轴流泵CAD-CFD综合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流泵是一种量大面广的水泵产品,在大型调水工程、灌溉工程及城镇给排水工程中应用广泛,也常被用作船舶和两栖车辆的推进器,因此,对其效率等性能指标进行深入研究显得尤为重要。本文针对目前轴流泵设计和分析过程中存在的主要问题,建立了完整的计算机辅助设计(CAD)系统,并通过计算流体动力学(CFD)手段,建立了分析和预测轴流泵内部流场及外特性的基本方法。应用实践表明,所提出的轴流泵CAD-CFD系统可快速、高效地完成主要过流部件的2D水力设计、3D实体造型,并可根据CFD分析结果快速判断CAD的设计质量,从而开发出高性能的水泵产品。本文的主要研究内容和取得的主要成果包括:
     采用在CAD中的具有突出优势的面向对象技术,提出了将水力设计中内部数据和方法、外部图形表示及人机交互完整封装的新策略,给出了具体的CAD系统结构图及实施方案。在此基础上,研究了基于特征的自动和半自动建模方法,重点研究了参数化驱动、特征描述法和自定义特征法的特点并综合运用,给出了叶片和其他部件的建模实例以及核心代码,填补了轴流泵三维建模的空白,也为其他流体机械的建模提供了参考。
     采用多种计算模式对轴流泵流场进行不同方案的数值计算。研究表明:(1)单通道方案具有简单快速的特点,而全流道计算虽然计算量大,但是预测结果更接近实验值;(2)计算区域的进口采用均匀速度进口、位置选为泵的进口是合适的;(3)计算区域的出口条件采用充分发展流,位置相对泵的出口延伸约叶轮直径的10%时,可取得最佳的计算结果;(4)局部加密对轴流泵的计算精度有比较重要的影响,在网格总节点数基本保持不变的前提下,对叶片附近进行细密的网格划分,可明显提高计算精度。文中选择了一低扬程轴流泵作为实例,预测了泵的内部流场特性及其外性能,并将外特性和实验值进行了对比,在采用全流道方案、近叶片区局部加密的前提下,采用约20万混合节点的网格模型时,扬程预测值相对实验值的误差的绝对值在4.5%以内,功率误差约为3.1%,总效率误差约为4.1%。研究还发现,叶片正面和背面的速度、压力分布有着明显的规律,背面的低压区和汽蚀区域相吻合;由于径向间隙的存在,叶片正面靠近轮缘处形成了狭长的带状低压区,叶片轮缘面的速度分布清楚的显示了间隙处的回流。
     文中还对轴流泵设计有重要影响的流型进行了全面的分析和研究,指出现有等环量流型存在的不足,提出了改进流型设计:轴面速度在进口边前直线下降、出口边后呈抛物线分布、环量的分布规律由设计人员给定。与常规流型对比,改进流型设计更真实的反应了泵内的实际流动情况,改善了叶片的扭曲,提高了效率。
     本文所取得的研究成果对于改善轴流泵设计手段、提高设计水平、改进泵的水力性能有重要的指导意义,具有广泛的工程应用前景。
Axial-flow pumps are widely used in the water transfer project, irrigation, town water supply or drainag . They also work for ships and amphicars as thrusters, so it is very important to research their performance, especially the efficiency. To improve the design and analysis of axial-flow pumps, the Computer Aided Design (CAD) system and the basic methods of flow field simulation and performance prediction base on the Computational Fluid Dynamics (CFD) are developed in the paper. The applications show that the 2D hydraulic design and 3D modeling can be carried out satisfactorily, and that the design is evaluated soon according to the CFD results by making use of the CAD-CFD system. Therefore, the pumps with excellent performance could be expected. The main conclusions are as follows:The encapsulation of interior data and methods, exterior drawings, and intelligent user interface is brought forward by adopting object-oriented method. The object-oriented method has special advantages in CAD software. This approach makes the kernel framework and detailed solution of design software together. Furthermore, semiautomatic and automatic methods for feature-based modeling are studied. The performance and applicability of three methods including parameter driving, feature describing, and user-defined feature are grouped for the modeling of all parts including blades. The key program is offered. The proposed techniques could be used for other hydraulic machinary modeling.The flow field of an axial-flow pump is simulated under different grid patterns and different boundary conditions. The results are compared. (1) The performance is calculated quickly and simply through the single pasage, but it is not as accurate as the full pasage acoording to the experiment data; (2) The model inflow boundary can be assumed to be uniform velocity inlet that placed in the pump intake; (3) The outlet location is extended at least the tenth impeller diameter from the pump exit because the outflow boundary condition is obeyed in fully-developed flows; (4) The preciser flow field is obtained if the important parts grid are meshed better on condition that the mesh nodes are equivalent.The model of a low head pump selected for the field calculation and performance prediction is established. Its mesh nodes are about 200,000 for the full pasage and the parts near blades or vanes are meshed well. To compare with the experiment data, the prediction precision for pump-head is within 4.5%, the power's is 3.1%, and the efficiency's is 4.1%. The contours of flow parameters are investigated, the velocity and pressure of blade surfaces vary regularly. The low pressure area of blade suction surfaces accords with the cavitation region. The downstream backflows are obvious and a low presure band along the blade working surface outer edge is shaped because of the radial interspace between the impeller and pump body.At last the variable-distribution of design parameters is studied. A new distribution is proposed for the sake of the disadvantage of the constant circulation at present. The axial velocity in fornt of the blade intake along the radius reduces linearly, and the velocity trendline behind the blade export is close to parabolic curve, but the circulation should be decided by designers. The distribution performs factually, so the blade is distorted gentle and the efficiency should be improved.The study is of significance to axial flow pumps design and woud be helpful to improve the dydraulic performance.
引文
[1] 施卫东.低扬程轴流泵水力模型的试验研究.江苏理工大学学报,1998,19(1):31~34
    [2] 关醍凡,黄道见,刘厚林,等.南水北调大型轴流泵选型中值得注意的几个问题.水泵技术,2002(2):13~16
    [3] 于松岭,袁雄俊,许文朝,等.大型动(静)叶调节轴流泵调节性能的新型数学模型及应用.华北电力技术,2003(3):28~30.
    [4] 默广斌.喷水推进轴流泵噪声初探.机电设备,1997(3):14~16,34
    [5] 王立祥,傅健.关于喷水推进串列式轴流泵叶轮参数选择与计算的探讨.船舶,2003(6):47~51
    [6] W. J. Sheu, S. H. Sohrab, G. I. Sivashinsky. Aerodynamics of viscous flow in counter-rotating finite jets. Journal of Propulsion and Power, 1992, 8(4): 836-842
    [7] P. S. Kim, J. L. White. Flow visualization of intermeshing and separated counter-rotating rotor internal mixer. Rubber Chemistry and Technology, 1994, 67(5): 880
    [8] T. Kanemoto, S. Kimura, S. Oba, et al. Smart control of axial flow pump performance by means of counter-rotation (counter-rotating type and performance). JSME International Journal, Series B: Fluids and Thermal Engineering, 2002, 45(2): 293-300
    [9] 王德军,周惠忠,黄志勇,等.对旋式轴流泵全流道三维定常紊流场的数值模拟.清华大学学报(自然科学版),2003,43(10):1339~1342
    [10] 何希杰,张勇.轴流泵的现状与发展.水泵技术,1998(6):29~33
    [11] 关醒凡,袁建平,施卫东,等.已开发的系列轴流泵水力模型研究介绍.水泵技术,2002(4):20~22,44
    [12] 孙寿.对我国发展低扬程轴流泵的分析研究.水泵技术,1990(1):59~63
    [13] 施卫东.ZM931高比转数轴流泵水力模型的设计.农业机械学报,1998,29(2):48~52
    [14] M. M. Javur, K.S. Murthy, S. Kar. Analysis of performance characteristics of axial flow pumps. American Society of Mechanical Engineers, 1983, 6: 201-210
    [15] N. Tomotatsu. Computer-aided design of turbines and pump-turbines em dash 1. development of hydraulic performance. Toshiba Review (International Edition), 1979, 122: 24-28
    [16] J. Hakan. Computer aided design of pumps. World Pumps, 1982(9): 435-436
    [17] H. Krain. CAD method for centrifugal compressor impellers. Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 1984, 106(2): 482-488
    [18] S. K. E. Westberg. Optimization of geometry described by curves. Computer Aided Design, 1987, 19(5): 251-256
    [19] A. Goto, M. Nohmi, T. Sakurai, et al. Hydrodynamic design system for pumps based on 3-D CAD, CFD and inverse design method. Proceedings of the ASME Fluids Engineering Division Summer Meeting, 2003(2): 215-223
    
    [20] C. N. Grimaldi, G. Manfrida, R. Pacciani. Global fluid dynamics design of centrifugal pumps. American Society of Mechanical Engineers, Petroleum Division (Publication) PD, 1994, 64(8-2): 503-510
    [21] D. Croba, J. L. Kueny. Numerical calculation of 2D, unsteady flow in centrifucal pumps: impeller and volute interaction. International Journal for Numerical Methods in Fluids, 1996, 22(6): 467-481
    [22] M. Sick, P. Drtina, M. V. Casey. Use of stage capability in CFD for turbomachinery, with application in a Francis turbine. International Journal of Computer Applications in Technology, 1998, 11(3-5): 219-229
    [23] S. H. Chen, S. P. Su, L. C. Lee, et al. Use of CFD in turbomachinery applications. NASA Technical Memorandum, 2000, 32(1): 1-24
    [24] H. Tsuei. The role of CFD in turbomachinery design. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, 2001, 41: 111-118
    [25] J. Yan, D. Gregory-Smith, A. Karanjkar. CFD simulations of three-dimensional flow in turbomachinery applications. Proceedings of the Third International Conference on Engineering Computational Technology, 2002: 91-92
    [26] Y. Sheinman, A. Rosen. Dynamic model of the influence of turbulence on the power output of a wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39(1-3): 329-341
    [27] H. Chen, J. Han. Computation of flow and heat transfer in turbine blade cooling passages by Reynolds stress turbulence model. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 2002, 257(2B): 867-883
    [28] Z. Jaworski, B. Zakrzewska. Modelling of the turbulent wall jet generated by a pitched blade turbine impeller: The effect of turbulence model. Chemical Engineering Research and Design, 2002, 80(8): 846-854
    [29] A. A. Ameri, A. Arnone. Prediction of turbine blade passage heat transfer using a zero and a two-equation turbulence model. American Society of Mechanical Engineers, 1994, 94-GT-122: 1-8
    [30] S. Y. Ju, T. M. Mulvahill, R. W. Pike. Three-dimensional turbulent flow in agitated vessels with a nonisotropic viscosity turbulence model. Canadian Journal of Chemical Engineering, 1990, 68(1): 3-16
    [31] 刘厚林,关醒凡,施卫东,等.我国泵CAD技术的特点及发展.流体机械,2002(3):26~29
    [32] 戴勇峰,张克危,贾宗谟.用有限元分析程序的泵体三维实体造型.水泵技术,1994(4):9~13
    [33] 王福军.水泵叶轮的计算机三维实体造型研究.农业机械学报,1997,28(2):66~70
    [34] 王业明,石斯聪.大泵虹吸式出水流道的CAD.水泵技术,1993(6):24~28
    [35] 全诚,陈次昌,程南平.轴流泵叶轮的计算机辅助设计.水泵技术,1994(2):5~9.
    [36] 汤方平,周济人,袁家博,等.轴流泵水力模型CAD/CAM.江苏农学院学报,1998,19(1): 1~5
    [3
    
    [37] F. C. Lockwood, T. Abbas, N. H. Kandamby, et al. CFD experience on industrial combustors. Progress in Computational Fluid Dynamics, 2001. 1(1-3): 1-13
    [38] K. R. Laflin, S. M. Klausmeyer, T. Zickuhr, et al. Summary of data from the second AIAA CFD drag prediction workshop (invited). in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Jan 5-8 2004. 2004, Reno, NV, United States: American Institute of Aeronautics and Astronautics Inc., Reston, United States
    [39] B. Adams, M. Cremer, J. Valentine, et al. Use of CFD modeling for design of NOx reduction systems in utility boilers, in Proceedings of the IJPGC 2002 International Joint Power Generation Conference, Jun 24-26 2002. 2002, Scottsdale, AZ, United States: American Society of Mechanical Engineers
    [40] 陈池,袁寿其,金树德.离心泵叶轮内流计算方法综述.流体机械,1999,27(2):35~39
    [41] T. Kajishima, Y. Miyake. Discussion on eddy viscosity models on the basis of the large eddy simulation of turbulent flow in a square duct. Computers & Fluids, 1992, 21(2): 151-161
    [42] A. M. Davies. Numerical problems in simulating tidal flows with a frictional-velocity-dependent eddy viscosity and the influence of stratification. International Journal for Numerical Methods in Fluids, 1993, 16(2): 105-131
    [43] D. Choudhury. FLUENT simulation of buoyancy-driven flow in a square enclosure with variable viscosity effects, in Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. Part 1 (of 2), Nov 12-17 1995. 1995, San Francisco, CA, USA: ASME, New York, NY, USA
    [44] V. G. Ferreira, N. Mangiavacchi, M. F. Tome, et al. Numerical simulation of turbulent free surface flow with two-equation k-& epsilon; eddy-viscosity models. International Journal for Numerical Methods in Fluids, 2004, 44(4): 347-375
    [45] 杨策,蒋滋康,索沂生,等.用粘性体力方法计算轴流叶轮机械内部流场.应用力学学报,2000,17(4):40~45
    [46] 王正伟,崔涛,江德春,等.轴流式水轮机能量特性预测分析.水力发电,2002(11):46~47
    [47] 崔学明.水轮机转轮内三维湍流流场分析及计算模型比较:[博士学位论文].北京:中国农业大学,2002
    [48] 成立.泵站进水弯道三维流动分析及流态改善研究.扬州大学学报(自然科学版),2002,5(2):64~68
    [49] 卢金铃,席光,祁大同.气液两相流泵的研究进展.水利学报,2001(6):57~61
    [50] 黄思,吴玉林.叶片式泵内气液两相泡状流的三维数值计算.水利学报,2001(6):57~61
    [51] 阎庆绂,马素霞,李治勤.泵系统的流体力学特性.农业机械学报,1996,27(2):60~65
    [52] A. Burns, A. Splawski, S. Lo, et al. Application of coupled solver technology to CFD modeling of multiphase flows with CFX. in First International Conference on Computational Methods in Multiphase Flow, Multiphase Flow Ⅰ, Mar 14-16 2001, 2001, Orlando, FL, United States: Computational Mechanics Inc., Billerica, United States
    
    [53] D. R. Hose, P. V. Lawford, A. J. Narracott, et al. Fluid-solid interaction: Benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications. Journal of Medical Engineering and Technology, 2003, 27(1): 23-31
    [54] W. A. Wieselquist. One validation case of the CFD software fluent: Part of the development effort of a new reactor analysis tool. in 10th International Conference on Nuclear Engineering (ICONE 10), Apr 14-18 2002. 2002, Arlington, VA, United States: American Society of Mechanical Engineers
    [55] H. M. Kim, H. C. No. Analysis of power spectrum density in the PWR fuel assembly using the 3-D LES turbulent model of fluent 6. in 12th International Conference on Nuclear Engineering (ICONE12)-2004, Apr 25-29 2004. 2004. Arlington, VA, United States: American Society of Mechanical Engineers, New York, NY 10016-5990, United States
    [56] R. Bolot, J. Li, C. Coddet. Modeling of thermal plasmajets: A comparison between Phoenics and Fluent. in Proceedings of the International Thermal Spray Conference, May 10-12 2004. 2004, Osaka, Japan: ASM International, 9639 Kinsman Road, OH 44073-0002, United States
    [57] G. Duan, J. Wang, D. Liu, et al. Research on an object-oriented CAD/CAPP/CAM integrated system based on STEP. in Proceedings of the IEEE International Conference on Industrial Technology, Dec 5-9 1994. 1996, Shanghai, China: IEEE, Piscataway, NJ, USA
    [58] S. G. Guidera. Exploring the architecture of structure: Integrating structures into design studio using object-oriented CAD. in 2003 ASEE Annual Conference and Exposition: Staying in Tune with Engineering Education, Jun 22-25 2003. 2003, Nashville, TN, United States: American Society for Engineering Education, Washington, DC 20036, United States
    [59] U. Flemming, H. Erhan, I. Ozkaya. Object-oriented application development in CAD: A graduate course. Automation in Construction, 2004, 13(2): 147-158
    [60] 王福军,刘善琨,骆大章,等.水泵CAD软件设计中的几个关键问题.水泵技术,1997(6):3~6
    [61] 关醒凡.现代泵技术手册.北京:宇航出版社,1995
    [62] V. V. Tcacenco, C. Stanciu. Some aspects concerning the hydrodynamic design of reversible axial flow pumps for piscicultural and hydroamelioration arrangements. UPB Scientific Bulletin, Series D: Mechanical Engineering, 1998, 60(n3): 147-158
    [63] 陈田,殷国富,舒斌,等.基于三维特征建模的叶片泵CAD系统研制.计算机集成制造系统-CIMS,2001,7(2):59~64
    [64] 王海松,王福军,张志民,等.基于面向对象技术的轴流泵CAD软件设计.流体机械,2002(10)(专刊):357~360
    [65] R. K. Irani, M. Saxena, P. M. Finnigan. Boundary-based feature modeling utility, in Proceedings of the 1990 ASME International Computers in Engineering Conference and Exposition, Aug 5-9 1990. 1990, Boston, MA, USA: Publ by ASCE, Boston, MA, USA.
    [66] 唐荣锡,席平,宁涛.协同设计特征造型软件发展概况.计算机辅助设计与图形学学报,2003,15(1):15~20
    
    [67] H. Denzel, G.-C. Vosniakos. Feature-based design system and its potential to unify CAD and CAM. IFIP Transactions B: Computer Applications in Technology, 1993 (nB-10): 131-144
    [68] R. Bidarra, W. F. Bronsvoort. Semantic feature modeling. CAD Computer Aided Design, 2000, 32(3): 201-225
    [69] C. M. Hoffmann, R. Joan-Arinyo. On user-defined features. CAD Computer Aided Design, 1998, 30(5): 321-332
    [70] J. C. H. Chung, D. R. Patel, R. L. Cook, et al. Feature-based modeling for mechanical design. Computers & Graphics (Pergamon), 1990, 14(2): 189-199
    [71] 宋玉银,蔡复之.面向并行工程的CAD系统.清华大学学报,1998,38(8):31~34
    [72] 赖朝安,李振南,孙延明,等.Pro/E二次开发的关键技术.机械设计与制造工程,2001,30(1):43~45
    [73] J. Rowe. Pro/ENGINEER wildfire 2.0-New user interface makes powerful capabilities more accessible. Cadalyst, 2004, 21(8): 30-34
    [74] V. Nikolic. Pro/ENGINEER and I-DEAS based courses favorite among mechanical engineering students, in 2002 ASME International Mechanical Engineering Congress and Exposition, Nov 17-22 2002. 2002, New Orleans, LA, United States: American Society of Mechanical Engineers
    [75] 王海松,王福军,张志民,等.基于特征的轴流泵叶轮自动建模.水利学报,2004(2):45~49
    [76] 王海松,王福军,严海军,等.轴流泵3D实体造型的自动实现.农业工程学报,2004,20(2):122~125
    [77] 王福军.计算流体力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [78] M. Piller, E. Nobile, J. Thomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics, 2002(458): 419-441
    [79] J. G Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow, 2003, 24(4): 626-635.
    [80] V. Michelassi, J. G. Wissink, W. Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. Journal of Power and Energy, 2003, 217(4): 403-412
    [81] V. Stephane. Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows. Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003: 1299-1305
    [82] S. Dahlstrom. Large Eddy Simulation of the flow around a high-lift airfoil. Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2003(1963): 1-50
    [83] B. Koobus, C. Farhat. A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes-application to vortex shedding. Computer Methods in Applied Mechanics and Engineering, 2004, 193(15-16): 1367-1383
    [84] L. Selle, G. Lartigue, T. Poinsot, et al. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combustion and Flame, 2004, 137(4): 489-505
    
    [85] H. Hartmann, J.J. Derksen, C. Montavon, et al. Assessment of large eddy and RANS stirred tank simulations by means of LDA. Chemical Engineering Science, 2004, 59(12): 2419-2432
    [86] A.V. Glazunov, V.N. Lykossov. Large-eddy simulation of interaction of ocean and atmospheric boundary layers. Russian Journal of Numerical Analysis and Mathematical Modelling, 2003, 18(4): 279-295
    [87] A.A. Feiz, M. Ould-Rouis, G Lauriat. Large eddy simulation of turbulent flow in a rotating pipe. Journal of Heat and Fluid Flow, 2003, 24(3): 412-420
    [88] I. Mary, P. Sagaut. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 2002,40(6): 1139-1145
    [89] D.G.E. Grigoriadis, J.G. Bartzis, A. Goulas. Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and Fluids, 2004, 33(2): 201-222
    [90] L. Shen, D.K.P. Yue. Large-eddy simulation of free-surface turbulence. Journal of Fluid Mechanics, 2001(n440): 75-116
    [91] R. E. Julian, K. S. Piotr. Eddy resolving simulations of turbulent solar convection. International Journal for Numerical Methods in Fluids, 2002, 39(9): 855-864
    [92] J.C. Li. Large eddy simulation of complex turbulent flows: Physical aspects and research trends. Acta Mechanica Sinica, 2001, 17(4): 289-301
    [93] P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254
    [94] V. Michelassi, J.G. Wissink, W. Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 403-412
    [95] E.P.N. Duque, R. Gordon, M.D. Berry, et al. Reynolds-Averaged Navier-Stokes simulations of helicopter slung loads. in AHS International Decennial Specialists' Conference on Aeromechnics, Jan 21-23 2004. 2004, San Francisco, CA, United States: American Helicopter Society
    [96] J. Pan, E. Loth. Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes. Journal of Aircraft, 2004, 41(4): 879-891
    [97] Inc., F., FLUENT User's Guide. Fluent Inc., 2003
    [98] T. Hara, S. Kato. Numerical simulation of thermal plumes in free space using the standard k-ε model. Fire Safety Journal, 2004, 39(2): 105-129
    [99] Y.M. Shen, C.O. Ng, Y.H. Zheng. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling. Ocean Engineering, 2004,31(1): 87-95
    [100] E. Foti, P. Scandura. A low Reynolds number k-ε model validated for oscillatory flows over smooth and rough wall. Coastal Engineering, 2004, 51(2): 173-184
    
    [101] R. K. Rahmani, T. G. Keith, A. Ayasoufi. A study of the accuracy, global performance, and computational expenses of k-& epsilon;, k-& omega;, and RSM turbulent models for flow in an industrial static mixer, in 2004 ASME/JSME Pressure Vessels and iping Conference, Jul 25-29 2004. 2004, San Diego, CA, United States: American Society of Mechanical Engineers, New York, NY 10016-5990, United States
    [102] N. G. Wright, G. J. Easom. Non-linear k-& epsilon; turbulence model results for flow over a building at full-scale. Applied Mathematical Modelling, 2003, 27(12): 1013-1033
    [103] V. Yakhot, S. A. Orszag. Renormalization group analysis of turbulence. I. Basic Theory. Journal of Scientific Computing, 1986, 1(1): 3-51
    [104] T. H. Shih, W. W. Liou, A. Shabbir, et al. New k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 1995, 24(3): 227-238
    [105] A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 1997, 135(2): 118-125
    [106] G. Puckett. Introduction to "a numerical method for solving incompressible viscous flow problems". Journal of Computational Physics, 1997, 135(2): 115-117
    [107] 吴玉林,曹树良,戴江,等.离心泵叶轮中紊流的计算.水泵技术,1997(1):9~17
    [108] S. V. Patanker, D. B. S. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 1972(15): 1787-1806.
    [109] 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [110] T. Tanaka. Study of aerofoil theory, applied to internal flow conditions in axial flow pumping machines, in Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting. Part 11 (of 24), Jun 22-26 1997. 1997, Vancouver, Can: ASME, New York, NY, USA
    [111] J.-N. Favre. Development of a tool to reduce the design time and to improve the radial or mixed-flow pump impeller performance. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1995: 1-9
    [112] M. Sallaberger, E Bachmann, C. Miehaud, et al. Modern hydraulic design of large pump-turbines. International Journal on Hydropower and Dams, 2003, 10(n5): 112-118
    [113] T. Tanaka. Mechanism of downstream backflows occurrence and its interrelation with pump efficiency among axial flow pumps, in Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting, FEDSM'97. Part 3 (of 24), Jun 22-26 1997. 1997, Vancouver, Can: ASME, New York, NY, USA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700