水、旱稻抗逆QTL定位及不同抗逆性的遗传重叠研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,提高作物产量水平主要依靠两种途径:一是提高单产,二是增强品种抗逆性。据统计,近五年我国每年因自然灾害造成的粮食损失达1000亿斤左右,逆境已成为粮食生产中重要影响因素。抗逆性是复杂的数量性状,依靠传统的育种方法很难使作物抗逆性水平有很大改良。随着数量性状位点(QTL)研究理论和方法的不断完善,以及不同作物相应高密度遗传图谱的构建,使剖析复杂抗逆性状遗传基础成为可能。
     本研究以旱稻IAPAR-9分别与秋光和辽盐241杂交而创制的两个F7重组自交系群体为试验材料,开展了水稻氮高效、抗旱、耐盐碱和耐冷等抗逆QTL定位及其与环境的互作研究、QTL表达的遗传背景研究和不同抗逆性遗传区段重叠研究,旨在更好的了解复杂抗逆性状的遗传基础,丰富抗逆性状QTL遗传位点信息,结合与已报道抗逆QTL位点的比较,重点挖掘受遗传背景影响和与环境互作效应较小的QTL,为进一步抗逆QTL的精细定位和分子标记辅助选择育种提供理论依据,并对不同抗逆性遗传重叠在高效抗逆育种中的应用进行有益探讨。获得以下主要结果:
     1.两个群体共检测到氮素利用率相关性状的QTL 64个,氮素利用率相关性状QTL的表达,受遗传背景影响较大。两个重组自交系群体共检测到16个氮素利用率相关性状QTL的成簇分布区间,这16个区间应在今后的氮高效育种中近一步探讨其应用价值。其中位于第2染色体上的RM3421-RM5404区间以及第8染色体上RM8264所在的相邻区间内QTL的表达受遗传背景和环境影响较小,可能对水稻氮高效分子标记辅助选择育种有重要利用价值。
     2.两个群体在吉林检测到抽穗天数等11个和在海南检测到株高等7个主要农艺性状在正常、旱胁迫以及胁迫与对照差值条件下的的QTL共计314个,其中108个与抗旱性有关。不同旱胁迫环境下均检测到抗旱相关QTL所在的染色体区段有13个,不同遗传背景下均检测到抗旱相关QTL所在的染色体区段有12个,这25个染色体区段对开展不同环境下抗旱分子标记辅助选择育种有重要参考价值。
     3.两个群体在唐海检测到株高等8个主要农艺性状在正常、盐胁迫以及胁迫与对照差值条件下的QTL 69个,其中17个属耐盐相关QTL,分布在16个耐盐相关染色体区段,其中两个群体中均检测到耐盐染色体区段有2个,这2个共有区段对耐盐分子标记辅助选择育种有重要利用价值。
     4.两个群体在吉林检测到影响株高等5个主要农艺性状在正常、低温胁迫以及胁迫与对照差值条件下的QTL 88个,其中25个属耐冷相关QTL,分布在21个染色体区段上,两个群体中均检测到的耐冷染色体区段有2个,这2个共有区段对耐冷分子标记辅助选择育种有重要利用价值。昆明自然低温条件下检测到抽穗天数等7个主要农艺性状的QTL 61个,低温胁迫下主要农艺性状QTL表达受遗传背景影响较大。
     5.两个群体共检测到3个苗期碱胁迫下存活天数的QTL,增加碱胁迫下存活天数的等位基因均来自共同亲本(IAPAR-9)之外的亲本,且与前人定位的苗期耐盐QTL存在遗传重叠,对水稻耐盐碱分子标记辅助选择育种有重要利用价值。
     6.不同抗逆性间均存在部分遗传重叠,重叠区间在水稻12个染色体上均有分布,可能存在分布热点区间,如第1染色体RM3482所在的相邻区间在本研究的两个群体中均是多种抗逆性的遗传重叠区间,研究结果为多抗逆性分子标记辅助选择育种体系的建立提供了理论依据,以及进一步的多抗逆性分子标记辅助选择提供了可参考的遗传标记信息。
There were two ways to improve crop yield:increasing per unit area yield and enhancing corps abiotic stress tolerance. According to statistics, the yearly grain yield loss was up to about 1,000 billion kilograms in recent 5 years due to adverse environmental conditions, which was the most import factor in crop production. Crop abiotic stress tolerance, as the complex quantitive traits, was hard to be enhanced by traditional breeding methods, but it can be done by unraveling abiotic stress tolerance genetic mechanisms with the continuous improvement of quantitative trait locus (QTL) theory and method and the construction of high-density genetic map.
     In this study, IAPAR-9 (upland rice) was crossed with two lowland rice, Liaoyan241 and Akihikari, and fostered two recombinant inbred lines (RILs). The two RILs were used to study genetic background and environmental effects on expression of QTLs for abiotic stress tolerance (cold, drought, salidiy, and Nitrogen Efficiency), and genetic overlap of these QTLs were compared. All of results aimed to better understand abiotic stress tolerance mechanisms and provide more beneficial QTLs, and to provide theoretical basis for fine mapping and molecular marker-assisted breeding of abiotic stress tolerance by identifying stable QTLs across environment and genetic backgrounds. The application of genetic overlap to breeding for abiotic stress tolerance was also discussed. These main results were summarized as follows:
     1. A total of 64 QTLs referring some traits correlated with nitrogen utilization efficiency were detected in the two RILs, forming 16 clusters in rice chromosomes. The 16 QTL clusters in chromosomes would be used in MAS rice breeding. The interval, RM3421-RM5404, in chromosome 2 and the adjacent interval with RM8264 in chromosome 8, where QTLs underlying traits associated with nitrogen utilization efficiency stably expressed across different genetic backgrounds and environment, may be beneficial MAS for nitrogen efficiency in rice.
     2. A total of 314 QTLs underlying 11 and 7 main agronomy traits in Jilin and Hainan province, respectively, were detected under drought stress and non-stress conditions in two RILs, among them 108 QTLs had contribution to drought tolerance. There were 13 and 12 chromosome intervals, respectively, where QTL stably expressed across two drought stress conditions and two RILs. The total 25 chromosome intervals may be beneficial MAS for drought tolerance in rice.
     3. A total of 69 QTLs affecting 8 main agronomy traits were identified in two RILs under salinity stress and non-stress in Tanghai county. The 17 QTLs which had contribution to salinity tolerance were distributed 16 intervals on chromosomes, and only 2 intervals among them, where QTLs stably expressed across different two RILs, may be beneficial MAS for salinity tolerance in rice.
     4. A total of 88 QTLs affecting 5 main agronomy traits were identified in two RILs under cold stress and non-stress in Jilin province. The 25 QTLs which had contribution to cold tolerance were distributed 21 intervals on chromosomes, and the 2 intervals among them, where QTLs stably expressed across different two RILs, may be beneficial MAS for cold tolerance in rice. In addition, 61 QTLs affecting main agronomy traits were identified in two RILs under nature low temperature in Kunming city, and which further indicated genetic background had a significant impact on QTL expression of main agronomy traits under cold stress.
     5. A total of 3 QTLs affecting survival days of seedlings (SDS) at seedling stage were identified in two RILs under alkaline stress,which had genetic overlap with salinity tolerance QTLs identified by previous studies, and the alleles contributed to alkaline tolerance were all from the parents except IAPAR-9.The 3 QTLs may be beneficial MAS for salinity-alkaline tolerance in rice.
     6. There were genetic overlap among abiotic stress tolerance to some extend,and the intervals harboring multiple stress tolerance QTLs distribute on all 12 chromosomes,maybe hot spot regions existed, such as the adjacent interval with RM3482 in chromosome 1, which was identified to harbor multiple abiotic stress tolerance QTLs in two RILs in this study. The results offered useful information for molecular breeding of multiple abiotic stress tolerance.
引文
1.陈杰中,徐春香.冷害及其抗冷生理.福建果树,1998,2:21-23.
    2.陈善娜,李松,王文.水稻耐寒性苗期生理生化指标测定.西南农业学报,1989,2(4):20-24.
    3.陈玮,李炜.水稻RIL群体芽期耐冷性基因的分子标记定位.武汉植物学研究,2005,23(2):116-120.
    4.陈一清,高铸九.水稻品种耐冷性鉴定.上海农业学报,1990,6(1):65-72.
    5.程广友,许文会,黄永秀.植物耐盐碱性的研究(一)水稻耐盐性与耐碱性相关分析.吉林林学院学报,l996,l2(4):214-2l7.
    6.程海涛,姜华,薛大伟,郭龙彪,曾大力,张光恒,等.水稻芽期与幼苗前期耐碱性状QTL定位.作物学报,2008,34(10):1719-1727.
    7.程海涛,姜华,颜美仙,董国军,钱前,郭龙彪.两个水稻DH群体发芽期和幼苗前期耐碱性状QTL定位比较.分子植物育种,2008,6(3):439-450.
    8.川田信一郎.申廷秀,刘执钧,彭望瑗,译.水稻的根系.北京:农业出版社,1984.
    9.戴陆园,叶昌荣,工藤悟,丹野久.中日合作稻耐冷性研究十五年进展概述.作物品种资源,1998,4:40-48.
    10.戴陆园,叶昌荣,余腾琼,等.水稻耐冷性研究Ⅰ.稻冷害类型及耐冷性鉴定评价方法概述.西南农业学报,2002,15(1):41-45.
    11.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165.
    12.龚继明,郑先武,社保兴,等.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究.中国科学C(辑),2000,30:561-569.
    13.龚勋,蔡海亚,刘少佳,章志宏.水稻芽期耐冷性主效QTL qSCT-11的分子标记定位.毕节学院学报,2008,26(4):71-74.
    14.巩迎军,阮雯君,荀星,董彦君,林冬枝,叶胜海,等.水稻芽性状耐冷性的QTL分析.分子植物育种,2009,7(2):273-278.
    15.顾兴友,梅曼彤,严小龙,郑少玲,卢永根.水稻耐盐性数量性状位点的初步检测.中国水稻科学,2000,14(2):65-70.
    16.郭岩,张莉,肖岗,曹守云,谷冬梅,陈受宜.甜菜碱脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学C(辑),1997,27(2):15l-155.
    17.韩龙植,高熙宗,朴钟泽.水稻耐冷性遗传及基因定位研究概况与展望.中国水稻科学,2002,16(2):193-198.
    18.韩龙植,乔永利,张媛媛,曹桂兰,芮钟斗,高熙宗.水稻孕穗期耐冷性QTLs分析.作物学报,2005,31(5):653-657.
    19.韩龙植,张三元,乔永利,阮仁超,张俊国,曹桂兰,等.冷水胁迫下水稻幼苗期根系性状的QTL分析.作物学报,2005,31(11):1415-1421.
    20.韩龙植.水稻种质资源描述规范和数据标准.北京:中国农业出版社,2006,106-109.
    21.胡莹,王奕众.水稻RIL群体苗期耐冷性QTL分析.武汉植物学研究,2005,23(3):211-215.
    22.黄见良,李合松,李建辉,邹应斌,陈开铁.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94.
    23.黄锦文,梁义元,林文雄,梁康迳.超级稻籽粒灌浆特性及其生理生化基础.福建农业学报,2002,17(3):143-147.
    24.简令成,孙龙华,孙德兰,向德明,曾秋涛,曾南清.柑桔叶片组织细胞结构的特性与其种类抗寒性的关系.湖南农业科学,1984,1:22-24.
    25.简令成,吴素萱.植物抗寒性的细胞学研究——小麦越冬过程中细胞结构的变化.植物学报,1965,13:198-208.
    26.简令成,植物抗寒机理研究的新进展.植物学通报,1992,9(3):17-22.
    27.金千瑜.水稻不同品种抗旱机理和相关农艺性状QTL干旱特异表达研究.浙江:浙江大学,2006.
    28.李继开.水稻抗盐育种前途光明.盐碱地利用,1992(3):10-12.
    29.李鲁华,李世清,翟军海,史俊通.小麦根系与土壤水分胁迫关系的研究进展.西北植物学报,2001,11-17.
    30.李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展.热带亚热带植物学报,2000,8(1):70-80.
    31.李培德.水稻氮高效有关性状QTLs定位及不同基因型氮素利用效率差异分析.合肥:安徽农业大学,2006.
    32.李太贵,郭望模.中国栽培稻种质资源对主要逆境的抗性鉴定研究.见:应存山.中国稻种资源.北京:中国农业科技出版社,1993,71-75.
    33.林鸿宣,柳原城司,庄杰云,仙北俊弘,郑康乐,八岛茂夫.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72-78.
    34.林静,张亚东,朱镇,赵凌,陈涛,王才林.利用重组自交系群体检测水稻芽期耐冷性QTL.江西农业学报,2008,20(3):1-3.
    35.林文,李义珍,郑景生,姜照伟.施氮量及施肥法对水稻根系形态发育和地上部生长的影响.福建稻麦科技,1999,17(3):21-24.
    36.刘国华,陈立云,李国泰.杂交晚稻新组合及其恢复系耐冷性生理生化指标分析.杂交水稻,1993,4:32-35.
    37.罗利军,张启发.栽培稻抗旱研究现状.中国水稻科学,2001,15(3):209-241.
    38.马建华,郑海雷.植物耐盐的分子生物学基础.生物学杂志,2007(1):5-8.
    39.马树庆,王琪,王连敏,等.水稻开花期不育评估模式的试验研究.气象学报,2000,58(增刊):954-960.
    40.穆平,李自超,李春平,等.水、旱稻根系性状与抗旱性相关分析及其QTL定位.科学通报,2003,48(20):2162-2167.
    41.倪晋山.玉米幼苗NO3-吸收、溢泌和硝酸还原酶活性在品种间的差异.植物生理学报,1988,14(2):188-195.
    42.牛东玲,王启基.盐碱地治理研究进展.土壤通报,2002,23(2):449-445.
    43.朴钟泽,韩龙植,高熙宗,陆家安,张建明.水稻氮素利用效率的选择结果.作物学报,2004,30(7):651-656.
    44.祁栋灵,郭桂珍,李明哲,杨春刚,张俊国,曹桂兰,等.碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测.作物学报,2009,35(2):301-308.
    45.祁栋灵,李丁鲁,杨春刚,李明哲,曹桂兰,张俊国,等.粳稻发芽期耐碱性的QTL检测.中国水稻科学,2009,23(6):589-594.
    46.祈栋灵.水稻耐碱性数量性状座位(QTLs)初步分析.成都:四川农业大学,2006.
    47.钱益亮,王辉,陈满元,张力科,陈冰嬬,崔金腾,等.利用BC2F3产量选择导入系定位水稻耐盐QTL.分子植物育种,2009,7(2):224-232.
    48.曲延英,穆平,李雪琴,田玉秀,文峰,张洪亮,等.水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位.作物学报,2008,34(2):198-206.
    49.曲英萍.水稻耐盐碱性QTLs分析.北京:中国农业科学院研究生院,2007.
    50.屈婷婷,陈立艳,章志宏,胡中立,李平,朱立煌,等.水稻籼粳交DH群体苗期耐冷性基因的分子标记定位.武汉植物学研究,2003,21(5):385-389.
    51.全成哲,金成海,金京花,等.延边地区水稻冷害及其防御技术.延边大学农学学报,2006,
    28(3):172-176.
    52.沈波,蒋靓,於卫东,樊叶杨,庄杰云.水稻苗期盐胁迫下叶绿素荧光参数的QTL分析.中国水稻科学,2009,23(3):319-322.
    53.沈义国,杜保兴,张劲松,等.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析.生物工程学报,2001,17(1):1-6.
    54.孙勇,藏金萍,王韵,朱苓华,Fotokian M,徐建龙,等.利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL.作物学报,2007,33(10):1611-1617.
    55.滕胜,钱前,曾大力,等.水稻苗期耐旱性基因位点及其互作的分析.遗传学报,2002,29(3):235-240.
    56.汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位.中国水稻科学,2007,21(6):585-590.
    57.王红,简令成,张举仁.低温胁迫下水稻幼叶细胞内Ca2+水平的变化.植物学报,1994,36 (8):587-591.
    58.王洪春,汤章城,苏维埃.水稻干胚膜脂肪酸组分差异性分析.植物生理学报,1980,6:
    54-59.
    59.王辉,曹立勇,郭玉华,程式华.水稻生理特性与抗旱性的相关分析及QTL定位.中国水稻科学,2008,22(5):477-484.
    60.王向东,顾俊飞,腊红桂,宋倩,赵鹏珂,王化琪.早稻渗入系抽穗期根系性状QTL定位.中国农学通报,2009,25(12):14-19.
    61.王雨,孙永建,陈灯银,余四斌.水稻染色体片段代换系对氮、磷胁迫反应差异及其QTL分析.作物学报,2009,35(4):580?587.
    62.王忠.植物生理学.北京:中国农业出版社,2000,475.
    63.吴杏春,王茵,林文雄.水稻苗期耐冷性状的QTL分析.中国生态农业学报,2008,16(4):1067-1069.
    64.谢国生,朱伯华,彭旭辉,杨梅.水稻苗期对不同pH值下NaC1和NaHCO胁迫响应的比较.华中农业大学学报,2005,24(2):121-124.
    65.熊振民,闵绍楷,王国梁,等.早籼品种苗期耐冷性的遗传研究.中国水稻科学,1990,4(2):75-78.
    66.徐福荣,戴陆园,叶昌荣.水稻耐冷性研究的概况与展望.作物杂志,2000,1:4-5.
    67.徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系.作物学报,1995,21(2):171-175.
    68.徐云碧,申宗坦.籼梗稻间的苗期耐冷性的遗传研究.中国农业科学,1989,(5):25-28.
    69.杨静,孙勇,程立锐,周政,王韵,朱苓华,等.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响.作物学报,2009,35(6):974-982.
    70.杨玲,孙娜,余有见,胡海涛.水分胁迫下水稻叶片相关生理性状的QTL定位.浙江农业学报,2009,21(5):490-494.
    71.杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究.土壤学报,1992,1:73-79.
    72.叶昌荣,加藤明,齐藤浩二,伊势一男,戴陆园,杨勤忠.云南稻种冲腿的孕穗期耐冷性QTL分析.中国水稻科学,2001,15(1):13-16.
    73.应存山.中国稻种资源.北京:中国农业科技出版社,1993,71-75.
    74.於卫东,蒋靓,庄杰云,樊叶杨,沈波.盐胁迫下水稻部分生化性状的QTL定位.核农学报,2009,23 (1):150-153.
    75.藏金萍,孙勇,王韵,杨静,李芳,周永力,等.利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠.中国科学C(辑),2008,38(9):841-850.
    76.詹庆才,曾曙珍,熊伏星,齐藤浩二,加藤明.水稻苗期耐冷性QTLs的分子定位.湖南农业大学学报,2003,29(1):7-11.
    77.张海燕.植物冷害机理综述.山西师范大学学报,1998,12(1):64-67.
    78.张建锋,张旭东,周金星,等.世界盐碱资源及其改良利用的基本措施.水土保持研究,2005,12(6):28-30.
    79.张露霞,王松凤,江玲,万建民.利用重组自交系群体检测水稻芽期耐冷性QTL.南京农业大学学报,2007,30(4):1-5.
    80.张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999.16(4):429-432.
    81.张旭.水稻生态育种.北京:农业出版社,1991,243-273.
    82.张炎,史军辉,李磐,冯耀祖,马海刚.农田土壤氮素损失与环境污染.新疆农业科学,2004(1):57-60.
    83.赵可夫.植物对盐胁迫的适应.生物学通报,2002,37(6):7-10.
    84.赵秀琴,徐建龙,朱苓华,黎志康.利用高代回交导入系定位水、旱条件下影响水稻根系及产量的QTL.中国农业科学,2008,41(7):1887-1893.
    85.赵秀琴,徐建龙,朱苓华,黎志康.利用回交导入系定位干旱环境下水稻植株水分状况相关QTL.作物学报,2008,34(10):1696-1703.
    86.郑东虎,王兴国.植物冷害分子机理的研究进展.延边大学农学学报,1997,19(4):209-214.
    87.郑景生,林文,姜照伟,李义珍.超高产水稻根系发育形态学研究.福建农业学报,1999,14(3):1-6.
    88.郑少玲,严小龙.盐胁迫下不同水稻基因型根中Na+和Cl-分布.华南农业大学学报,1996,17(4):24-28.
    89.郑天清.水稻高代回交导入系选择群体的选择响应与遗传重叠研究.南京:南京农业大学,2006.
    90. Adam P,Brigitte C.Mapping QTLs associated with drought resistance in rice,progress,problems and prospects.Plant growth regulation,1999,29:123-133.
    91. Ali M,Pathan M S,Zhang J,Bai G,Sarkarung S,Nguyen H T.Mapping QTLs for root trait in a recombinant inbred population from two indicaecotypes in rice.Theor Appl Genet,2000,1:756-766.
    92. Andaya V C,Mackill D J.Mapping of QTLs associated with cold tolerance during the vegetative stage in rice.Journal of Experimental Botany,2003,54(392):2579-2585.
    93. Andaya V C,Mackill D J.QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica×indica cross.Theor Appl Genet,2003,106:1084-1090.
    94. Andaya V C,Tai T H.Fine mapping of the qCTS12 locus,a major QTL for seedling cold tolerance in rice.Theor Appl Genet,2006,113:467-475.
    95. Ashwani K R,Teruhiro T.Abiotic stress tolerance in plants.Springer Netherlands,2006.
    96. Austin D F,Michael L.Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments.Crop Sci,1998,38:1296-1308.
    97. Baba T,Fujiya M H.Short-term response of rice and tomato to NaCl stress in relation to ion transport.Soils Science and Plant Nutrition,2003,49(4):513-519.
    98. Babu R C,Nguyen B D,Chamarerk V,et al.Genetic analysis of drought resistance in rice by molecular markers:association between secondary traits and field performance.Crop Sci,2003,43(4):1457-1469.
    99. Barber S A.Soil nutrient Bioavailabiltiy:a mechanistic approach(2nd ed).USA:Wiley,1984:588-590.
    100. Begg J E,Turner N C.Crop water deficits.Advan Agron,1976,28:161-217.
    101. Bemier J,Kumar A,Venuprasad R,Spaner D,Atlin G.A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice.Crop Sci,2007,47:507-516.
    102. Bemier J,Kumar A,Venuprasad R,Spaner D,Mandal N P,Sinha P K,et al.Characterization of the effect of a QTL for drought resistance in rice,qtl12.1,over a range of environments in the Philippines and eastern India.Euhpytica,2009,166:207-217.
    103. Bertrand H,Le Gouis J,Bertrand N, AndréG.The challenge of improving nitrogen use efficiency in crop plantz:towards a more central role for genetic variability and quantitative genetics within integrated approaches.Journal of Experimental Botany,2007,58(9):2369-2387.
    104. Broadbent F E,de Datta S K,Laureles E V.Measurement of nitrogen-use efficiency in ricegenotypes.Agron J,1987,79:786-791.
    105. Cassman K G,Peng S,Olk D C,Ladha J K,Reichardt W,Dobermann A,et al.Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems.Field Crops Res,1998,56:7-39.
    106. Champoux M C,Wang G,Sarkaruag S,Mackill D J,O′Toole J C,Huang N,et al.Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers.Theor Appl Genet,1995,90:969-981.
    107. Chin J H,Lu X C,Haefele S M,Gamuyao R,Ismail A,Wissuwa M,et al.Development and application of gene-based markers for the major rice QTL phosphorus uptake 1.Theor Appl Genet,2010,120:1073-1086.
    108. Cho Y I,Jiang W Z,Chin J H,Piao Z Z,Cho Y G,McCouch S R,et al.Idenfification of QTLs associated with physiological nitrogen use efficiency in rice.Mol Cells,2007,23(1):72-79.
    109. Cho Y I,Koh H J.Genotypic variation of physiological nitrogen use efficiency and its relationship with agronomic characters in rice.Korean J Breed,2005,37:311-318.
    110. Courtois B,McLaren G,Sinha P K,et al.Mapping QTLs associated with drought avoidance in upland rice.Mol Breed,2000,6:55-66.
    111. De Datta S K,Broadbent F E.Methodology for evaluating nitrogen utilization efficiency by rice genotypes.Agron J,1988,80:793-798.
    112. Dingkuhn M,Cruz R T,O′Toole J C,et a1.Net phytosynthesis,water use efficiency,leaf water pontential and leaf rolling as affected by water deficit in tropical upland rice.Australian Journal of Agricultural Research,1989,40:l171-1181.
    113. Dingkuhn M,De Datta S K,Dorffling K,et a1.Varietal differences in leaf water potential,leaf net CO2 assimilation,conductivity and water use efficiency in upland rice.Aust J Agr Res,1989,40:1183-1192.
    114. Dreccer M F,Schapendonk A H C M,Slafer G A,Rabbinge R.Comparative response of wheat and oilseed rape to nitrogen supply:absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield.Plant and Soil,2002,220:189-205.
    115. Dure L M.Developmental biochemistry of cotton seed embryogenessis and germination:changing mRNA population as shown in vitro and in vivo protein synthesis,Biochemistry,198l,20(4):162-168.
    116. Ekanayake I J,O′Toole J C,Carrity D P,et a1.Inheritance of root characters and their relations to drought resistance in rice.Crop Science,1985,25:927-933.
    117. Ekanayake I J.Root pulling resistance in rice:Inheritance and association with drought tolerance.Euphytica,l985,34:905-913.
    118. FAO.Fertilizer Use by Crops.Rome:Food and Agriculture Organization of the United Nations,2006.
    119. Feng Y,Cao L Y,Wu W M,Shen X H,Zhan X D,Zhai R R,et al.Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.).Plant Breeding,2009:1-5.
    120. Foolad M R,Jones R A.Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait base marker analysis.Theor App1 Genet,1993,87(1-2):l 84-1 92.
    121. Fukai S,Cooper M.Development of drought-resistant cultivars using physio-morphological traits in rice.Field Crops Res,1995,40:67-86.
    122. Futsuhara Y,Toriyama K.Studies the testing methods of cold resistance in rice.Japan Journal of Breeding,1964,14:166-172.
    123. Ginzberg I,Stein H,Kapulnik Y,Szabados L,Strizhov N,Sehell J,et al.Isolation and characterization of two different cDNAs of△′-prroline-5-carboxylate synthase in alfalfa,transcriptionally induced upon salt stress.Plant Mol Biol,1998,38(5):755-764.
    124. Gu X Y,Mei M T,Yan X L.Pre1iminary detection of quan titative trait loci for tolerance in rice.Chin J Rice Sei,2000,l4(2):65-70.
    125. Gu X Y,Zheng S L,Yan X L,Lu Y G.Analysis of generation means for the inheritance of salt tolerance in rice seedlings.Acta Agron Sin,1999,25(6):687-690.
    126. Hayashi H,Alia,Mustardy L,Deshnium P,Ida M,Murata N.Transformation of Arabidopsis thaliana with the codA gene for choline oxidase,accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Plant Journal,1997,12(1):133-142.
    127. Hemamalini G S,Shashidhar H E,Hittalmani Shailaja.Molecular marker assisted tagging morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice.Euphytica,2000,112:69-78.
    128. Hien T D,Jacobs M,Angenon G,et al.Proline accumulation and 1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance.Plant Science,2003,165(5):1059-1068.
    129. Huang S,Spielmeyer W,Lagudah E S,James R A,Platten J D,Dennis E S,et al.sodium transporter (HKT7) is a candidate for Nax1,a gene for salt tolerance in durum wheat.Plant Physiol,2006,142:1718-1727.
    130. IRRI.Rice research in a time of change:IRRI's Medium-Term Plan for 1994–1998.International Rice Research Institute,Los Ba?os,Philippines,1993.
    131. IRRI.Rice almanac.IRRI,WARDA,CIAT,1997.
    132. James R A,Davenport R J,Munns R.Physiological characterization of two genes for Na+ exclusion in durum wheat,Nax1 and Nax2.Plant Physiol,2006,142:1537-1547.
    133. Jiang L G,Dai T B, Jiang D, Cao W X, Gan X Q,Wei S Q.Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.Field Crops Research,2004,88:239-250.
    134. Kim C H,Choi H C.Present status, problems and future prospects in rice breeding for cold tolerance.In:Summarization of agricultural experiment,1982,22-37.
    135. Kosambi D D.The estimation of map distance from recombination values.Annu Eugen,1944,12:172-175.
    136. Koyama M L,Levesley A,Koebner R M D,Flowers T J,Yeo A R.Quantitative trait loci for component physiological traits determining salt tolerance in rice.Plant Physiol,2001,125:406-422.
    137. Ladha J K,Kirk G J D,Bennett J,Peng S,Reddy C K,Reddy P M,Singh U.Opportunities for increased nitrogen use efficiency from improved lowland rice germplasm.Field Crops Res,1998,56:41-71.
    138. Ladha J K,Tirol-Padre A,Punzalan G C,Castillo E,Singh U,Reddy C K.Nondestructive estimation of shoot Nitrogen in different rice genotypes.American Society of Agronomy, Agron J.1998,90:33-40.
    139. Lafitte H R,Edmeades G O.Improvement for tolerance to low soil nitrogen in tropical maize II Grain yield,biomass production,and N accumulation.Field Crop Res,1994,39:15-25.
    140. Lan C,Liang S,Zhou X,Zhou G,Lu Q,Xia X,He Z.Identification of genomic regions controlling adult-plant stripe rust resistance in chinese landrace pingyuan 50 through bulked segregant analysis.Phytopathology,2010,100(4):313-318.
    141. Lee S Y,Ahn J H,Cha Y S,Yun D W,Lee M C,Ko J C,et al.Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice.Mol Cells,2006,21(2):192-196.
    142. Li H H,Ye G Y,Wang J K.A modified algorithm for the improvement of composite interval mapping.Genetics,2007,175:361-374.
    143. Li Z C,Mu P,Li C P,et al.QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments.Theor Appl Genet,2005,
    110:1244-1252.
    144. Lian X M,Xing Y Z,Yan H,Xu C G,Li X G,Zhang Q F.QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid.Theor Appl Genet,2005,112:85-96.
    145. Lilley J M,Ludlow M M,McCouch S R,et al.Locating QTL for osmotic adjustment and dehydration tolerance in rice.Journal of Experimental Botany,1996,47 (30):1427-1436.
    146. Lin H X,Zhu M Z,Yan M,Gao J P,Liang Z W,Su W A,et al.QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance.Theor Appl Gene,2004,108(2):253-260.
    147. Lincoln S,Daly M,Lander E.Constructing genetic maps with Mapmaker/EXP3.0.Whitehead Institute Techn Rep,3rd edn. Whitehead Institute, Cambridge,1992.
    148. Ling J G,Oikeh S,Akintoye H A.Potential for developing nitrogen use efficient maize for low input agricultural systems in the moist savannas of Africa Edmeades.GO,et al.Developing drought-and low CK tolerant maize.Mexico:CIMMYT,1996:491-517.
    149. Mackay T F C.The genetic architecture of quantitative traits.Annu Rev Genet,2001,35:303-339.
    150. Mu P,Li Z C,Li C P,Zhang H L,Wu C M,Li C,et al.QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross.Chinese Science Bulletin,2003,48(24):2718-2724.
    151. Narciso J,Hossain M.World Rice Statistics.IRRI,2002
    152. Nguyen H T,Babu R C,Blum A.Breeding for drought resistance in rice:physiology and molecular genetics considerations.Crop Sci,1997,37:1426-1434.
    153. O′Toole J C.Adaptation of rice to drought prone environments.In:Drought resistance in crops with emphasis on rice.IRRI,Los Ba?os,Philippines,1982:195-213.
    154. Pantuwan G S,Fukai M,Cooper S,Rajatasereekul,O′Toole J C.Yield response of rice (Oryza sativa L.) to drought under rainfed lowlands 1.Grain yield and yield.Field Crop Research,2002a,73:153-168.
    155. Pantuwan G S,Fukai M,Cooper S,Rajatasereekul,O′Toole J C.Yield response of rice (Oryza sativa L.) to drought under rainfed lowlands 2.Selection for drought resistance genotypes.Field Crop Research,2002b,73:169-180.
    156. Pantuwan G S,Fukai M,Cooper S,Rajatasereekul,O′Toole J C.Yield response of rice (Oryza sativa L.) to drought under rainfed lowlands 3.Plant factors contributing to drought resistance.Field Crop Research,2002c,73:181-200.
    157. Passioura J B.Roots and drought resistance.Agricultural Water Management,1983,7:265-280.
    158. Piao Z Z,Li M B,Li P D,Zhang J M,Zhu C M,Wang H,et al.Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice.African Journal of Biotechnology,2009,8(24):6834-6839.
    159. Plant abiotic stress-from signaling to development.International Conference Tartu Estonia,2009.
    160. Price A H,Townend J,Jones M P,et al.Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa.Plant Mol Biol,2002,48:683-695.
    161. Price A H,Yong E M,Tomos A D.Quantitative trait loci associated with stomatal conductance,leaf rolling and heading date mapped in upland rice (Oryza sativa L.).New Phytol,1997,137:83-91.
    162. Puekridge D W,O′Toole J C.Dry matter and grain produetion of rice,sing a line source sprinkler in drought studies.Field Crops Res,1981,3:303-319.
    163. Qi D L,Guo G Z,Lee M C,Zhang J G,Cao G L,Zhang S Y,et al.Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice.J Genet Genomics,2008 (35):299-305.
    164. Qiao Y L,Han L Z,An Y P,Zhang Y Y,Cao G L,Koh H J.Molecular mapping of QTLs for cold tolerance at the budburst period in rice.Agricultural Sciences in China,2004,3(11):801-806.
    165. Ray J D,Yu L,McCoueh S R,Champoux M C,Wang G,Ngugen H T.Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.).Theor Appl Genet,1996,92:627-636.
    166. Robin S, Pathan M S, Courtois B,et al.Mapping osmotic adjustment in an advanced back-cross inbred population of rice.Theor Appl Genet,2003,107:1288-1296.
    167. Samuel P,Hazen M,Safiullah Pathan,et al.Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array.Funct Integr Genomics,2005,5:104-116.
    168. Sanada Y,Veda H,Kuribayashi K,et a1.Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L.and Triticum aestivum L.) leaves and roots under salt stress.Plant and Cell Physiology,1995,36(6):965-970.
    169. Santa C A,Acosta M,Rus A,Bolarin M C.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.Plant Physiology and Biochemistry,1999,37(1):65-71.
    170. Sasaki T.Studies on breeding for germinability at low temperature of rice varieties adapted to direct sowing cultivation in flooded paddy field in cool region.Bull Hokkaido Pref Agric Experi Station,1974,24:1-90.
    171. Satake T . Determination of the most sensitive stage to sterile-type cool injury in rice plants.Research Bulletin of Hokkaido National Agriculture Experiment Station,1976,113:1-33.
    172. Senthilvel S, Vinod K K, Malarvizhi P,Maheswaran M.QTL and QTL×environment effects on agronomic and nitrogen acquisition traits in rice.Journal of Integrative Plant Biology,2008,50(9):1108-1117.
    173. Shan Y H,Wang Y L,Pan X B.Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.).Agricultural Sciences in China,2005,4(10):721-727.
    174. Singh U,Cassman K G,Ladha J K, Bronson K F.Innovative nitrogen management strategies for lowland rice systems//International Rice Research Institute . Fragile Lives in Fragile Ecosystems:Proceedings of the International Rice Research Conference.Manila,Philippines,1995:229-254.
    175. Singh U,Ladha J K,Castillo E C,Punzalan G,Tirol-padre A,Duqueza M.Genotypic variation in nitrogen use efficiency in medium-and long-duration rice.Field Crops Research,1998,58(1):
    35-53.
    176. Suh J P,Jeung J U,Lee J I,Choi Y H,Yea J D,Virk P S,et al.Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.).Theor Appl Genet,2010,120:985-995.
    177. Sunarpi H T,Motoda J,Kubo M,Yang H,Yoda K,Horie R,et al.Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells.Plant J,2005,44,928-938.
    178. Thomas D,Phuc T D,Ellen Z,et al.Expression profiling of rice cultivars differing in their tolerance to long-term drought stress.Plant Mol Biol,2009,69(1-2):133-153.
    179. Tong H H,Mei H W,Yu X Q,Xu X Y,Li M S,Zhang S Q,et al.Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels.Acta Genetica Sinica,2006,33(5):458-467.
    180. Toriyama K,Futsuhara Y.Genetic studies on cool tolerance in rice II.Relations between cool tolerance and the other characters.Japan J Breed,1961,11(3):191-198.
    181. Tsunoda K,Fujimure K,Nakahori T.Studies on the testing method for cool-tolerance in rice plantsⅠ.An improved method by means of short term treatment with cool and deep water.Japan Journal of Breeding,1968,18(1):33-40.
    182. Turner N C,O′Toole J C,Cruz R T,et a1.Response of seven diverse rice cultivars to water deficits l.Stress development,canopy temperature,leaf rolling and growth.Field Crops Research,1986,l3:257-27l.
    183. Turner N C.Adaptation to water deficits:a changing perspective.Aust J Plant physiology,1986,13:175-190.
    184. Turner N C.Drought resistance and adaptation to water deficits in crop plants.New York:Wiley,1979:343-372.
    185. Wang H G,Zhang H L,Gao F H.Compaison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray.Theor Appl Genet,2007,115:1109-1126.
    186. Wang Z F,Wang J F,Wang F H,Bao Y M,Wu Y Y,Zhang H S.Genetic control of germination ability under cold stress in rice.Rice Science,2009,16(3):173-180.
    187. Wu P,Tao Q N.Genotypic response and selection pressure on nitrogen use efficiency in rice under different nitrogen regimes.J Plant Nutr,1995,18:487-500.
    188. Xu D P.Expression of a late embryogenesis abundant protein gene,HVAl,from barley confers tolerance to water deficit and salt strss in transgenic rice.Plant Physiol,1996,110:249-257.
    189. Xu J C,Li J Z,Zheng X W,Zou L X,Zhu L H.QTL mapping of the root traits in rice seedling.Acta Genetica Sinica,2001,28(5):433-438.
    190. Xue Y L, Xia Z A, Paddy rice’s solution culture.In:XueYL,et al.Handbook of plant physiology experiments.Shanghai:Academic Press, 1982:63-64.
    191. Yadav R,Courtois B,Huang N,McLaren G.Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice.Theor Appl Genet,1997,94:619-632.
    192. Yao M Z,Wang J F,Chen H Y,Zhai H Q,Zhang H S.Inheritance and QTL mapping of salt tolerance in rice.Rice Science,2005,12(1):25-32.
    193. Yoshida S.Fundamentals of rice crop science.Los Ba?os, Philippines:IRRI,1981.
    194. Yu L,Ray J D,O′Toole J C,Nguyen H T.Using of wax-petrolatum layers to simulate compacted soil for screening rice (Oryza sativa L.) root penetration ability.Crop Sci,1995,35:684-687.
    195. Yue B,Xiong L Z,Xue W Y,Xing Y Z,Luo L J, Xu C G.Genetic analysis for drought resistance of rice at reproductive stage in field with different type of soil.Theor Appl Genet,2005,111:1127-1136.
    196. Yue B,Xue W Y,Xiong L Z,Yu X Q,Luo L J,Cui K H,et al.Genetic basis of drought resistance at reproduetive stage in rice:separation of drought tolerance from drought avoidanee.Geneties,2006,172:1213-1228.
    197. Zaharieva M,Gaulin E,Havaux M,Acevedo E,Monneveux P.Drought and heat responses in the wild wheat relative Aegilops geniculata Roth:potential interest for wheat improvement.Crop Science,2001,41:1321-1329.
    198. Zhang J,Zheng H G,Aarti A,et al.Locating genomic regions associated with components of drought resistance in rice:comparative mapping within and across species.Theoretical and Applied Genetics,2001,103:19-29.
    199. Zhang Q F.Strategies for developing green super rice.Proc Nati Acad Sci U S A,2007,104(42):16402-16409.
    200. Zheng H G,Babu R C,Pathan M S,Ali L,Huang N,Courtois B,et al.Quantitative trait loci for root-penetration ability and root thickness in rice : comparison of genetic backgrounds.Genome,2000,43:53-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700