的分布式水文模型。所建模型主要供评价气候变化对水文水资源影响之用,同时也为陆气耦合所要求的水文模式作初步探讨。研究区域为淮河流域27万平方公里,并对该流域1953-1985年的逐月流量过程进行了模拟计算,分析了假定的气候变化情景对淮河流域年径流的影响。
     (2)新安江网格化月水文模型的改进。由于计算时段加长,雨强均化,导致原新安江月水文模型在淮河流域的应用中,网格径流深出现了大量不合理的零值。本文提出了改进办法,通过对模型应用结果的分析,说明改进后的新安江月水文模型,其产流计算更加合理。针对研究过程中所遇到的实际问题,本文提出了两种解集方法,将月降雨量解集到日。然后以时间步长为日,运行新安江模型,用模拟的月径流过程验证了解集方法的合理性。
     (3)水文模型与陆面模式的耦合研究。这里耦合的含义是指,把水文学中的产汇流概念和理论用于陆面模式中以改善以往陆面模式对水文过程描述的不足。而已包含在气候模型中的陆面模式正是水文模型与气候模型耦合的共同界面。本文在已建立的陆面模式AVIM中,引入产汇流模型,模拟了内蒙古锡林河流域1991-1994年的土壤温湿状况、地表通量和径流量。并对耦合水文模型的陆面模式做了敏感性试验,结果表明,陆面模式中径流的描述合理与否,将
    
     @8
    一
    对土壤温湿及地表通量产生显著影响。
Developing and establishing Macro-scale distributed hydrological model are required in order to make certain the regional water and energy cycle, study and resolve the hydrology and water resources problems under the changing environment according to the climatic prediction of GCM.
    As a branch of hydrologic cycle, land-surface hydrologic processes are nearly relative to atmospheric circle by water and energy exchange between land-surface and atmosphere. Land-surface hydrologic processes are not only the main participants in climate change but are effected by the change. The capacity of understanding and simulating the land-surface hydrological processes in climatic model is the premise to accurate climate prediction. The parameterization of land-surface hydrological processes in present climatic model is quite coarse, and especially the treatment of runoff is too simple. It is needed that the coupling between Macro-scale hydrological model and climatic model for improving the parameterization of land-surface hydrological processes in GCM and the accuracy of GCM prediction.
    The main contents of research work in this paper are as follows:
    (1) The development and application of the Macro-scale distributed hydrological model. The Xin'anjiang Model is used as the basic model to develop a monthly grid-based distributed hydrological model for Macro-scale geographic domain. The model is mainly for assessing the effects of climate change on hydrology and water resources. The Huaihe River Basin with the area of 270,000 km2 is selected as the research area. The monthly discharge from 1953 through 1985 is simulated. And the applications have been performed to simulate the effects of climate change on the water resources of Huaihe River Basin.
    (2) The improvement of grid-based monthly hydrological model. Due to the increase of time interval and decrease of precipitation intensity within a month, no monthly runoff appears in some gridded cells as the Xin'anjiang monthly hydrological model is applied to the Huaihe River Basin. An improved modification in the model is described. As a result, the modified model performs more reasonably in runoff
    
    
    
    
    production. Two methods of downscaling of monthly precipitation to daily resolution are considered and the model results are compared. The two methods are validated by running the Xin'anjiang model at a daily time step from the monthly data, and the model outputs are more accurate than the monthly hydrological model.
    (3) The coupling between hydrological model and land surface processes model. The coupling here means that the conception and philosophy of runoff generation and routing scheme in hydrology are introduced to land surface model. The land surface model, which has been coupled to GCM, is the common interface for the coupling between hydrological model and climatic model. The treatment of hydrological processes in land surface scheme AVTM is too rough, and runoff is simply an excess of precipitation over evapotranspiration. The parameterization of runoff generation in AVIM is improved. To represent the heterogeneity of topography, vegetation surface cover and soils, the "storage capacity distribution curve" in the Xin'anjiang model is included in AVIM. In order to evaluate the surface water budgets of AVIM and to evaluate the ability to simulate runoff, the implementation of AVIM to Xilinhe drainage basin (in Mongolia) and daily streamflow simulations from the year 1991 to 1994 are presented. The results of sensitive experiments indicate that runoff will directly affect the change of soil moisture states, thus affect sensible and latent heat fluxes and other energy terms.
引文
1. Houghton, J.H. Global Warming. Lion Publishing, 1994
    2. 孙成权等,中国海冰研究;海洋预报,1998. 11
    3. IPCC 第二次评估报告,1995
    4. Ye Ruquiu, Research Activities Related to Global Change in China, Asia-Pacific Seminar on Global Change Research Cooperation, 1992. 12
    5. Lee.J. Discussion: The Education of Hydrologists. Hydrol Sci J. 1992,37(3) , 285-291
    6. Shuttleworth,W.J.,水文学在全球科学中的作用,IAHS,1992, Vol.4 No 2
    7. Wood, E.F., Glogal scale hydrology: Advance in land surface modeling, U.S. Natl. Rep.Int. Union Geod. Geophys. 1987-1990. Rev. Geophys. 1991, 29,193-201
    8. Becker, A., Criteria for a hydrologically sound structuring of large scale land surface process models. In: Advance in Theoretical Hydrology, 1992
    9. VorOsmarty, C.J.,Moore,B.,Grace,A.L., et al., Continental scale models of water balance and fluvial transport: application to South America, Global Biogeochem. Cycles 1989,3,241-256
    10. Amell, N.W, A simple water balance model for the simulation of streamflow over a large geophysical domain. J.Hydrol. 1999, 217,314-355
    11. Frakes, B. and Zhongbo Yu, An evaluation of two hydfologic models for climate change scenarios, Journal of the American Water Resources Association, 1999, 35(6) ,1351-1363
    12. Refsgaard, J.C. and Jesper Knudsen, Operational validation and intercomparison of different types of hydrological models, Water Resour.Res. 1999, 32(7) , 2189-2202
    13. Beven, K., Change ideas in hydrology-the case of physically based models. J.Hydrol.1989, 105,157-172
    14. Grayson,R.B., Physically Based hydrologic modeling 2, Is the concept realistic. Water Resour.Res, 1992, 26(10) , 2659-2666
    
    
    15. Smith, T.E, D.R.,Goodrich,D.A. etc., Comment on "Physically based modeling,2,Is the concept realistic?" by R.B.Grayson, I.D.More and T.A.Mchabon. Water Res our. Res. 1994, 30(3) , 851-854
    16. Abbott, M.B., etc., An introduction to the European Hydrological System-System Hydrological European "SHE", 1: History and philosophy of a physically-based distributed modeling system. J.Hydrol. 1996, 87,45-59
    17. Sajikumar, N., B.S.Thandaveswava, A non-linear rainfall-runoff model using an artificial neural network, J. Hydro. 1999, 216, 32-55
    18. Hsu, K.L., Hoshin, V.G., Soroosh,S., Artificial neural network modeling of rainfall-runoff process. Water Resour.Res. 1995, 31(10) , 2517-2530
    19. 刘新仁.多重尺度系列化水文模型研究,河海大学学报,1997,3(25) ,7-14
    20. Kite,G.W,U.haberlandt, Atmospheric model data for macroscale hydrology. J.Hydrol.217, 1999, 303-313
    21. Bergstrom, S., L.Phil Graham, On the scale problem in hydrological modeling J.Hydrol. 1998,211,253-265
    22. Xu Chongyu, Climate change and hydrologic models: a review of existing gaps and recent research developments. Water Resources Management, 1999, 13,369-382
    23. Kite, G.W., The SLURP model. In: In:Singh,V.p.,(ED), Compute Models of Water-shed Hydrology, Water Resources Publications, Highlands Ranch. Co.USA, 1995,521-561
    24. Haberlandt and G.W.Kite, Estimation of daily space-time precipitation series for macroscale hydrological modeling. Hydrol.Proc. 1998, 12, 1419-1432
    25. Kite,G.W., Simulating Columbia river flow with data from regional-scale climate models. Water Resour.Res. 1997, 33(6) ,1275-1285
    26. Kite,G.W.,Dalton, A., Dion, K., Simulation of streamflow in a macroscale watershed using general circulation model data. Water Resour.Res. 1994, 30(5) , 1547-1559
    27. Bergstrom, s., The HBV model. In:Singh,V.p.,(ED), Compute Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch.Co.USA, 1995,
    
    443-476
    28. Lindstrom,G.,etc., Development and test of the distributed HBV-96 hydrological model. J.Hydrol. 1997, 201, 272-288
    29. Vehvilainen and Lohvansuu, J., The effect of climate change on discharges and snow cover in Finland. Hydrol.Sci.J. 1991, 36,109-121
    30. Moore,R.J., The probability-distributed principle and runoff production at point and basin scales. Hydro.Sci.J. 1985, 30, 273-297
    31. Reynare, N.S., etc., The derivation of a runoff grid for southern Africa for climate change impact analyses. In: FRIEND'97-Regional Hydrology: Concepts and models for sustainable water resources development. International Association of Hydrological Sciences. Publ. 1997, 246, 23-30
    32. WPA van Deursen, Geographical Information Systems and Dynamic Models, PhD Thesis of Physical Geography, University of Utrecht, 1995
    33. 戴永久,陆面过程模式及其与GCM耦合模拟研究,中国科学院大气物理 研究所博士论文,1995
    34. Manabe, S., Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the earth's surface. Mon. Weath. Rev. 1969, 97, 739-805
    35. Dickinson, R.E., Biosphere Atmosphere Transfer scheme (BATs) for the NCAR community climate model. NCAR/TN-275+STR, 1986
    36. Sellers, P.J., Mintz, Y., etc., A simp;e biosphere model(SiB) for use within general circulation models. J.Atmos. Sci. 1986(43) , 505-531
    37. Henderson-Sellers,A.,Yang,Z.L.,Dickinson,R.E.,The project for intercom-pararison of land-surface parameterization schemes. Bull.Am.Meteou.Soc. 1993, 74,1335-1350
    38. Henderson-Sellers.A., Pitman, A.J., Love, P.K., et al., The project for intercomparison of land-surface parameterization schemes(PILPS): Phases 2 and 3. Bull.Am.Meteou.Soc. 1995, 94, 489-503
    39. Bonan,G.B., A Land Surface Model(LSM Version 1. 0) for ecological, hydrological, and atmospheric studies: technical description and user's guide, NCAR Technical Note/TN-417+STR, Boulder, Colorado, 1996
    40. Colello,G.D. et al., Modeling of energy, water and CO2 flux in a temperature
    
    grassland ecosystem with SiB2: May-October 1987, J.Atm.Sci.,1998, 5,1141-1169
    41. 季劲钧,余莉,地表面物理过程与生物地球化学过程耦合反馈机理的模拟 研究,大气科学 ,1999, Vol.23, No.4 , 339-448
    42. Milly,P.C.D., A refinement of the combination equations for evaporation. Surv. Geophys., 1991, 12, 145-154
    43. Pitman,A.J., Yang, Z.L.,and Henderson-Sellers,A., Description of bare essentials of surface transfer for the Bureau of Meteorology Research Centre. AGCM Res.Rep., 1991, 32,117pp
    44. Mihailovic,D.T., Description of a land-air parameterization scheme(LAPS), Global and Planetary Change. 1996, 13,206-215
    45. Mihailovic,D.T., Description of a land-air parameterization scheme(LAPS), Global and Planetary Change. 1996, 13,206-215
    46. Verseghy, D.L., ClASS-a Canadian land surface scheme for GCMs, I : Soil model. Int. J. Climatol., 1991,11, 111-133
    47. Verseghy, D.L., McFarlane, N.A., Lazare, M., ClASS-a Canadian land surface scheme for GCMs, II: Vegetation model and coupled runs.Int. J. Climatol., 1993,13,347-370
    48. Wetzel,P.J., Boone, A., A Parameterization for Land-Atmosphere-Cloud-Exchange(PLACE): Documentation and testing of a detailed process model of the partly cloudy boundary layer over heterogeneous land. J. Climate. 1995, 8, 1970-1837
    49. Xue, Y., Sellers, P.J., Kinter, J.L., et al., A simplified biosphere model for global climate studies. J. Climate, 1991, 4, 345-364
    50. Ducoudre, N.I., Laval, K., Perrier, A., SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD
    51. Penman,H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London. Ser. A, 1948, 193, 120-145
    52. Kowalczyk, E.A., Garratt, J.R., Krummel, P.B., A soil-canopy scheme for use in a numerical model of the atmosphere-ID stand-alone model. CSIRO, Division of Atmospheric Research Tech. Paper 1991, 23, 56pp(Australia)
    
    
    53. Running, S.W., Hunt jr., E.R., Generalization of a forest ecosystem process model for other biomes, BIOME-BGC and an application for global-scale models. In: J.R. Ehrlinger and C. Fields(Editors), Scaling Physiological Processes: Leaf to Globe. Academic Press, New York, 1993
    54. Wood, E.F., Lettenmaier, D.P., Zartarian, V.G., A land surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. 1992, 97(D3) , 2717-2728
    55. Liang, X., etc., A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 1994, 99(D3) , 14415-14428
    56. Parton, W.J., Scurlock,J.M.W.O, Ojima, D.S., et al., Observations and modelling of biomass and soil organic matter dynamics for the grassland biome world-wide. Global Biogeochem. Cycles, 1993, 7,785-809
    57. Priestley, C.H.B. and Taylor, R.J. . On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev., 1972, 100, 81-92,
    58. Shuttleworth, W.J.,Evaporation, In: Handbook of Hydrology, chap.4, edited by D.R. Maidment, McGraw-Hill, New York, 1993
    59. Haxeltine, A., Prentice, I.C., Creswell, I.D., Use of a coupled carbon and water flux model to predict vegetation structure: An Australian case study(mauscript available from armors), 1993
    60. Deardorff, J.W., A parameterization of the planetary boundary layer for use in general circulation models, Mon. Wea.Rev., 1978, 100, 93-106
    61. Mahfouf,J.F.,et al, Analysis of transpiration results from the RICE and PILPS Workshop. Global and Planetary Change 1996, 13, 73-88
    62. Wetzel, P.J., Liang, X., Irannejad, P., et al., Modeling vadose zone liquid water fluxes: Infiltration, runoff, drainage, interflow, Global and Planetary Change, 1996,13,57-71
    63. Clapp,R.B. and G.M.Homberger, Empirical equation for some soil hydraulic properties. Water Resour.Res., 1978, 14,604-606
    64. Yang,Z.L and R.E.Dickinson, Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its
    
    performance. Global and Planetary Change, 1996, 13,117-134
    65. Boone,A. and Peter J.Weetzel, Issues related to low resolution modeling of soil moisture: experience with the PLACE model. Global and Planetary Change. 1996, 13,161-181
    66. Ji Jinjun and Hu Yuchun, A simple land surface process model for use in climate study. Ada Meteor. Sinica, 1989, 3, 344-353
    67. 赵人俊,流域水文模拟,水利电力出版社,1984
    68. Franchini,M. And Pacciani,M., Comparative analysis of several conceptual rainfall runoff models. J.Hydrol. 1991, 122, 161-219
    69. Todini, E.,The ARNO rainfall-runoff model, J.Hydrol. 1996, 175, 339-382
    70. Dumenil, L. and Todini, A rainfall-runoff scheme for use in the Hamburg climate model. In: Kane,J.P.(Editor) Advance in theoretical hydrology,1992
    71. Noilhan,J., J.F.Mahfouf, The ISBA land surface parameterisation scheme, Global and Planetary Change. 1996, 13,145-159
    72. Mengelkamp,H.T. et al, SEWAB-a parameterization of the Surface and Water Balance for atmospheric and hydrologic models. Advances in Water Resources 1999,23,165-175
    73. Chen, T.H. etc., Cabauw experimental results from the project for Inter comparison of Land Surface Parameterization Schemes (PILPS). J. Climate. 1997, 10,1172-1193
    74. Shao,Y. And A.Henderson-Sellers, Validation of soil moisture simulation in land surface parameterisation schemes with HAPEX data, Global and Planetary Change,l996, 13, 11-46
    75. Lohmann,D.,D.P.Lettenmaier, X.Liang et al., The project for mtercomparison of Land-surface Parameterization Schemes(PILPS) phase 2(c) Red-Arkansas River basin experiment:3. Spatial and temporal analysis of water fluxes. Global and Planetary Change 1998,19, 161-179
    76. Nijssen,B. and Lettenmaier,D.P., Streamflow simulation for continental-scale river basins. Water Resour.Res. 1997, 33(4) , 711-724
    77. Jolley and Weater, The introduction of runoff routing into large-scale hydrological models. Hydrol. Proc. 1997, 11,1917-1926
    
    
    78. Liston, G.E., Sud, Y.C. and Wood, E.F., Evaluation GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: application to the Mississippi basin. J. Appl. Meteorol. 1994, 33, 394-405
    79. Miller, J.r, Russell, G.L.& Caliri, G., Continental-scale river flow in climate models. J.Climate. 1994, 7, 914-928
    80. Lohmann,D.&E.Raschke, Regional scale hydrology: I .Formulation of the VIC-2L model coupled to a routing model. Hydrol.Sci.J. 1998, 43(1) ,131-141
    81. Abdulla, F.A.Lettenmaier, D.P, Wood et al., Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red river basin. J.Geophys.Res. 1996, 101-D3, 7449-7459
    82. Schaake, J.C.,Koren, V.I., Duan.Q.Y, Simple water balance model for estimating runoff at different spatial and temporal scales. J.Geophys.Res. 1996,101(D3) , 7461-7475
    83. Mengelkamp,H.T. et al, Hydrological processes in the land-surface scheme SEWAB linked to a horizontal routing scheme. Proceedings of Workshop on Flood Forecasting, 6-8 November, 2000,Beijing
    84. Habets, F.J.Noilhan etc., The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area Part I : Model and database. J. Hydrol. 1999, 217,75-96
    85. Gleick,P.H., The development and testing of a water balance model for climate impact assessment: modeling the Sacramento basin. Water Resour.Res., 1987, 23(6) , 1049-1061
    86. Gleick.P.H., Methods for evaluating the regional hydrologic impacts of global climatic changes. J. Hydrol., 1986, 88, 97-116
    87. Arnell, N.W., Factors controlling the effects of climate change on river flow regimes in a humid temperate environment. J. Hydrol. 1992, 132, 321-342
    88. Xu, C-Y., Seibert, J., and Halldin, S., Regional water balance modeling in the NOPEX area-development and application of monthly water balance models. J.Hydrol., 1996a, 180,211-236
    89. 王国庆,王云章,黄河中游分布式水资源评价模型研究,黄河科研,1998 (1)
    
    
    90.熊立华、郭生练、付小平、王渺林,两参数月水量平衡模型的研制及其应用,水科学进展,No.7(增刊),1996
    91.刘新仁,淮河流域大尺度水文模型研究---1.流域水文月模型,水文科技信息,1993,10(3,4),36-42
    92.郝振纯等,陆气耦合水文模式研究,淮河流域能量与水分循环研究(一),1999
    93.夏自强,自然地理信息与确定性水文模型参数的关系分析,河海大学学报,1997
    94.赵承普,中国江河防洪丛书-淮河卷,淮河水利委员会,1996
    95. Ji Jinjun, A climate-vegetation interaction model: simulating physical and biological processes at the surface, Journal of Biogeography, 1995, 22, 445-451
    96.吕建华,区域性季节和年际尺度大气—植被相互作用的模拟研究,中国科学院大气物理研究所博士论文,1999
    97.严中伟、季劲钧,陆面过程模式中积雪过程的参数化及初步试验,高原气象,1995(14),415-424
    98. Henderson-sellers, A. Soil moisture: A critical focus for global change studies. Global and Planetary Change. 1996, 12, 3-9
    99.姜卉芳,杨秀松,新疆重点河流日流量模型研究总报告,新疆重点河流日流量预报模型研究报告,1992,3-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700