寰枢关节的临床解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:(1)后路经寰枢椎关节螺钉内固定术由于其优越的生物力学特性,目前在临床中广泛应用,但部分病人椎弓根较窄,椎动脉沟较深,术中易损伤椎动脉,而不适合此手术。国内目前缺乏此术式全面和精确的解剖研究。(2)随着颈前外侧区手术入路研究的深入,前路经寰枢椎关节螺钉内固定手术已逐渐在临床上应用,但目前国内缺乏对此术式解剖适应性的研究。(3)对不适合后路手术固定的寰枢椎损伤患者,前路经寰枢椎螺钉固定术已经逐渐在临床上应用,但目前国内外未见此术式的生物力学研究报道。(4)枕寰枢区域韧带众多,结构复杂,各韧带位置重叠,方向交错,不同体位的MRI影像差别很大,然而目前缺乏断面解剖与MRI的对照资料。(5)解剖结构的三维显示是目前影像诊断和解剖学研究的重点,三维影像可以从任意角度观察,详细了解解剖结构的空间关系,明确病变的范围和位置,弥补二维影像的不足,并可为外科手术入路和手术方式的选择提供重要参考。而对枕寰枢关节各韧带和经寰枢关节螺钉固定手术的螺钉置入情况进行三维显示,目前国内外未见报道。
     目的:(1)对国人后路经寰枢关节螺钉内固定术的解剖学适应性进行评价;(2)对国人两种前路经寰枢关节螺钉内固定术的解剖学适应性进行评价;(3)评价两种前路经寰枢关节螺钉内固定术的力学稳定性;(4)为枕寰枢关节的韧带结构损伤的MRI诊断提供了解剖学依据;(5)枕寰枢关节各结构的三维重建显示;三维显示经寰枢关节螺钉固定手术的螺钉置入情况;
     方法:(1)在100例中国成人干燥枢椎标本上,对枢椎标本的椎弓根宽度和侧块内侧高度等进行解剖学测量。(2)在100例(男性70例,女性30例)中国成人干燥寰枢椎标本上,对前路两种螺钉固定手术的螺钉置入角
    
    度和长度以及相关解剖结构进行测量。(3)利用脊柱三维运动双平面立体测
    量系统和MTS858型材料试验机,对18具男性新鲜枕表枢关节标本,进
    行两种前路螺钉固定手术疲劳实验前后的三维稳定性测量,并与Brooks
    和后路经襄枢关节螺钉内固定术进行比较。(4)将15具经福尔马林固定的枕
    表枢关节标本,制成斜冠状、矢状和水平位三个方位的连续断面标本,进
    行解剖学观察,并与MRI进行对照,找出各结构的最佳显示方位和最佳
    显示层面。(5)利用生物塑化技术,将3例标本制成1.Zmm厚的薄层断面,
    3例标本塑化前,分别用木质螺钉进行Magerl、前路经枢椎侧块下螺钉固
    定术和前路经枢椎体螺钉固定术,然后在 SGI作站上对对枕襄枢关节的
    各结构和螺钉固定的情况进行三维显示。
     结果:*乃6.5%的标本推弓根宽度大于4.smm,11.5%标本侧块内侧高
    度小于二.lmm,20石%标本椎弓根内侧高度小于4.smm,左侧占8.l%,右
    侧占12.5%,其中男性15.7%,女性40%的标本椎弓根内侧高度小于4.smm。
    螺钉固定的上倾角和内倾角分别为39.2土5.8”和6.2土2.6”。o)前路禁枢
    关节经枢椎侧块下螺钉固定术的螺钉标准长度为23* 士1.87mm,螺钉的
    外偏角为 24.9士 4.4”,螺钉后倾度为 15.二土 3刀”;经枢椎体螺钉固定的螺
    钉标准长度为36.96土5.48mm,螺钉的外偏角为24二上二,8”,螺钉后倾
    度为ZI.9土2.9“。O)两种前路经襄枢关节螺钉内固定术的力学稳定性较
    Brooks手术明显稳定,尤其在旋转组,与后路经衰枢关节螺钉内固定术相
    比无显著差异。(4)矢状位断面能够显示枕衰枢关节的大部分韧带,过齿突
    尖的正中矢状面是其显示的关键层面;过齿突中部的横断面为横韧带的关
    键显示层面,过齿突中部的斜冠状面为翼状韧带的关键显示层面。(5)在SGI
    工作站上三维显示了杭筹枢关节的骨骼及主要的韧带结构,所有结构均能
    够单独显示、任意搭配显示或总体显示。所有结构均可在三维空间位置上
    绕任意轴旋转任意角度,或者以不同的速度连续旋转。并且在 SGI作站
    上三维重建了三种经蓬枢关节螺钉固定手术的螺钉置入情况,显示了螺钉
    与椎动脉之间的位置关系,测量了螺钉的置入角度。
     结论:(12.4%的国人不适合后路经衰枢关节螺钉内固定术,女性明
     ·VI·
    
     显多于男性,枢椎椎弓根变异较大,术前应进行旁矢状位的薄层CT扫描。
     ①两种前路衰枢椎经关节螺钉内固定术较MagCrl术安全,但因个体差异,
     手术需在C臂X线机监视下进行,以减少并发症的发生/3)两种前路经衰
     枢关节螺钉内固定术具有较好的生物力学稳定性。O)临床上的枕表枢关节
    “韧带损伤的 MRI诊断,应注意关键层面的观察,并从多方位观察来综合判
     断。⑤计算机三维重建能够清楚显示枕衰枢关节各结构的形态特点和空间
     毗邻关系。螺钉置入径路的三维显示为临床手术的设计提供了一种新的方
     法。
Summary of Background Data: (1)Transarticular screw at the Cl to C2
    level of the cervical spine provide rigid fixation, but there are danger of injury to a vertebral artery. The risk is related to the variations in local anatomy. (2) An anterior surgical approach to exposing the upper cervical spine for internal fixation and bone graft recently has been developed. Few anatomy information regarding two types of the anterior transarticular atlantoaxial screw fixation between Cl and C2 is available in the literature. (3)No Studies to data have investigated the stabilizing effects of two types of the anterior transarticular atlantoaxial screw fixation. (4)The position and orientation of ligaments of the occipito-atlanto-axial joints are different . It is difficult to identify these ligaments with MRI. There are few studies about MRI finding of the ligaments and sections. (5)The value of 3D-images are that a doctor can thoroughly know the injurious condition and define the extent and position of injury in any angle and direction through rotation of the 3D images. They make up the
     disadvantage of 2D-images and help the surgeries to select the suitable operation technique. Few reports on computerized 3D reconstruction of the occipito-atlanto-axial joints have been reported. There are not reported on displaying the effect after the atlantoaxial transarticular screw fixation operation in three dimensions in literature.
    Objectives: (1) To provide morphological basis for the posterior atlantoaxial transarticular screw fixation.(2)To provide morphological basis for the anterior atlantoaxial transarticular screw fixation. (3) To evaluate the biomechanical stability provided by two types of the anterior atlantoaxial
    
    
    transarticular screw fixation techniques. (4)To provide sectional anatomical basis for clinical MRI diagnosis of the ligaments around the occipito-atlanto-axial joints.(5)To provide computerized 3D reconstruction of the ligaments of the occipito atlanto axial joints and display the effect after the atlantoaxial transarticular screw fixation operation in three dimensions.
    Methods: (l)The data of the internal height of The pedicle width and the lateral mass were observed and measured in 100 dry axes.(2)A hundred series of dry atlas and axis specimens were used to get the significant clinic data.O) Eighteen human cadaveric occiput to C3 specimens were subjected to nondestructive testing in 6 loading modalities on a universal testing machine. Four different groups were examined: l)control group(intact); 2)unstable group (type II odontoid fracture); 3) Brooks group (dorsal atlantoaxial wire fixtion); 4) Magerl group(the posterior atlantoaxial transarticular screw fixation) or two types of the anterior atlantoaxial transarticular screw fixation(4mm above the inferior edge of C2 arch or the inferior edge of C2 centrum for the entry point of the screw placement). In a second experimental series, failure loads of the Magerl fixion and two types of the anterior atlantoaxial transarticular screw fixation methods were determined. (4) Cryosections of 15 cadaver occipito-atlanto-axial joints were compared with MR imaging matching with them in oblique coronal, sagittal, and axial planes.(5)Plastination was used to make equidistant serial thin sections with 1.2mm in thickness. The specimens were fixed with the wood screw before plastination. A SGI work station was employed to manifest the structures of the ligaments of the occipito-atlanto-axial joints and the screw fixation in three dimensions.
    Results: (1)The pedicle width was >4.5mm in 96.5% of all specimens. In 11.5% of them, the internal height of the lateral mass was thinned out to < 2.1mm. The internal height of the pedicle was less than 4.5mm in 20.6% of all specimens, in 12.5% of right side, and in 8.1% of left side. In 15.7% of male
    
    specimens and in 40% of female specimens, the internal height of the pedicle was <4.5mm. The axis of the screw fixation was found to lie at 39.2 + 5.8 in the superior direction and 6.2 + 2.6 in the medial direction.(2)The firs
引文
1. Antinnes JA, Dvorak, J, Hayek J, et al. The value of functional computed tomography in the evaluation of soft-tissue injury in the upper cervical spine. Eur Spine J, 1994, 3(2):98~101.
    2. BehariS, Jain, VK, Phadke RV, et al. C1-C2 rotary subluxation following posterior stabilization for congenital atlantoaxial dislocation. Neurol~India. 2000,48(2): 164~169.
    3. Billet F, Schmitt W, Gay b, et al, 刘建斌译.三维重建CT在创伤学中的诊断优势.放射学实践,1992;7(1): 30~37.
    4. Bloom AI, Neeman Z, Floman Y, et al. Occipital condyle fracture and ligament injury: imaging by CT. Pediatr Radiol, 1996,26(11): 786~790.
    5. Brockmeyer DL, York JE, Apfelbaum RI. Anatomical suitability of C1-2 transarticular screw placement in pediatric patients. J Neurosurg, 2000,92(1 Suppl): 7~11.
    6. Brooks AL, Jenkins EB. Atlanto-axial arthrodisis by the wedge compression method. J Bone Joint surg (Am), 1978, 60:279~284.
    7. Chat V, Arthvr G, Mohammad S, et al. The spine 3D computed tomgraphic reformation from 2D axial sectors. Spine, 1986,11:513~520.
    8. Chirossel JP, Passagia JG, GayE, et al. Management of craniocervical junction dislocation. Childs Nerv Syst, 2000,16(10-11): 697~701
    9. Coyne TJ, Fehlings MG, Wallace MC, et al. C1-C2 posterior cervical fusion: long~term evaluation for results and efficacy. Neurosurgery, 1995,688~693.
    10. Crisco JJ, Panjabi MM, Dvorak J. A model of the alar ligaments of the upper cervical spine in axial rotation. J Biomech, 1991, 24(7): 607~614.
    11. Deliganis AV, Hanson JA, Fisher DJ, et al. Radiologic spectrum of
    
    craniocervical distraction injuries. Radiographics, 2000, 20:237~250.
    12. Dickman CA, Crawford NR, Paramore CG. Biomechanical characteristics of C1-2 cable fixations. J Neurosurg. 1996, 85(2): 316~322.
    13. Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery, 1996,38(1): 44~50.
    14. Dickman CA, Mamourian A, Sonntag VK, et al. Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability. J Neurosurg, 1991,75(2): 221~227.
    15. Dickman CA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries [letter, comment]. Neurosurgery, 1997, 40(4): 886~887.
    16. Dickman CA, Sonntag VKH, Papadopoulous SM, et al. The interspinous method of posterior atlantoaxial arthrodesis. J Neurosury, 1991,74:190~198.
    17. Dickman CA, Crawford NR, Brantley AG, et al. Biomechanical effects of transoral odontoidectomy. Neurosurgery. 1995, 36(6): 1146~1153.
    18. Dull ST, Toselli RM. Preoperative oblique axial computed tomographic imaging for C1-C2 transarticular screw fixation: technical note. Neurosurgery, 1995,37(1):150~152.
    19. Dvorak J, Panjabi MM, Hayek J. Diagnosis of hyper and hypomotility of the upper cervical spine using functional computerized tomography. Orthopade, 1987, 16(1):13~19.
    20. Dvorak J, Panjabi MM. Functional anatomy of the alar ligaments. Spine, 1987,12(2):183~189.
    21. Fielding JW, Cochran GVB, Lansing JF, et, al. Tears of the transverse ligament of the atlas. J Bone Joint Surg (Am), 1974,56(8):1683~1691.
    22. Flanders AE, Schaefer DM, Doan HT, et, al. Acute cervical spine trauma:
    
    correlation of MR imaging findings with degree of neurologic deficit. Radiology, 1990, 177(1):25~33.
    23. Fritsch H. Sectional anatomy of connective tissue structures in the hindfoot of the newborn child and the adult. Anat Rec, 1996,246(1):147~154.
    24. Gallie WE. Fractures and dislocations of the cervical spine. Am J Surg, 1939,46:495~499.
    25. George B, Laurian C. Anatomy. in George B. Laurian C(eds). The vertebral Artery. Pathology and surgery. New York: Springer-Verlag. 1987,6~17.
    26. Greene KA, Dickman CA, Marciano FF, et al. Transverse atlantal ligament disruption associated with odontoid fractures. Spine, 1994, 19(20):2307~2314.
    27. Grob D, Jeanneret B, Aebi M, et al. Atlanto-axial fusion with transarticular screw fixation. J Bone Joint Surg(Br), 1991,73:972~976.
    28. Grob D, Crisco JJ, Panjabi MM, et al. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine, 1992,17:480~490.
    29. Guiot B, Fessler R. Complex atlantoaxial fracture. J Neurosurg (spine 2), 1999,91:139~143.
    30. Haid RW, Subach BR, McLaughlin MR, et al. C1-C2 transarticular screw fixation for atlantoaxial instability: a 6-year experience. Neurosurgery, 2001,49(1):65~68, discussion 69~70.
    31. Haid RWJ. C1-C2 transarticular screw fixation: technical aspects. Neurosurgery, 2001, 49(1):71~74.
    32. Hanley EN, Harvell JC. Immediate postoperative stability of the atlantoaxial articulation: a biomechanical study comparing simple midline wiring, and the Gallie and Brooks procedures. J Spinal Disord. 1992,5(3):306~310.
    33. Hanson PB, Montesano PX, Sharkey NA, et al. Anatomic and biomechanical assessment of transarticular screw fixation for atlantoaxial
    
    instability. Spine, 1991,16:1141~1145.
    34. Holness RO, Huetis WS, Howes WJ, et al. Posterior stabilization with an interlaminar clamp in cervical injuries: technical note and review of the long term experience with the method. Neurosurgery, 1984,14:318~322.
    35. Jun BY. Anatomic study for ideal and safe posterior C1-C2 transarticular screw fixation. Spine, 1998,23(15):1703~1707.
    36. Kandziora F, Kerschbaumer F, Starker M, et al. Biomechanical assessment of transoral plate fixation for atlantoaxial instability. Spine, 2000,25(12):1555~1561.
    37. Lavid NE, DePaolis DC, Pope TW, et al. Analysis of three-dimensional computerized representations of articular cartilage lesions. Invest Radiol, 1996; 31(9):577~585.
    38. Lesoin F, Autricque A, Franz K, et al. Transcervical approach and screw fixation for upper cervical spine pathology. Surg Neurol, 1987,27(5):459~465.
    39. Lu J, Ebraheim NA, Yang H, et al. Anatomic considerations of anterior transarticular screw fixation for atlantoaxial instability. Spine, 1998,23(11):1229~1236.
    40. Madawi AA, Solanki GA, Casey ATH, et al. Veriation of the groove in the axis vertebra for the vertebral artery. J bone Joint Surg, 1997,79~B(5):820~823.
    41. Madawi AA, Casey ATH, Solanki GA. Radiological and anatomical evaluation of the atlantoaxial transarticular screa fixation technique. J Neurosurg, 1997,86:961~968.
    42. Magerl F, Seeman PS. Stable posterior fusion of the atlas and axis by transarticular screw fixation. In Kehr P, Weidner A, eds. Cervical Spine. Chap 4th ed. New York: Springer Verlag, 1985,322~327.
    43. Magiros M, Kekic M, Doran GA. Learning relational anatomy by
    
    correlating thin plastinated sections and magnetic resonance images: preparation of specimens. Acta Anat Basel, 1997,158(1):37~43.
    44. Marcotte P, Dickman CA, Sonntag VKH, et al. Posterior atlantoaxial facet screw fixation. J neurosurg, 1993,79:234~237.
    45. Mark DM, Solomon B, John MB, et al. Diagnostic imaging of spine trauma. Radioligic Clinics of North American, 1989,27:855~870.
    46. McAfee PC, Bohlman HH, Riley LH Jr, et al. The anterior retropharyngeal approach to the upper part of the cervical spine. J Bone Joint Surg (Am), 1987, 69(9):1371~1383.
    47. Mirvis SE, Geisler FH, Jelinek JJ, et, al. Acute cervical spine trauma: evaluation with 1.5-T MR imaging. Radiology, 1988, 166(3): 807~816.
    48. Mitchell TC, Sadasivan KK, Ogden AL, et al. Biomechanical study of atlantoaxial arthrodesis: transarticular screw fixation versus modified posterior wiring. J Orthop Trauma, 1999,13(7):483~489.
    49. Mjasuda Y, Miyamoto K, Yoshida Y, et al. Report on computer demonstration in Human-Body Plastination Exhibit. Kaibogaku Zasshi, 1995,70(5): 478~481.
    50. Naderi S, Crawford NR, Song GS, et al. Biomechanical comparison of C1-C2 posterior fixations: Cable, graft, and screw combinations. Spine, 1998,23(18):1946~1955.
    51. Niibayashi H. Atlantoaxial rotatory dislocation. A case report. Spine, 1998,23(13):1494~1496.
    52. Oda T, Panjabi MM, Crisco JJ, et, al. Experimental study of atlas injuries. Ⅱ. Relevance to clinical diagnosis and treatment. Spine, 1991, 16(10 Suppl): S466~473.
    53. Oostveen JC, Laar MA, Magnetic resonance imaging in rheumatic disorders of the spine and sacroiliac joints. Semin-Arthritis-Rheum, 2000,30(1): 52~69.
    
    
    54. Panjabi M, Dvorak J, Crisco JJ, et, al. Effects of alar ligament transection on upper cervical spine rotation. J Orthop Res, 1991, 9(4): 584~593.
    55. Paramore CG, Dickman CA, Sonntag VKH. The anatomic suitability of C1-2 complex for transarticular screw fixation. J Neurosurg, 1996, 85:221~224.
    56. Pathria MN, Petersilge CA. Spinal trauma. Radiol Clin North Am, 1991, 29(4):847~865.
    57. Pfirrmann CW, Binkert CA, Zanetti M, et al. Functional MR imaging of the craniocervical junction. Correlation with alar ligaments and occipito-atlantoaxial joint morphology: a study in 50 asymptomatic subjects. Schweiz Med Wochenschr, 2000,130(18): 645~651.
    58. Post MJ, Green BA. The use of computed tomography in spinal trauma. Radiol Clin North Am, 1983, 21(2):327~375.
    59. Resch H, Hubner C, Schwaiger R. Minimally invasive reduction and osteosynthesis of articular fractures of the humeral head. Injury, 2001,32(Suppl 1): SA25~32.
    60. Saternus KS, Thrun C. Traumatology of the alar ligaments. Aktuelle-Traumatol, 1987, 17(5): 214~218.
    61. Sati M, DeGuise JA, Drouin G. Computer assisted knee surgery: diagnostics and planning of knee surgery. Comput~Aided~Surg, 1997;2(2):108~123.
    62. Scapinelli R. Three dimensional computed tomography in infantile atlantoaxial rotatory fixation. J Bone Joint Surg Br, 1994,76(3): 367~70.
    63. Schaefer DM, Flanders A, Northrup BE, et, al. Magnetic resonance imaging of acute cervical spine trauma. Correlation with severity of neurologic injury. Spine, 1989, 14(10): 1090~1095.
    64. Schweitzer ME, Hodler J, Cervilla V, et, al. Craniovertebral junction: normal anatomy with MR correlation. AJR Am J Roentgenol, 1992,158(5): 1087~1090.
    
    
    65. Sha Y, Zhang SX, Liu ZJ, et al. Computerized 3d reconstruction of ligaments of lateral aspect of the ankle and subtalar joints. Surgical Radioligic Anatomy, 2001, 23:111~114.
    66. Solanki GA, Crockard HA. Peroperative determination of safe superior transarticular screw trajectory through the lateral mass. Spine, 1999,24(14): 1477~1482.
    67. Spence KF, Decker S, Shell KW. Bursting atlantal fracture associated with rupture of the transverse ligament. J Bone Joint Surg, 1970,52(A):543~549.
    68. Stehlik J, Bartos M, Kestranek Z, et al. Application of numerical modelling of osteotomy to orthopaedic practice. Int J Med Inf, 1997:45(1-2): 75~82.
    69. Stillerman CB, Wilson JA. Atlantoaxial stabilization with posterior transarticular screw fixation: technical description and report of 22 cases. Neurosurgery, 1993,32:948~955.
    70. Sutherland JP, Yaszemski MJ, White AA. Radiographic appearance of the odontoid lateral mass interspace in the occipitoatlantoaxial complex. Spine, 1995, 15, 20(20): 2221~225.
    71. Urso S, Pacciani E, Ascani E, et al. Static-dynamic computerized tomography in the diagnosis of traumatic lesions of alar ligaments. Preliminary results. Radiol Med Torino, 1994, 88(6): 736~741.
    72. Vaccaro AR, Lehman AP, Ahlgren BD, et al. Anterior C1-C2 screw fixation and bony fusion through an anterior retropharyngeal approach. Orthopedics, 1999,22(12): 1165~1170.
    73. Vaccaro AR, Ring D, Lee RS, et al. Salvage anterior C1-C2 screw fixation and arthrodesis through the lateral approach in a patient with a symptomatic pseudoarthrosis. Am J Orthop, 1997, 26(5): 349~353.
    74. Volle E, Montazem A. MRI video diagnosis and surgical therapy of soft tissue trauma to the craniocervical junction. Ear Nose Throat J, 2001, 80(1): 41~44, 46~48.
    
    
    75. Wegre OH. Whole body computed tomography. 2nd ed, Oxford: Blackwell, 1993. 530~542.
    76. Willauschus WG, Kladny B, Beyer WF, et al. Lesions of the alar ligaments. In vivo and in vitro studies with magnetic resonance imaging. Spine, 1995, 20(23): 2493~2498.
    77. Wittenberg RH, Shea M, Edwards WT, et al. A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine, 1992,17(6 Suppl): S121~128.
    78. Wright NM, lauryssen CL. Vertebral artery injury in C1-2 transarticular screw fixation: results of survey of the AANS/CNS section on disorders of the spine and peripheral nerves. J Neurosurg, 1998,88:634~640.
    79. Xu R, Nadaud MC, Ebraheim NA, et al. Morphology of the second cervical vertebra and the posterior projection of the C2 pedicle axis. Spine, 1995,20(3):259~263.
    80. Yamagata M, Kitahara H, Minami S, et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine, 1992,17(3 Suppl): S51~54.
    81. Zdeblick TA, Kunz DN, Cooke ME, et al. Pedicle screw pullout strength. Correlation with insertional torque. Spine, 1993,18(12): 1673~1676.
    82.曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及其临床意义.中国临床解剖学杂志,2000,18(4):299~301.
    83.陈坚,刘浩.前路经寰枢关节螺钉内固定术治疗创伤性寰—枢椎不稳的前期研究.中国脊柱脊髓杂志,1999,9(2):81~85.
    84.陈肇辉,周猛,陈燕萍等.颈椎可视化的初步研究.中国中医骨伤科杂志,2001,4:17~19.
    85.李明,王韶进,潘新等.经后路寰枢椎侧块螺钉固定治疗寰枢椎脱位.山东医科大学学报,2000,38(3):295~296.
    86.李忠华,王兴海主编.解剖学技术(第二版),人民卫生出版社,1997.
    87.刘利君,彭明惺,魏福康.三维CT重建对小儿寰枢椎旋转畸形的临床
    
    价值.中华小儿外科杂志,1999,20(4)21~214.
    88.刘利君,彭明惺,魏兴长等.CT检查对小儿寰枢椎旋转畸形的诊断价值.中华小儿外科杂志,1998,19:198~200.
    89.罗建光.颌面部骨折的CT扫描和三维重建.临床放射学杂志,1998,17(4):205~207.
    90.侍德,赵塾炎,张明等.上颈椎不稳定性骨折—脱位做前方融合术的探讨.中华骨科杂志,1992,12(3):175~177.
    91.孙家广,杨长贵.计算机图形学.清华大学出版社,1995.
    92.谭理连,李阳彬,李树欣等.螺旋CT三维成像在骨外伤诊断中的价值兼与X线平片对比分析.中国医学影像技术,1998,14(7):532~534.
    93.王超,党耕町,刘忠军.前路经枢椎体寰椎侧块螺钉固定术.中华骨科杂志.1999,19(8):457~459.
    94.王贵甫,张在人,王彦民等.CT骨三维重建的临床应用.中国医学影像学杂志,1995,3:33~35.
    95.王素梅.正常颅底的CT三维重建及临床价值.中国医学影像学杂志,1997;5(4):210~211,214.
    96.徐凯,郭庆林.脊柱创伤三维CT诊断.中华放射学杂志,1992,26:448~450.
    97.杨双石,刘景发,欧阳均等.寰枢关节固定不同术式的生物力学评价及临床意义.中华创伤杂志,1998,14(2):99~100.
    98.张绍祥,刘正津,何光篪.生物塑化薄层连续断面的计算机三维重建.解剖学报 1996,27(2):113~118.
    99.张绍祥,刘正津,何光篪.生物塑化技术(Plastination).中国临床解剖学杂志,1996,14(1):67~69.
    100 张绍祥,刘正津,何光篪.手掌及手背动脉的断面解剖与三维重建技术.解剖学报,1991,2(1):7~10.
    101 郑国焱.计算机辅助外科手术计划和模拟:原理和方法.生物医学工程学杂志,1995;12(3):271~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700