三种代表性土壤对多氯联苯的吸附机理比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了中国土壤多氯联苯(Polychlorinated Biphenyls, PCBs)污染现状和分布规律,选取中国西部黄土、中国东部青紫泥和水稻土三种理化性质不同的土壤作为地质吸附剂(geosorbents)开展吸附机理研究,从吸附动力学和热力学的角度,比较三种不同类型的土壤对PCBs的吸附特征和吸附机理,探讨其结构特征与其对PCBs吸附能力之间的关系,得到以下研究结论。
     (1)青紫泥和水稻土对PCBs吸附量大,可作为PCBs良好地质吸附剂,而黄土对PCBs的吸附量较小。
     通过土壤静态序批吸附实验,在常温24 h条件下,黄土、青紫泥和水稻土对Aroclor1260中10种PCBs的吸附基本达到表观平衡状态。本文研究的三种土壤对PCBs的吸附能力顺序为:青紫泥>水稻土>黄土,与三种土壤有机质含量多少相一致。青紫泥、水稻土和黄土对PCBs的吸附量分别为1.46×10-1-9.08μg/g,1.37×10-1-7.89μg/g和6.29×10-3-4.424×10-1μg/g,青紫泥和水稻土的吸附能力分别是黄土的17.64-24.00倍和15.24-21.76倍。青紫泥和水稻土是PCBs良好的地质吸附剂;而黄土吸附能力小,可作为PCBs污染区土壤(青紫泥和水稻土)的覆盖材料。
     (2)PCBs在三种土壤中的吸附均符合准二级反应动力学模型,膜扩散和颗粒内扩散是其吸附过程中的控速步骤。
     通过动力学实验和模型拟合,比较三种动力学方程(准一级反应动力学方程、准二级反应动力学方程和Elovich方程)对土壤吸附Aroclor1260中10种目标PCBs数据的拟合结果发现,准二级反应动力学方程拟合时的相关系数最高,R2≥0.953;且由该方程计算出来的平衡吸附量qe,cal与实验值qe,exp相吻合,认为PCBs在黄土、青紫泥和水稻土中的吸附动力学均符合准二级反应动力学模型。黄土、青紫泥和水稻土对PCBs的吸附均表现出“两阶段”特性,初始的快吸附和随后的慢吸附阶段,这主要是由吸附位点的数量及吸附位点的强弱决定的。颗粒内扩散和膜扩散是土壤吸附PCBs过程中的控速步骤,共同决定了三种土壤地质吸附剂对PCBs的吸附速率。
     (3)在实验条件下,黄土对PCBs的吸附呈线性,青紫泥和水稻土则呈现非线性,温度对三种土壤吸附量存正负影响。
     应用线性等温方程、Langmuir等温方程和Freundlich等温方程对吸附数据拟合的结果表明,当Aroclor1260的浓度为0.10-0.80 mg/L时,黄土对其中10种目标PCBs的吸附不能用Langmiur方程和Freundlich方程描述,但符合线性吸附等温方程(R2>0.96);而青紫泥和水稻土对PCBs的吸附则表现出明显的非线性吸附特征,且对于每一种目标多氯联苯而言,其在水稻土中吸附的非线性更大,这两种土壤对PCBs的吸附数据用Freundlich模型拟合程度最好(R2≥0.92),这可能和土壤中两相态(无定形态相和浓缩态相)有机质的相对含量相关。
     同时,通过对△G0、△H0和△S0等热力学参数的比较分析发现,PCBs在三种土壤中的吸附均为自发过程(△G0<0),室温条件下(22℃),PCBs在三种土壤中吸附的驱动力大小为:青紫泥>水稻土>黄土。在所研究的温度范围(22-46℃)内,随着温度的升高,青紫泥和水稻土对PCBs的吸附量略有下降,而黄土对PCBs的吸附量反而增大,常温条件下黄土作为PCBs土壤(青紫泥和水稻土)覆盖层的效果最好。热力学参数△H0进一步证明,黄土吸附PCBs是一个吸热过程(△H0>0),而青紫泥和水稻土吸附PCBs则是放热过程(△H0<0)。黄土吸附PCBs过程中将增加系统的无序性(△S0>0),但青紫泥和水稻土吸附PCBs过程中固液界面的混乱度降低(△S0<0),与熵变相关的作用力控制了它们对PCBs的吸附,其中疏水效应(hydrophobic effect)是青紫泥和水稻土吸附PCBs的主要驱动力。
According to Polychlorinated Biphenyls (PCBs) pollution and distribution characteristics in Chinese soils, this research selected three different soils—loess, blue purple clay and paddy soil—as the geosorbents to carry out sorption research, compared the sorption characteristics and sorption mechanisms of PCBs in the three soils from the view of sorption kinetics and thermodynamics, and explored the relationships between the structural characteristics of soils and their sorption capacities. The results of research are listed as follows.
     (1) Blue purple clay and paddy soil exhibiting powerful PCBs sorption capabilities are good geosorbents for PCBs, while loess has low PCBs sorption capacities.
     The batch experiments showed that the apparent equilibriums of 10 PCBs in the three soils were reached at 24 h, and the sequence of equilibrium sorption capacities of three soils for every PCB congener was:blue purple clay>paddy soil>loess, which was consistent with the contents of organic matter of the soils selected. The sorption amounts of blue purple clay, paddy soil and loess for PCBs were 1.5×10-1-9.1μg/g,1.4×10-1-7.9μg/g and 6.3×10-3-4.2×10-1μg/g, respectively, and the sorption capabilities of blue purple clay and paddy soil were found to be 17.64-24.00 times and 15.24-21.76 times that of loess. Blue purple clay and paddy soil are good geosorbents for PCBs; while loess with low sorption capabilities for PCBs can be recommended as covering material for soils (blue purple clay and paddy soil) polluted by PCBs.
     (2) PCBs sorption in three soils fit the pseudo-second-order equation well, and the intraparticle diffusion and film diffusion were the sorption controlling steps.
     Three sorption kinetic equations (pseudo-first-order equation, pseudo-second-order equation and Elovich equation) were applied to simulate the sorption kinetic data, and the pseudo-second-order model could describe PCBs sorption in the three soils well with R2>0.953 and a good agreement between the experimental qe,exp values and the calculated qe,cal values. Two stages were found in all sorption process, the initial stage of rapid sorption and the following stage of slow sorption, which were determined by the numbers and capabilities of sorption sites. The film diffusion and intraparticle diffusion were the sorption controlling steps, together determining the sorption rapid of PCBs in all three soils.
     (3) PCBs sorption in loess fit a linear model, while PCBs sorption in blue purple clay and paddy soil indicated nonlinear sorption characteristics under laboratory condition.
     Three sorption isotherm equations were applied to simulate the experimental data, and the result showed that, when the concentrations of Aroclor1260 were 0.1-0.8 mg/L, the sorption behaviors of 10 PCBs in loess fit a linear model with R2>0.96; however, the nonlinear sorption isotherms of PCBs in blue purple clay and paddy soil were observed (n>1) and the Freundlich model could describe the sorption behaviors of PCBs in three soils well (R2>0.92). That could be explained by the relative content of two-phase (amorsphous phase and condensed phase) organic matter.
     According to the thermodynamic parameters calculated, the results showed that PCBs sorption in the three soils was a spontaneous sorption process (ΔG0>0), and the sequence of driving force for PCBs sorption in the three soils at room temperature (22℃) was:blue purple clay>paddy soil>loess. The sorption amounts of PCBs in blue purple clay and paddy soil decreased slightly with temperature raised from 22 to 46℃, while the sorption amounts of PCBs in loess increased in the same range of temperature. Therefore, loess as the covering material could be reached the best effect in room temperature (22℃). The calculated values ofΔS0 andΔH0 were positive in loess suggesting that the process was endothermic and the sorption of PCBs increased the disorder in the system; whereas for blue purple clay and paddy soil, both were negative indicating that the process was exothermic and the sorption of PCBs decreased the randomness at the solid-solution interface. The interaction force related with entropy change affected the sorption of PCBs in blue purple clay and paddy soil and hydrophobic effect was the main sorption driving force for PCBs sorption in these two soils.
引文
Aichner B., Glaser B., Zech W.. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu, Nepal. Organic Geochemistry,2007,38(4):700-715.
    Aiken G.R., McKnight D.M., Wershaw R.L., MacCarthy P.. Humic Substances in Soil, Sediment, and Water:Geochemistry, Isolation, and Characterization. Wiley-Inter-science, New York,1985.
    An T.C., Chen H., Zhan H.Y., et al. Sorption kinetics of naphthalene and phenanthrene in loess soils. Environmental Geology,2005,47:467-474.
    Armitage J.M., Hanson. M., Axelman J., et al. Levels and vertical distribution of PCBs in agricultural and natural soils from Sweden. Science of the Total Environment,2006,371(1-3):344-352.
    Aytas S., Yurtlu M., Donat R.. Adsorption characteristic of U(Ⅵ) ion onto thermally activated bentonite. Journal of Hazardous Material,2009,172:667-674.
    Batterman S., Chernyak S., Gouden Y., et al. PCBs in air, soil and milk in industrialized and urban areas of KwaZulu-Natal, South Africa. Environmental Pollution,2009,157(2):654-663.
    Boyd S.A.. Adsorption of substituted phenols by soil. Soil Science,1980,134(5): 337-343.
    Breivik K., Sweetman A., Pacyna J.M., et al. Towards a global historical emission inventory for selected PCB congeners-a mass balance approach 1. Global production and consumption. Science of the Total Environment,2002a,290 (1-3),181-198.
    Breivik K., Sweetman A., Pacyna J.M., et al. Towards a global historical emission inventory for selected PCB congeners-a mass balance approach:2. Emissions. Science of the Total Environment,2002b,290 (1-3):199-224.
    Bucheli T.D., Gustafsson R.. Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere,2003,53(5):515-522.
    Calvel R.. Adsorption of organic chemicals in soils. Environmental Science and Technology,1989,83:145-177.
    Castro-Jimenez J., Dueri S., Eisenreich S.J., et al. Polychlorinated biphenyls (PCBs) in the atmosphere of sub-alpine northern Italy. Environmental Pollution,2009, 157(3):1024-1032.
    Chen Z., Xing B., McGill W.B., et al. a-Naphthol sorption as regulated by structure and composition of organic substances in soils and sediments. Canadian Journal of Soil Science,1996,76,513-522.
    Chien Y.Y., Bleam W.F.. Two-dimensional NOESY nuclear magnetic resonance study of pH-dependent change in humic acid conformation in aqueous solution. Environmental Science and Technology,1999,32:3653-3658.
    Chingombe P., Saha B., Wakeman R.J.. Sorption of atrazine on conventional and surface modified activated carbons. Journal of Colloid and interface Science, 2006,302:408-416.
    Chiou C.T., Kile D.E., Rutherford D.W., et al. Sorption of selected organic compounds from water to a peat soil and its composition on the partitioning of organic compounds. Environmental Science and Technology,2000,26: 336-340.
    Chiou C.T., Kile D.E.. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environmental Science and Technology,1998,32(3),338-343
    Chiou C.T., Peters L.J., Freed V.H. A physical concept of soil-water equilibria for non-ionic organic compounds. Science,1979,206(4420):831-832.
    Choi H., Al-Abed S.R.. PCB congener sorption to carbonaceous sediment components:Macroscopic comparison and characterization of sorption kinetics and mechanism. Journal of Hazardous Materials,2009,165(1-3):860-866.
    Cornelissen G, Elmquist M., Groth I., et al. Effect of sorbate planarity on environmental black carbon sorption. Environmental Science & Technology, 2004,38(13):3574-3580.
    Cornelissen G, Hassell K.A., Van Noort P.C.M., et al. Slow desorption of PCBs and chlorobenzenes from soils and sediments:relations with sorbent and sorbate characteristics. Environmental Pollution,2000,108:69-80.
    Cuypers C., Grotenhuis T., Nierop K.G.J., et al. Amorphous and condensed organic matter domains:'the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere,2002,48(9):919-931.
    Ehlers G.A.C., Loibner A.P.. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology:A review of geosorbent characterisation. and (bio)availability prediction. Environmental Pollution, 2006,141(3):494-512.
    Fabietti G, Biasioli M., Barberis R., et al. Soil contamination by organic and inorganic pollutants at the regional scale:the case of Piedmont, Italy. Journal of Soils and Sediments,2010,10(2):290-300.
    Filipe O.M.S., Vidal M.M., Duarte A.C., et al. Adsorption-Desorption Behavior of Thiram onto Humic Acid. Journal of Agricultural and Food Chemistry,2009, 57(11):4906-4912.
    Fu S., Cheng H.X., Liu Y.H., et al. Spatial character of polychlorinated biphenyls from soil and respirable particulate matter in Taiyuan, China. Chemophere, 2009,74(11):1477-1484.
    Garcia-Reyes B.R., Rangel-Mendez J.R.. Adsorption kinetics of chromium (Ⅲ) ions on agro-waste materials. Bioresource Technology,2010,101:8099-8108.
    Grathwohl P., Reinhard M.. Desorption of TCE in aquifer material:rate limitation at the grain scale. Environmental Science and Technology,1993,27,2360-2366.
    Hamaker J.W., Thompson J.M.. Adsorption. In:Organic Chemicals in the Soil Environment, Vol.1 (C. A. J. Goring, and J. W. Hamaker, Eds.), Marcel Dekker, New York,1972:49-143.
    Hameed B.H., Salman J.M., Ahmad A.L.. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials,2009,163:121-126.
    Haque R., Lilley S., Coshow W.R.. Mechanism of adsorption of diquat and paraquat on montmorillonite surface. Journal of Colloid Interface Science,1983,30: 185-188.
    Hawker D.W., Connell D.W.. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environmental Science and Technology,1988,22: 382-387.
    Ho Y.S., McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal,1998,70(2):115-124.
    Holoubek I., Dusek L., Sanka M., et al. Soil burdens of persistent organic pollutants-Their levels, fate and risk. Part Ⅰ. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution,2009,157(12): 3207-3217.
    Hu Q., Wang X., Brusseau M.L.. Quantitative structure-activity relationships for evaluating the influence of sorbate structure on sorption of organic compounds by soil. Environmental Toxicology and Chemistry,1995,14:1133-1140.
    Huang W.L., Ping P.A., Yu Z.Q., et al. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry,2003,18(7):955-972.
    Huang W.L., Thomas M.Y., Mark A.S., et al. A distributed reactivity model for sorption by soils and sediments:9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environmental Science and Technology,1997,31:1703-1710.
    Huang W.L., Walter J., Weber J.R.. A distributed reactivity model for sorption by soils and sediments:11. Slow concentration-dependent sorption rates. Environmental Science and Technology,1998,32:3549-3555.
    Huang W.L., Weber Jr.W.J.. A distributed reactivity model for sorption by soils and sediments.10:Relationships between sorption, hysteresis, and the chemical characteristics of organic domains. Environmental Science and Technology, 1997,31:2562-2569.
    Hulscher Th.E.M., Cornelissen G. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants-a review. Chemosphere,1996, 32(4):609-626.
    Jonker M.T.O, Koelmans A.A.. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. Environmental Science and Technology,2002,36(17):3725-3734.
    Kalavathy M.H., Karthikeyan T., Rajgopal S., et al. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science,2005,292(2):354-362.
    Karanfil T., Kilduff J.E., Schlautman M.A., et al. Adsorption of organic macromolecules by granular activated carbon.1. Influence of molecular properties under anoxic solution conditions. Environmental Science and Technology,1996,30(7),2187-2194.
    Karickhoff S.W.. Semiempirical Estimation of Sorption of Hydrophobic Pollution on Nature Sediments and Soils. Chemosphere.1981,10(8):833.
    Kocan A., Petrik J., Jursa S., et al. Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere,2001,43(4-7):595-600.
    KOgel-Knabner I., Kai U.T., Bernd R.. Desorption of PAHs from soil in the presence of dissolved organic matter:effect of solution composition and aging. Journal of Environmental Quality,2000,29:906-916.
    Krishna K.R., Philip L.. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. Journal of Hazardous Materials,2008,160(2-3):559-567.
    Kubatova A., Jansen B., Vaudoisot J.F., et al. Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. Journal of Chromatography A,2002,975(1):175-188.
    Lambert S.M.. Omega, a useful index of soil sorption equilibria. Journal of agricultural and Food Chemistry,1968,16(2):340.
    Leung A., Cai Z.W., Wong M.H. Environmental contamination from electronic waste recycling at Guiyu, southeast China. Journal Material Cycles and Waste Management,2006,8:21-33.
    Li A., Rockne K.J., Sturchio N., et al. PCBs in sediments of the Great Lakes-Distribution and trends, homolog and chlorine patterns, and in situ degradation. Environmental Pollution,2009,157(1):141-147.
    Li Y.F., Harner T., Liu L.Y., et al. Polychlorinated Biphenyls in Global Air and Surface Soil:Distributions, Air-Soil Exchange, and Fractionation Effect. Environmental Science & Technology,2010,44(8):2784-2790.
    Li Z.Z., Tang X.W., Chen Y.X., et al. Sorption behavior and mechanism of Pb(Ⅱ) on Chinese loess. Journal of Environmental Engineering-ASCE,2009,.135(1): 58-67.
    Liu P., Zhu D.Q., Zhang H., et al. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China. Environmental Pollution, 2008,156:1053-1060.
    Liu W.X., Li W.B., Hu J., et al. Sorption kinetic characteristics of polybrominated diphenyl ethers on natural soils. Environmental Pollution,2010,158(9): 2815-2820.
    Liu W.X., Xu S.S., Xing B.S., et al. Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample. Environmental Pollution,2010,158(2): 566-575.
    Low M.J.D.. Kinetics of Chemisorption of Gases on Solid. Chemical Reviews,1960 (60):267-312.
    Lung S.C., Yanagisawa Y, Ford T.E., et al.Characteristics of sorption losses of polychlorinated biphenyl congeners onto glass surfaces. Chemosphere,2000, 41(12):1857-1864.
    Luo J., Farrell J.. Examination of hydrophobic contaminant adsorption in mineral micropores with grand canonical Monte Carlo simulations. Environmental Science and Technology,2003,37,1775-1782.
    Luthy R.G., Aiken G.R., Brusseau M.L., et al. Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science and Technology,1997, 31(12),3341-3347.
    Ma W.L., Li Y.F., Sun D.Z., et al. Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Topsoils of Harbin, China. Archives of Environmental Contamination and Toxicology,2009,57(4):670-678.
    Maqueda C., Perez Rodriguez J.L., Eugenio M.P.. Interaction of chlordimeform with the clay fraction of a variablecharge soil. Soil Science.1986,141(2):138-143.
    Maqueda C., Perez Rodriguez J.L., Martin F., et al. A study of the interaction between chlordimeform and humic acid from a typical chromoxerert soil. Soil Science,1983,136(2):75-81.
    Martin-Neto L., Traghetta D.G., Vaz C.M.P., et al. On the interaction mechanisms of atrazine and hydroxyatrazine with humic substances. Journal of Environmental Quality,2001,30(2):520-525.
    McDonough K.M., Fairey J.L., Lowry G.V.. Adsorption of polychlorinated biphenyls to activated carbon:Equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. Water Research,2008, 42(3):575-584.
    Means J.C., Wood S.G., Hasselt J.J., et al. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science & Technology, 1980,14(12):1524-1528.
    Mechlinska A., Gdaniec-Pietryka M., Wolska L., et al. Evolution of models for sorption of PAHs and PCBs on geosorbents. Trends in Analytical Chemistry, 2009,28(4):466-482.
    Meijer S.N., Ockenden W.A., Sweetman A., et al. Global distribution and budget of PCBs and HCB in background surface soils:Implications or sources and environmental processes. Environmental Science & Technology,2003,121(1): 75-80.
    Motelay-Massei A., Ollivon D., Garban B., et al. Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere,2004, 55(4):555-565.
    Northcott G.L., Jones K.C.. Partitioning, extractability, and formation of nonextractable PAH residues in soil.1. Compound differences in aging and sequestration. Environmental Science and Technology,2001,35(6):1103-1110.
    Park S.U., Kim J.G., Masunaga S., et al. Source Identification and Concentration Distribution of Polychlorinated Biphenyls in Environmental Media Around Industrial Complexes. Bulletin of Environmental Contamination and Toxicology,2009,83(6),859-864.
    Peng X.J., Wang J., Fan B., et al. Sorption of endrin to montmorillonite and kaolinite clays. Journal of Hazadous Materials,2009,168(1):210-214.
    Peuravuori J., Paaso N., Pihlaha, K.. Sorption behaviour of some chlorophenols in lake aquatic humic matter. Talanta,2002,56:523-538.
    Poerschmann J., Frank-Dieter K.. Sorption of very hydrophobic organic compounds on dissolved humic organic matter:2. Measurement of sorption and application of a flory-huggins concept to interpret the data. Environmental Science and Technology,2001,35:1142-1148.
    Qin Z.F., Zhou J.M., Chu S.G., et al. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis. Environmental Health Perspect,2003,111,553-556.
    Ran Y., Huang W.L., Rao P.S.C., et al. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments. Journal of Environmental Quality,2002,31(6):1953-1962.
    Ren N.Q., Que M.X., Li Y.F., et al. Polychlorinated biphenyls in Chinese surface soils. Environmental Science and Technology,2007,41(11):3871-3876.
    Rissato S.R., Galhiane M.S., Ximenes V.F., et al. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the northeastern part of Sao Paulo State, Brazil. Chemosphere,2006,65(11):1949-1958.
    Rutherford D.W., Chiou C.T., Kile D.E.. Influence of soil organic matter composition on the partitioning of organic compounds. Environmental Science and Technology,1992,26:336-340.
    Sener S., Ozyilmaz A.. Adsorption of naphthalene onto sonicated talc from aqueous solutions, Ultrasonics Sonochemistry,2010(17):932-938.
    Senesi N., Rizzi F.R., Dellino P., et al. Fractal dimension of humic acids in aqueous suspension as a function of pH and time. Soil Science Society America Journal, 1996,60:1773-1780.
    Song J., Peng P., Huang W.. Black carbon and kerogen in soils and sediments:1. Quantification and characterization. Environmental Science and Technology 2002,36,3960-3967.
    Sun Z.H., Yu Y.J., Li M., et al. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. Journal of Hazardous Materials,2008, 160(2-3):456-461.
    Tang X.J., Shen C.F., Shi D.Z., et al. Heavy metal and persistent organic compound contamination in soil from Wenling:an emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials,2010,173(1-3):653-660.
    Tang X.W., Li Z.Z., Chen Y.M.. Adsorption behaviors of Zn(Ⅱ) on calcinated Chinese loess. Journal of Hazardous Materials,2009,161:824-834.
    Tateya S., Tanabe S., Tatsukawa R.. PCBs on the globe:possible trend of future levels in the open ocean environment. In. N W Schmidtke (eds). Toxic contamination in large lakes. VOl Ⅲ. Sources, fate and controls of toxic contaminants. Lewis Publi. Inc. Chelsea, Michigan, USA,1988, PP:237-281.
    Ten Hulscher Th.E.M., Van der velde L. E., Bmggeman W.A.. Temperature dependence of Henry's law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environmental Toxicology and Chemistry,1992,14:1261-1272.
    Valle M.D., Jurado E., Dachs J., et al. The maximum reservoir capacity of soil for persistent organic pollutants:implication for global cycling. Environmental Pollution,2005,134(1):153-164.
    Wang D.G., Yang M., Jia H.L., et al. Levels, distributions and profiles of polychlorinated biphenyls in surface soils of Dalian, China. Chemophere,2008, 73(1):38-42.
    Wang P., Zhang Q.H., Wang Y.W., et al. Altitude dependence of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China, Chemosphere,2009,76(11):1498-1504.
    Wania F., Mackay D.. Modelling the global distribution of toxaphene:A discussion of feasibility and desirability. Chemosphere,1993,27(10):2079-2094.
    Weber J.W.J., McGinley P.M., Katz L.E.. A distributed reactivity model for sorption by soils and sediments.1. Conceptual basis and equilibrium assessments. Environmental Science and Technology,1992,26 (10):1955-1962.
    Weber Jr.W.J., McGinley P.M., Karts L.E. Sorption phenomena in subsurface systems:concept, models and effects on contaminants fate and transport. Water Research,1991,25(5):499-528.
    Weber Jr.W.J., Morris J.C.. Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division,1963,89:31-59.
    Weber W.J., Huang W.L., LeBoeuf E.J.. Geosorbent organic matter and its relationship to the binding and sequestration of organic contaminants. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,151(1-2): 167-179.
    Weber W.J., Leboeuf E.J., Young T.M., et al. Contaminant interactions with geosorbent organic matter:Insights drawn from polymer sciences. Water Research,2001,35(4):853-868.
    Wiegel J., Wu Q.. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecology,2000,32(1):1-15.
    Wu S.C., Gschwend P.M.. Sorption kinetics of hydrophobic organic-compounds to natural sediments and soils. Environmental Science and Technology,1986, 20(7):717-725.
    Xiao B. The effects of soil organic matter heterogeneity on equilibrium sorption by soils and sediments. Ph.D. Dissertation, Drexel University, Philadelphia, PA.2004.
    Xiao B.H., Yu Z.Q., Huang W.L., et al. Black carbon and kerogen in soils and sediments.2. Their roles in equilibrium sorption of less-polar organic pollutants. Environmental Science and Technology,2002,38(22):5842-5852.
    Xing B., McGill W.B., Dudas M.J... Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants. Environmental Science and Technology,1994,28:1929-1933.
    Xing B.S., Chen Z.Q.. Spectroscopic evidence for condensed domains in soil organic matter. Soil Science,1999,164(1):40-47.
    Xing B.S., Pignatello J.J., Gigliotti B.. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environmental Science and Technology,1996,31(8):2432-2440.
    Xing B.S., Pignatello J.J.. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environmental Science and Technology,1997,31(3):729-799.
    Xing B.S.. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere,1997,35(3):633-642.
    Yang Y., Hofmann T., Pies C., et al. Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil. Environmental Pollution,2008,156(3):1357-1363.
    Yaron B., Dror I., Berkowitz B.. Contaminant geochemistry-a new perspective. Naturwissenschaften,2010,97(1):1-17.
    Young T.M., Weber W.J.. A distribution reactivity model for sorption by soils and sediments.3. Effects of diagenetic processes on sorption energenics. Environmental Science and Technology,1995,29(1):92-97.
    Yu Z.Q., Huang W.L., Song J.Z., et al. Sorption of organic pollutants by marine sediments:Implication for the role of particulate organic matter. Chemosphere, 2006,65(11):2493-2501.
    Yuan GS., Xing B.S.. Site-energy distribution analysis of organic chemical sorption by soil organic matter. Soil Science,1999,164(7):503-509.
    Zeng G.M., Zhang C., Huang G.H., et al. Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-south China. Chemosphere,2006(65): 1490-1499.
    Zhou W.J., Zhu K., Zhan H.Y., et al. Sorption behaviors of aromatic anions on loess soil modified with cationic surfactant. Journal of Hazardous Materials,2003, 100:209-218.
    毕新慧,储少刚 徐小白.多氯联苯在土壤中的吸附行为.中国环境科学,2001,21(3):284-288.
    崔兆杰,宋善军,刘静.多氯联苯在土壤中的吸附规律及其影响因素研究.生态环境学报,2010,19(2):325-329.
    何松多,张奇春,王光火.水稻土对磷的吸附及吸附态磷的释放特征.浙江大学学报,2010,36(1):69-73.
    匡丽,王宝辉,张学佳等.聚丙烯酰胺在土壤上的吸附研究.环境污染与防治,2008,30(1):25-32.
    李晓军,李培军 蔺昕.土壤中难降解有机污染物锁定机理研究进展.应用生态学报,2007,18(7):1624-1630.
    刘静,崔兆杰,许宏宇.土壤和沉积物中多氯联苯(PCBs)的环境行为研究进展.山东大学学报(工学版),2006,36(5):94-98.
    罗晓丽,齐亚超,张承东等.多环芳烃在中国两种典型土壤中的吸附和解析行为研究.环境科学学报,2008,28(7):1375-1380.
    罗雪梅,杨志峰,何孟常等.土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用.土壤,2005,37(1):25-40.
    孟亚黎,赵明宪,王子忱等.东北草甸黑土对多氯联苯的吸附淋溶迁移特性的探讨.吉林大学自然科学学报,1994,1:85-88.
    武庭瑄,周敏,郭宏栋等.四环素在黄土中的吸附行为.环境科学学报,2008,28(11):2311-2314.
    展惠英 蒋煜峰 袁建梅等.萘和菲在黄土上的吸附动力学研究.环境科学与技术,2005,28(5):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700