太湖地区土壤-作物系统氮素利用的综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖地区是我国著名的农业高产区之一,以稻麦两熟为主,种植历史悠久。近年来,太湖水系水体氮、磷偏高,富营养化问题日益突出,农业面源污染受到广泛关注。该农区稻麦两熟种植体系中,氮肥投入量一直较高,过量施肥普遍,不仅肥料利用率低,而且在土壤—作物系统中氮素持续盈余,导致土壤背景氮较高。因此,从土壤—作物系统中研究氮素利用与平衡特点,以及高产与环境改善的要求,研究适宜的土壤背景氮和适宜的施氮量,对于太湖地区稻麦两熟氮素养分科学管理,降低氮素面源污染具有十分重要的理论与实践意义。
     本研究针对太湖地区土壤高背景氮的现状,通过施氮与不施氮耗竭的定位试验,研究施氮量与土壤背景氮对作物产量、土壤剖面氮素积累与运移、氮肥利用效率等方面的影响,期望明确维持地力、环境保护与稻麦高产、氮高效协调的适宜施肥量。试验于2007-2009年进行,2007年麦季在太湖周边地区的吴江、溧阳、宜兴、武进、常熟和相城(太湖地区农科所)等代表性农田,按0~20cm、20~40cm、40~60cm、60~80cm和80~100cm土壤剖面分层取样,研究了土壤剖面养分特征和对无机氮素的吸附特性。在此基础上,2007-2009年在太湖地区典型农区吴江市,进行3年5季(第1、2、3、4、5季分别为稻、麦、稻、麦、稻季,第6季小麦仍在进行中)稻麦轮作不施氮耗竭与施氮的组合3年定位试验,设养分不施氮耗竭区(不施氮肥区)、施氮肥区(5个水平)。以稻麦周年施纯氮量,施氮肥区全年施纯氮量分别为0(不施氮肥区,即耗竭区)、175、350、525、700、875 kg/hm2,水稻和小麦的施氮量分别占57%和43%,即稻季分别为0、100、200、300、400、500 kg/hm2,麦季分别为0、75、150、225、300、375 kg/hm2。氮肥均用尿素。水稻的氮肥运筹方式为基肥、分蘖肥、穗肥分别在倒4叶期与倒2叶期四次等量施用,小麦的氮肥运筹方式为基肥与拔节孕穗肥,二者比例为6:4。试验过程为2007年进行第一季水稻试验,以稻麦为一周年单位,第一年度(2007年)设置不施氮肥耗竭区和施氮肥区(5个水平);第二年度(2008年)施氮肥区仍按上年度施氮水平继续进行,而经1年(2008年5月份小麦收获后)的不施氮肥耗竭区上分别设置不施氮肥耗竭区和施氮肥区(5个水平);第三年度(2009年),施氮肥区、不施氮耗竭1年后再施氮的小区仍按上年度施氮水平继续进行,而经2年(2009年5月份小麦收获后)的不施氮肥耗竭区上分别又设置不施氮肥耗竭区和施氮肥区(5个水平)。不施氮耗竭区面积在2007年按3年定位试验所需提前规划好。与此同时,在扬州大学试验基地运用土壤渗漏池(Lysimeter),系统研究了在砂土和黏土上稻麦两熟土壤—作物系统中田面水氮、氨挥发、氮素渗漏、作物吸收和土壤剖面氮素累积等氮素行为与数量特征。主要研究结果如下:
     1、太湖流域各县市的耕地土壤氮素含量高于省平均值,其中上层土壤全氮和速效氮含量最高,土壤氮素含量随着土壤剖面深度的增加而减小;各种土壤的不同剖面对铵态氮的吸附量不同,黏土的吸附能力高于砂性土壤,下层土壤的吸附能力高于上层;随着铵态氮浓度的增大,土壤对铵态氮吸附量都表现为增大的趋势。
     2、稻季氨挥发量取决于施氮后田面水NH4+-N浓度,与当次施氮量有关,均随着施氮量的增加而增大,且在施氮后1~3天左右达最大值,田面水NH4+-N浓度和氨挥发峰值同步出现,施氮后一周是减少氨挥发、防止径流氮损失的关键期;黏性土壤的氨挥发损失比例要低于砂性土壤,黏土氨挥发总损失量为10.49~87.06 kg/hm2,占施氮量的比例10.92%~21.76%,砂土氨挥发总损失量为11.32~102.43 kg/hm2,占施氮量的比例11.32%~25.61%;各次施氮后氨挥发损失量的大小依次为分蘖肥>倒4叶穗期>基肥>倒2叶穗肥,发现稻季施氮量300 kg/hm2时氨挥发量比200 kg/hm2跃增。氮素渗漏主要泡田引起,以NO3--N为主,NH4+-N很少,砂土NO3--N的渗漏多于黏土,高氮处理NO3--N的渗漏要高于低氮处理,渗漏量大的土壤要高于渗漏量小的土壤。
     3、土壤—作物系统不同施氮量持续施用,以及不施氮耗竭1、2年后施氮在不同施氮量条件下,各季水稻产量对当季不同施氮量的响应有明显的差异,呈现出土壤背景氮对产量的效应明显,水稻持续施氮处理当季施氮量为100 kg/hm2和200 kg/hm2时,3年水稻产量呈降低趋势,说明土壤不施氮耗竭使背景氮减小,水稻不能获得高产;当施氮量为300 kg/hm2时,持续施氮和不施氮耗竭1、2年后施氮均能获得最高产量;而高于300 kg/hm2时均引起水稻倒伏减产,所以土壤的水稻高产适宜施氮量趋于当季300 kg/hm2、周年525 kg/hm2,可以维持水稻高产的土壤背景氮。水稻累积吸氮量也呈一定的土壤背景效应,氮肥利用率随当季施氮量的增加而降低,与土壤背景氮关系不密切。
     4、小麦季土壤剖面中无机氮素含量不仅与当季施氮量有关,还与土壤肥力背景值有关,各个生育期土壤剖面无机氮素主要集中在0~30 cm土层,且随着施氮量增加而增加,30~100 cm土层无机氮素对施氮量300~375 kg/hm2有明显地响应,拔节期以后已有明显的淋溶效应;施氮量300~375 kg/hm2土壤中无机氮素的残留量一直较高,小麦成熟期土壤无机氮量与播种期相比,施氮量375 kg/hm2处理仍在增加,施氮量小于300 kg/hm2处理均有所减少;小麦—土壤系统氮素表观损失量随着施氮量的增加而增大,施氮处理75 kg/hm2和375 kg/hm2的损失量和损失率(占相应施氮量的比例)分别为26.20 kg/hm2、34.93%,168.64 kg/hm2、44.97%。从小麦各个生育阶段氮素的损失情况来看,播种至返青期氮素表观损失最多,且随着施氮量的增加而增大,因此要控制前期基肥的施用量;拔节至开花期小麦吸肥量最多,低氮处理(75 kg/hm2和150 kg/hm2)出现氮素亏缺,而高氮处理(300 kg/hm2和375 kg/hm2)氮肥表观损失依然较高,土壤中一直存在着较多的无机氮素;小麦施氮量不超过225 kg/hm2较为适宜。
     5、土壤剖面氮素含量主要在耕作层,土壤氮素含量随着土壤深度的增加呈减小趋势,在土壤层次40~50cm处达到最小值,尔后略有增大趋势,不施氮处理土壤剖面氮素含量要比试验前减小,呈现氮素养分耗竭的作用;一旦施氮土壤耕作层的氮素含量对氮肥有响应,且随着施氮量的增加而增大,下层土壤氮素也增大,低氮处理(年施氮量为175 kg/hm2和350 kg/hm2)增加较少,而高氮处理(年施氮量为700 kg/hm2和875 kg/hm2)土壤剖面氮素含量显著增大;第五季作物水稻收获后不施氮耗竭2年后施氮处理的土壤剖面氮素含量要低于不施氮耗竭1年后施氮处理和持续施氮处理的相应处理;小麦季土壤剖面氮素含量特别是上层土壤要显著低于水稻季,耗竭效应对旱季小麦的产量影响作用较大;当季施氮均能改变土壤氮素含量,且与施氮量相关。
     本研究在稻麦较高产的条件下,兼顾氮肥利用效率,综合考虑水稻季施氮后氨挥发效应、土壤氮素渗漏特点和小麦季土壤剖面无机氮素的变化等研究结果表明,太湖流域获得当前生产上水稻目标产量9750 kg/hm2和小麦目标产量6000 kg/hm2,水稻的适宜施氮量为225~300 kg/hm2,小麦的适宜施氮量为180~225 kg/hm2,较有利于维持地力、稻麦高产、氮相对高效和生态安全。
Taihu Lake region is one of the most famous agriculture areas of high yield in China; its rice-wheat double cropping system has a long history. In recent years, the concentration of N and P in water of Taihu Lake is on the high side, the eutrophication of surface waters is increasing seriously, non-point source pollution from agriculture have attracted considerable attention. Nitrogen application rate in rice-wheat double cropping system of Taihu Lake district was always higher. Owing to the long-term excessive use of nitrogen, this not only results in the lower nitrogen use efficiency, but also increases nitrogen surplus in soil-crop system, causing higher content of background nitrogen in soil. So the utilization and balance characteristic of nitrogen in soil-crop system, the aim of higher crops yield and the improvement of environment, the appropriate content of background nitrogen in soil and nitrogen application rate were studied. These researches had great theoretical and practical significance to the scientific management of nitrogen nutrient in rice-wheat double cropping system of Taihu Lake district, and to the decrease of non-point nitrogen pollution to our environment.
     This research based on the current situation of higher content of background soil nitrogen in Taihu Lake region, by doing some experiments about the location of nitrogen application and the exhaustion of nitrogen, the efficiency of nitrogen application rates and content of background soil nitrogen on crop yield, the accumulation and transmission of nitrogen in soil profile, nitrogen use efficiency and so on were studied. With the appropriate amount of nitrogen application, with the appropriate nitrogen application rate, the research aimed at keeping the harmonions relationship among the condition of earth, the protection of environment, the higher yield of rice and wheat and the higher use efficiency of nitrogen. From 2007 to 2009 the experiments were carried out. In the wheat season of year 2007, the researchers took samples of soil profile with the layer of 0~20cm、20~40cm、40~60cm、60~80cm and 80~100cm from the representative farmland in counties of Wujiang, Liyang, Yixing, Wujin, Changshu, Xiangcheng, and then analysed the nutrient characteristic of soil profile and its adsorption characteristic. On this basis, from 2007 to 2009, the located experiments of nitrogen application and nitrogen exhaustion in the rotation of rice and wheat about five crop seasons which were rice-wheat-rice-wheat-rice from first season to fifth season and sixth wheat was growing in three years were carried out in the experimental station of Farming and Forestry Bureau of Wujiang county, Suzhou city, Jiangsu province, China. There were the areas of nitrogen exhaustion (without nitrogen treatments) and areas of nitrogen application (with five nitrogen application rates). According to the amount of pure nitrogen application in rice-wheat system in one year, the treatments of different nitrogen application rate were 0, 175, 350, 525, 700 and 875 kg/ha, the nitrogen fertilizer was divided into 57% for rice and 43% for wheat, so the nitrogen application rate for rice were 0, 100, 200, 300, 400 and 500 kg/ha, and for wheat were 0, 75, 150, 225, 300 and 375 kg/ha, the nitrogen fertilizer was all urea. The nitrogen application of rice was that basal fertilizer, tillering fertilizer, ear fertilizer in four leaves from top panicle stage and two leaves from top panicle stage were applied equally for four times. The use of nitrogen for wheat was that 60% in basal fertilizer and 40% in jointing stage by broadcasting. The experimental process was that first rice experiment was stated in 2007, an anniversary cropping of rice and wheat was a unit. According to the design, in 2007, there were five nitrogen application areas and the others were no nitrogen application areas. After the harvest of rice, the wheat sowed in the corresponding areas for the same experimental purposes. In 2008, to the nitrogen application areas, the experiments of 2008 were continued on the base of 2007, meanwhile, five studies about the quantity of nitrogen application were carried out on these areas, and also some areas were continuously kept to do experiments without nitrogen. The experiments of 2009 were carried out in the same ways like in 2008. The areas of nitrogen exhaustion were programmed before the year of 2007. At the same time, by using the soil Lysimeter in the experimental base of Yangzhou university, the nitrogen behavior and quantity characteristics in soil-crop system of rice-wheat rotation, such as the dynamic changes of NH4+-N concentration in surface water, ammonia volatilization and the leaching of nitrogen in soil after applying nitrogen fertilizer in rice season, the accumulation of nitrogen of crop and the dynamic changes of inorganic nitrogen in soil profile in wheat season were studied. The main results were as follows.
     First, the nitrogen content of cultivated land in each county around Taihu Lake Region was higher than the average standard of Jiangsu province. In the surface soil, the content of total nitrogen and available nitrogen were the highest, but they decreased when the depth of soil increased. To different soil’s different layers, the amount of NH4+-N absorption was,different, the absorption ability of clay soil was higher than sandy soil, and the NH4+-N absorption ability of subsoil was higher than surface soil. With the increase of NH4+-N concentration, the NH4+-N absorption ability of soil increased too.
     Second, in rice season, the amount of ammonia volatilization losses depended on the density of NH4+-N in surface water and also related to the nitrogen application rate, the amount of ammonia volatilization losses and the density of NH4+-N in surface water all increased as the nitrogen application rate increased. The quantity turned to the peak in 1~3 days after applying the nitrogen, and the highest density of NH4+-N and amounts of ammonia volatilization losses appeared at the same time, one week after applying the nitrogen was the key time to reduce the nitrogen loss of ammonia volatilization and runoff. The loss of ammonia volatilization in clay soil was lower than that in sandy soil, the total loss of ammonia volatilization from clay soil was 10.49~87.06 kg/ha, and the proportion to nitrogen application rate was 10.92%~21.76%; the total loss of ammonia volatilization from sandy soil was 11.32~102.43 kg/ha, and the proportion to nitrogen application rate was 11.32%~25.61%. After applying different stages of nitrogen fertilizers, the ammonia volatilization losses were that the tillering stage > four leaves from top panicle stage > basal stage > two leaves from top panicle stage, and also we found that when the nitrogen application rate about 300 kg/ha in rice season, the amount of ammonia volatilization was higher than that about 200 kg/ha. Nitrogen leaching was mostly brought by flooding the farmland, NO3--N was the main form of nitrogen in leaching waters, NH4+-N was very little. The leaching of NO3--N in sandy soil was more than that in clay soil, the leaching of NO3--N which with higher nitrogen application was more than that with lower nitrogen application, and the leaching of NO3--N in the soil which owns higher leaching ability was more than that owns lower leaching ability.
     Third, different nitrogen application rates in soil-crop system were applied continuously and applied after one year and two years’exhaustion, the response of rice yield to nitrogen application rate was obvious different, it presented that the domino effect of content of background nitrogen in soil on rice yield was distinctness. When the amount of nitrogen application were 100 kg/ha and 200 kg/ha, the rice yield decreased in three years, it showed that soil nitrogen exhaustion made the content of background nitrogen decrease, we couldn’t get high rice yield. When the nitrogen application rate was 300 kg/ha, the treatments of nitrogen applied continuously and applied after one year and two years’exhaustion all got high yield. But when the nitrogen application rate went even higher than that point, the rice plants lodged and yield decreased. So the nitrogen application rate in which rice got high yield was 300 kg/ha in a season and 525 kg/ha in one year, it would keep the content of background nitrogen which could ensure the high yield of rice. The content of background nitrogen in soil had some effect on nitrogen absorption accumulation of rice. The use efficiency of nitrogen fertilizer decreased when the nitrogen application rate increased, it were not related to the content of background nitrogen in the soil.
     Forth, the inorganic nitrogen in soil profile (INISP) in wheat season was not only related to the nitrogen application rate (NAR), but also to the background nitrogen level in the soil. The INISP mostly concentrated at the depth of 0-30 cm of the soil and increased as the NAR increased at different growth stages of wheat, the inorganic nitrogen at the depth of 30~100 cm of the soil had an obvious response to the NAR when the amount was in the range of 300 kg/ha to 375 kg/ha, and it had obvious eluviations effect after jointing stage; when the NAR was in the range of 300 kg/ha to 375 kg/ha, the remains of INISP was always higher, compared with the sowing stage, the INISP in maturity stage increased only when was given the treatment that the NAR was 375 kg/ha, otherwise, it all decreased when the NAR was smaller than 300 kg/ha. In wheat-soil system, the apparent losses of nitrogen increased as the NAR increased. When the NAR was 75 kg/ha, the amount of loss and rate of loss were 26.20 kg/ha and 34.93%; when the NAR was 375 kg/ha, the amount of loss and rate of loss were 168.64 kg/ha and 44.97%. According to the nitrogen loss of different stages of wheat, the nitrogen loss was most from sowing to returning green stage, which increased as the NAR increased, so the basal fertilizer should be limited. The wheat absorbed more nitrogen from jointing to flowering stage, the treatment with lower nitrogen application appeared deficiency, but the nitrogen loss of higher nitrogen application treatment was still severe, there were more inorganic nitrogen in soil. That nitrogen application rate didn’t exceed 225 kg/ha was suitable in wheat season.
     Fifth, nitrogen content in soil profile (NCISP) was mostly in the cultivation soil, with the increase of soil’s depth, the NCISP decreased, it reached the minimum at the soil depth of 40~50cm, and then increased slightly. NCISP was lower than before which was under the treatment without nitrogen, it’s because of exhaustion effect. Once being applied nitrogen fertilizer, the nitrogen content in the cultivation soil responded to the nitrogen application rate, it increased as the increase of nitrogen application rate, nitrogen of subsoil was also increasing. NCISP under the lower nitrogen treatment which nitrogen application rate was 175 kg/ha and 350 kg/ha in a year increased a little, but NCISP under the higher nitrogen treatment which nitrogen application rate was 700 kg/ha and 875 kg/ha in a year increased significantly. After the fifth harvest of rice, the NCISP under the nitrogen treatment which applied after two years soil exhaustion was lower than both after one year soil exhaustion and continuous nitrogen treatment. In wheat season, the NCISP especially in the surface soil was obvious lower than that in rice season. The effect of soil exhaustion was stronger to wheat yield. Seasonal nitrogen application would change soil nitrogen content, and it was related to nitrogen application rate.
     Synthesizing all the results of this research, in the condition of higher yield, giving attention to the nitrogen use efficiency, ammonia volatilization losses, the leaching of NO3--N in the soil, the change of inorganic nitrogen in soil profile in wheat season, it was indicated that in Taihu Lake region, if you wanted to achieve the aim of 9750 kg/ha for rice yield and 6000 kg/ha for wheat yield at present, the appropriate nitrogen application rate for rice was 225~300 kg/ha, and 180~225 kg/ha for wheat. With the appropriate nitrogen application rate, the content of background nitrogen in soil would keep steady, crops would get higher yield, nitrogen would get comparatively higher use efficiency and environment would be in a secure state.
引文
[1]太湖网. http:/ /www.tba.gov.cn.
    [2]江苏省环境监测中心.江苏省太湖流域水质现状报告[R].1998.
    [3]江苏省农林厅.农业面源污染对太湖水体影响状况的调查报告[R].1996.
    [4]江苏省农林厅农业环境监测站.江苏省农业面源污染调查报告[R].2005.
    [5]中华人民共和国环境保护部,2006年中国环境状况公报. http://www.zhb.gov.cn/plan/zkgb/06hjzkgb/200706/t20070619_105424.htm.
    [6]朱兆良,David Norse,孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社,2006.
    [7]王艳艳,孙勇,赵言文.江苏省太湖流域农业面源污染现状分析及防治措施[J].江西农业学报,2008,20(8):118-121.
    [8]杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制途径[J].中国水利,2004,(20):29-30.
    [9]程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报,2005,24(增刊):1l8-l24.
    [10]史龙新,李向阳,王宁.太湖地区农村面源污染控制技术与对策[J].中国水利, 2006(17):11-13,46.
    [11]万晓红,王海芹.江苏太湖流域农业面源污染及防治对策措施分析[J].环境整治, 2008,69-71.
    [12]马立珊.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报, 1997,(1):39-47.
    [13]吕辉.农业生态系统中氮素造成的非点污染[J].农业环境保护,1998,17(1): 35-39.
    [14]吴珊眉.现代化农田生态系统氮素来源和去向的数量特征[J].生态学杂志, 1986,5(2):45-48.
    [15]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究[J].中国农业大学学报,1998,3(5):51-54.
    [16]王鹏,高超,姚琪,等.环太湖丘陵地区农田氮素随地表径流输出特征[J].农村生态环境,2005,21(2):46-49.
    [17]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(22):265-269.
    [18]陈效民,潘根兴.太湖地区农田土壤中硝态氮垂直运移的规律[J].中国环境科学,2001,21(6):481-484.
    [19] Addiscott M., et al. Concepts of solute leaching in soils: a review of Modeling approaches [J]. Journal of Soil Science, 1985, 36: 411-424.
    [20] Bandy, L. G., et al. Effect of residual profile nitrate on response to applied nitrogen [J]. Soil Sci. Soc. Am. J. 1988, 52: 1377-1383.
    [21] Bauder W., et al. Nitrate-nitrogen leaching following urea fertilization and irrigation [J]. Soil Science Society of America Journal, 1979, 43: 348-352.
    [22] Davies D., et al. The contribution of fertilizer nitrogen to leaching nitrogen in the UK, A review [J]. J. Sci. Food Agric., 1995, 68: 499-506.
    [23] Raun W. R., et al. Soil-plant buffering of inorganic nitrogen in continuous winter wheat [J]. J. Agron., 1995, 87(5): 827-834.
    [24] Toshiyuki N., Ryusuke H. Impact of nitrogen cycling associated with production and consumption of food on nitrogen pollution of stream water [J]. Soil Sci. Plant Nutr., 2000, 46(2): 325-342.
    [25] Sembiring H., W. R. Raun. Nitrogen Accumulation efficiency: Relationship between excess fertilizer and soil-plant biological activity in winter wheat [J]. J. ofPlant Nutrition, 1998, 21(6): 1235-1252.
    [26]王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426-432.
    [27]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659-662.
    [28]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446.
    [29] M.M. Wopereis-Pura, H. Watanabe, J. Moreira, M.C.S Wopereis. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley [J]. European Journal of Agronomy, 2002, 17: 191-198.
    [30] HUANG Qian-Ru, HU Feng, HUANG Shan, LI Hui-Xin, YUAN Ying-Hong, PAN Gen-Xing, and ZHANG Wei-Jian. Effect of Long-Term Fertilization on Organic Carbon and Nitrogen in a Subtropical Paddy Soil [J]. Pedosphere, 2009, 19(6):727-734.
    [31] ZHENG Yong-mei, DING Yan-feng, WANG Qiang-sheng. Effect of Nitrogen Applied Before Transplanting on NUE in Rice [J]. Agricultural Sciences in China, 2007, 6(7): 842-848.
    [32] XIONG Fei, WANG Zhong, GU Yun-jie, CHEN Gang, ZHOU Peng. Effects of Nitrogen Application Time on Caryopsis Development and Grain Quality of Rice Variety Yangdao 6 [J]. Rice Science, 2008, 15(1): 57-62.
    [33] ZHANG Ya-Jie, ZHOU Yu-Ran, DU Bin, and YANG Jian-Chang. Effects of Nitrogen Nutrition on Grain Yield of Upland and Paddy Rice Under Different Cultivation Methods [J]. Acta Agron Sin, 2008, 34(6): 1005-1013.
    [34] LIN Xian-qing, ZHU De-feng, CHEN Hui-zhe, ZHANG Yu-ping. Effects of Plant Density and Nitrogen Application Rate on Grain Yield and Nitrogen Uptake of Super Hybrid Rice [J]. Rice Science, 2009, 16(2): 138–142.
    [35] Q. Jing, B.A.M. Bouman, H. Hengsdijk, H. Van Keulen, W. Cao. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China [J]. Europ. J. Agronomy, 2007, (26): 166-177.
    [1] FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations.2001:http://www.fao.org.
    [2]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [3]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6.
    [4]杨从党,周能,袁平荣.高产水稻品种的物质生长特性[J].西南农业学报,1996,11:89-94.
    [5]郭光荣.以生物产量和收获指数作为水稻育种指标的初步研究[J].湖南农业科学,1990(5):20-22.
    [6]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [7]李世娟,李建民.氮肥损失研究进展[J].农业环境保护,2001,20(5):377-379.
    [8]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋失量研究[J].中国农业大学学报,1998,3(5):51-54.
    [9]董桂春.不同氮素籽粒生产效率类型籼稻品种的基本特点[D].扬州大学博士学位论文,2007.
    [10]王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM[J].浙江大学学报,2003,29(1):67-70.
    [11]朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤,1985,17(1):2-9.
    [12]李庆逵.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社.1997.
    [13]李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省[D].北京:中国农业大学博士学位论文.2000.
    [14]朱新开,盛海君,张彰,等.麦田土壤氮素变化特征与小麦产量及品质关系的研究进展[J].小麦研究,2002,23(1):32-34.
    [15]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [16]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I:2l世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [17]张维理,武淑霞,冀宏杰,等.中国农业而源污染形势估计及控制对策III:中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    [18]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,9:15-17,22.
    [19]朱兆良,文启孝.中国土壤中的氮素[M].江苏科学技术出版社,1992,213-249.
    [20]朱兆良.稻田节氮的水肥综合管理技术的研究[J].土壤,1991,23:241-245.
    [21] Guitlard K. Nitrogen utilization of selected cropping system in the U S northeast:Ⅱsoil profile nitrate distribution and accumulation [J]. Agron. J. 1995, 87: 199-207.
    [22] Roth G W, Fox R H. Tissue test for predicting nitrogen fertilizer requirement of winter wheat [J]. Agron. J. 1989, 81: 502-507.
    [23] Westerman R L, Boman R K, Raun W R, et al. Ammonium and nitrate nitrogen in soil profile of long-term winter wheat fertilization experiments [J]. Agron. J. 1994, 86: 94-99.
    [24] Raun, W. R., Johnson G V. Soil-plant buffering of inorganic nitrogen in continuous winter wheat [J]. J. Agron. 1995, 87(5): 827-834.
    [25] Johnson G V, Raun W R. Nitrate leaching in continuous winter wheat: use of a soil-plant buffering concept to account for fertilizer nitrogen [J]. J. Prod. Agric. 1995, 8(4): 486-491.
    [26]朱晓萍.土壤-作物系统中无机氮的缓冲容量与NO3-的淋失(综述)[J].河北农业技术师范学院学报,1999,13(2):56-60.
    [27]李志宏,刘宏斌,张树兰,张福锁.小麦-玉米轮作下土壤-作物系统对氮肥的缓冲能力[J].中国农业科学,2001,34(6):637-643.
    [28]陈国军,陆贻通,曹林奎,等.冬小麦氮素渗漏淋失规律测定研究[J].农业环境科学学报,2004,23(3):494-498.
    [29]巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    [30]杨新泉,冯锋,宋长青,等.主要农田生态系统氮素行为与氮肥高效利用研究[J].植物营养与肥料学报,2003,9(3):373-376.
    [31]廖晓勇,张杨珠,刘学军,等.农田生态系统中土壤氮素行为的研究现状与展望[J].西南农业学报,2001,14(3):94-98.
    [32]吴珊眉.现代化农田生态系统氮素来源和去向的数量特征[J].生态学杂志,1986,5(2):45-48.
    [33]王胜佳,王家玉,陈义.稻田土壤氮素淋失的形态及其在剖面分布特征[J].浙江农业学报,1997,9(2):57-61.
    [34]王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究[J].土壤学报,1996,33(1):28-36.
    [35]付玉芹,雷玉平,等.不同施氮水平下深层土壤硝态氮淋失特征研究[J].中国农学通报,2006,22(6):245-248.
    [36]李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究[J].农村生态环境,2000,16(3):19-22.
    [37]罗良国,闻大中,沈善敏.北方-稻田生态系统养分平衡研究[J].应用生态学报,1999,10(3):301-304.
    [38]董文旭,胡春胜,张玉铭.不同施肥土壤对尿素NH3挥发的影响[J].干旱地区农业研究,2005,23(2):75-79.
    [39]李方敏.肥料氮素在土壤中的淋溶[J].湖北农学院学报,1997,17(3):190-195.
    [40]孙克刚,姚健,朱洪勋.长期不同施肥对潮土中NO3--N累积及作物产量的影响[J].干旱地区农业研究,1999,17(1):35-38.
    [41]杜春先,聂俊华,王介勇.不同水肥条件下硝态氮在土壤剖面中垂直分布规律研究[J].土壤通报,2006,37(2):278-281.
    [42]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    [43]刁兴才,蔺青,杨荣光.小麦-土壤氮素循环的研究进展[J].安徽农业科学, 2006,34(12):2806-2808.
    [44]李伟波,墨整松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,34(1):67-73.
    [45]顾祖良,平培良,王林兴,等.太湖水旱轮作条件下施用氮肥的环境和经济效益[J].土壤,1998,(5):255-257.
    [46]王朝辉,李生秀.蔬菜不同器官的硝态氮含量与水分、全氮、全磷含量的关系[J].植物营养与肥料学报,1996,2(2):144-152.
    [47] Cassman K G, Gines G C, Dizon M A, etal. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen [J]. Field Crop Research, 1996, 47: 1-12.
    [48]范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001,4:47-50.
    [49]高祥照,马文奇,杜森,等.我国施肥中存在问题的分析[J].土壤通报, 2001,32(6):258-261.
    [50]李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程[J].西北农业大学学报,1999,27(1):1-5.
    [51]刘立军,徐伟,吴长付,等.实地氮肥管理下的水稻生长发育和养分吸收特性[J].中国水稻科学,2007,21(2):167-173.
    [52]苏正义,韩晓日,李春全.氮肥深施对作物产量和氮肥利用率的影响[J].沈阳农业大学学报,1997,28(4):292-296.
    [53]仇少君,彭佩钦,李玲.盆栽条件下红黄泥微生物量氮和固定态铵的动态变化[J].中国农业科学,2007,40(3):524-531.
    [54]纪雄辉,郑圣先,鲁艳红,等.控释氮肥对洞庭湖区双季稻田表面水氮素动态及其径流损失的影响[J].应用生态学报,2007,18(7):1432-1440.
    [55]郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194.
    [56]符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报,2001,7(2):145-152.
    [57] HOYAS T R, VAGSTAD N, BECHMANN M, et al. Aul.河流域—挪威东南部一个以农业为主的流域氮的收支预算[J]. AMBIO, 1997, 28(5): 283-289.
    [58]庄亚辉,李长生,高拯民.复合生态系统元素循环[M].中国环境科学出版社,1995:223-283.
    [59]李庆逵.我国土壤科学发展的回顾与展望[J].土壤科学进展,1989,17(4): 1-16.
    [60] GALLOWAY J N. The global nitrogen cycle: change and consequences [J]. Environmental Pollution, 1998, 102: 153-24.
    [61]王毅勇,杨青,王瑞山.三江平原大豆田氮循环模拟研究[J].地理科学,1999,19(6):555-558.
    [62]冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响[J].农业环境保护,1996,15(6):277-279.
    [63]杨世花.国内外关于氮素在农田生态系统中损失过程的研究[J].黑龙江科技信息,2008,30:149.
    [64]李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    [65]张瑜芳,张蔚榛,沈荣开,等著.排水农田中氮素转化运移和流失[M].武汉:中国地质大学出版社,1997.
    [66]张蔚榛,张瑜芳,沈荣开.排水条件下化肥流失的研究-现状与展望[J].水科学进展,1997,8(2):197-204.
    [67]张瑜芳,张蔚榛,沈荣开.排水农田氮素运移、转化及流失规律的研究[J].水动力学研究与进展,1996,11(3):251-260.
    [68]刘培斌,郭亚洁.土壤中氮素反硝化作用及其动力学规律的实验研究[J].华北水利水电学院学报,1994,(4):15-19.
    [69]冯绍元,张瑜芳,沈荣开.排水条件下饱和土中氮肥转化与运移模拟[J].水利学报,1995,(6):16-22.
    [70]水建高,张瑜芳,沈荣开.不同渗漏强度下淹水土壤中NH4+-N转化运移的数值模拟[J].水利学报,1996,(3):57-63.
    [71]冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟[J].水利学报,1996,(8):8-15.
    [72]张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中铵态氮转化和运移的研究[J].水利学报,1994,(6):10-19.
    [73]刘培斌.暗管排水稻田中氮素淋失动态混合模型及应用[J].中国环境科学,2000,20(1):13-17.
    [74]王季震,陆建红,刘培斌.旱田表层上边界土壤氮素浓度变化规律的研究[J].灌溉排水,2001,20(2):51-54.
    [75]杨路华,沈荣开,覃奇志.土壤氮素矿化研究进展[J].土壤通报,2003,34(6):569-571.
    [76]张瑜芳,张蔚榛.考虑作物产量和化肥流失时排水设计标准的确定方法[J].水利学报,2001,(2):44-49.
    [77]冯绍元,张瑜芳,沈荣开,等.淹水土壤中氮素运移与转化试验及其数值模拟[J].1994,10(4):50-56.
    [78] X. Q. Liang, H. Li, M. M. He, et al. The Ecologically Optimum Application of Nitrogen in Wheat Season of Rice–Wheat Cropping System [J]. Agron. J. 2008, 100(1): 67-72.
    [79]李法虎.土壤物理化学[M].化学工业出版社,2006,294-297.
    [80] OLIVIER J G J, BOUWMAN A F, HOEK K W V, et al. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990[J]. Environmental Pollution, 1998, 102: 135-148.
    [81] KURVITS T, MARTA T. Agricultural NH3 and NOx emissions in Canada [J]. Environmental Pollution, 1998, 102: 187-194.
    [82] OUDENDAG D A, LUESINK H H. The manure model: manure, minerals (N, Pand K), ammonia emission, heavy metals and the use of fertilizer in Dutch agriculture [J]. Environmental Pollution, 1998, 102: 241-248.
    [83]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [84]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242.
    [85] BERGSTROM L, BRINK N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil [J]. Plant and Soil, 1986, 93(3): 333-345.
    [86]刘春增.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218.
    [87]袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱区研究,2000,17(4):46-52.
    [88]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636.
    [89]张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地理地学进展,2000,19(2):128-134.
    [90]张兴昌,邵明安,黄占斌,等.不同植被对土壤侵蚀和氮素流失的影响[J].生态学报,2000,20(6):1038-1044.
    [91]田玉华,尹斌,贺发云,等.太湖地区稻季的氮素径流损失研究[J].土壤学报,2007,44(6):1070-1075.
    [92]段亮,段增强,常江.地表管理与施肥方式对太湖流域旱地氮素流失的影响[J].农业环境科学学报,2007,26(3):813-818.
    [93]王小治,高人,钱晓晴,等.利用大型径流场研究太湖地区稻季氮素的径流排放[J].农业环境科学学报,2007,26(3):831-835.
    [94] OLIVIER J G J, BOUWMAN A F, HOEK K W V, et al. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990[J]. Environmental Pollution, 1998, 102: 135-148.
    [95]王效科,庄亚辉,李长生.中国农田土壤N2O排放通量分布格局研究[J].生态学报,2001,21(8):1225-1232.
    [96]范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001,4:47-50.
    [97] W J Parton, J A Morgan, J M Altenhofen, et al. Ammonia volatilization from spring wheat plants [J]. J Agron, 1988, 80: 419-425.
    [98] D D Francis, J S Schepers, M F Vigil. Post-anthesis nitrogen loss from corn [J]. J Agron, 1993, 85: 659-663.
    [99] Harper L A, et al. Nitrogen cycling in a wheat crop: Soil, plant, and aerial nitrogen transport [J].Agron. J., 1987, 79: 965-973.
    [100] Daigger L A, et al. Nitrogen content of winter wheat during growth and maturation [J]. Agron. J., 1976, 68: 815-818.
    [101] Stutte C A, et al. Gaseous nitrogen loss from soybean foliage [J]. Agron. J. , 1979, 71: 95-97.
    [102] R Bashir, R J Norman, R K Bacon, et al. Accumulation and redistribution of fertilizer N-15 in soft red winter wheat [J]. J Soil Sci Soc Am, 1997, 61: 1407-1412.
    [103]黄进宝,范晓晖,张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J].土壤学报,2006,43(5):786-792.
    [104]田光明,曹金留,蔡祖聪,等.镇江丘陵地区稻田化肥氮的氨挥发损失及其影响因素[J].土壤学报,2001,38(3):324-332.
    [105]曹金留,田光明,任位涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51-54.
    [106]蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32(增刊):128-135.
    [107]宋勇生,范晓晖,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报, 2004,4l(2):265-269.
    [108]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦[J].生态学报,2001,21(11):1782-1789.
    [109]连纲,王德建.太湖地区麦季氮素淋失特征[J].土壤通报,2004,35(2):163-165.
    [110]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科
    [111]朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    [112]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659-662.
    [113]王树生,范战胜,张新明.麦玉系统氮素肥料的综合效应及适宜施氮量的研究进展[J].安徽农学通报,2007,13(4):58-60.
    [114]黄育民,李义珍,郑景生,等.杂交稻高产群体的氮磷钾素积累运转[J].福建省农科院学报,1997,12(3):1-6.
    [115]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,9:15-17,22.
    [116]苏祖芳,周培南,许乃霞,等.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    [117]苏正义,韩晓日,李春全.氮肥深施对作物产量合氮肥利用率的影响[J].沈阳农业大学学报,1997,28(4):292-296.
    [118]潘团胜.测土配方施肥技术在水稻上的应用效果试验[J].广西农学报,2006,21(5):17-18.
    [119] LIN De-Xi, FAN Xiao-Hui, HU Feng. Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China [J]. Pedosphere, 2007, 17(5): 639-645.
    [120] Adriana M. Chamorro, Lia N. Tamagno, Rodolfo Bezus, and Santiago J. Sarandon. Nitrogen accumulation, partition, and nitrogen-use efficiency in canola under different nitrogen availabilities [J]. COMMUN. SOIL SCI. PLANT ANAL., 2002, 33(4): 493-504.
    [121] Ligeng Jiang, Tingbo Dai, Dong Jiang, Weixing Cao, Xiuqin Gan, Shanqing Wei. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars [J]. Field Crops Research, 2004, 88: 239-250.
    [122] J.Timsina, U. Singh, M. Badaruddin. Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice–wheat sequences of Bangladesh [J]. Field Crops Research, 2001, 72: 143-161.
    [123] Freeman Kamuru, Stephan L. Albrecht, Leon H. Allen, Jr., and K. T. Shanmugam. Dry matter and nitrogen accumulation in rice inoculated with a nitrogenase derepressed mutant of Anabaena variabilis [J]. Agron. J. 1998, 90: 529-535.
    [124] G. L. Haaland, H. F. Tyrrell, P. W. Moe and W. E. Wheeler. Effect of Crude Protein Level and Limestone Buffer in Diets Fed at Two Levels of Intake on Rumen pH, Ammonia-Nitrogen, Buffering Capacity and Volatile Fatty Acid Concentration of C [J]. JOURNAL OF ANIMAL SCIENCE, 1982, 55: 943-950.
    [1]赵莉敏,史学正,黄耀,等.太湖地区表层土壤养分空间变异的影响因素研究[J].土壤,2008,40(6):1008-1012.
    [2]杨茹玮,史学正,于东升,等.基于l:5万数据库研究土壤空间分异及其影响因素-以江苏省无锡和常州市为例[J].土壤学报,2006,43(3):369-375.
    [3]江苏土壤普查办公室.江苏土壤[M].北京:中国农业出版社.1995,241-307.
    [4]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报(建筑与环境科学版),2004,21(2):32-38.
    [5]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.
    [6]陈浮.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报,39(2):236-245.
    [7]高秀花,赵欣梅,吴百春,等.滨海地区不同质地土壤对垃圾渗滤液中氨氮的吸附作用[J].地下水,2008,30(6):95-97,120.
    [8]凌启鸿,张洪程,苏祖芳,等.作物群体质量[M].上海:上海科技出版社,2000.
    [9]凌启鸿,张洪程,苏祖芳,等.稻作新理论[M].北京:科学出版社,1992.
    [1]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,(4):659-662.
    [2]黄进宝,范晓晖,张绍林,等.太湖地区黄泥土壤水稻氮素利用与经济生态适宜施氮量[J].生态学报,2007,27(2):588-595.
    [3]王绪奎,张林钱,芮雯奕,等.近20年江苏省环太湖稻田土壤碳氮及速效磷钾含量的动态特征[J].江苏农业科学,2007,(6):287-292.
    [4]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [5]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [6]王启现,王璞,刘岩一,等.夏玉米施氮量对后茬冬小麦土壤氮素供应与利用的影响[J].华北农学报,2006,21(1):110-114.
    [7]赵洪涛,周健民,范晓晖,等.太湖地区主要土壤上水稻氮素吸收利用的研究[J].土壤,2006,38(2):153-157.
    [8]叶全宝,张洪程,魏海燕,等.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究[J].作物学报,2005,31(11):1422-1428.
    [9]武俊喜,陈新平,贾良良,等.冬小麦/夏玉米轮作中高肥力土壤的持续供氮能力[J].植物营养与肥料学报,2004,10(1):1-5.
    [10] Shen J, Li R, Zhang F, et al. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Res, 2004, 86: 225-238.
    [11]刘立军,徐伟,唐成,等.土壤背景氮供应对水稻产量和氮肥利用率的影响[J].中国水稻科学,2005,19(4):343-349.
    [12] Adhikaria C, Bronsonb K F, Panuallahc G M, et al. On-farm soil N supply and N nutrition in the rice–wheat system of Nepal and Bangladesh. Field Crops Res, 1999, 64: 273-286.
    [13] Tirol-Padre A, Ladha J K, Singh U, et al. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46: 127-143.
    [14]敖和军,邹应斌,申建波,等.早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响[J].植物营养与肥料学报,2007,13(5):772-780.
    [15]孙聪姝,王兆荣,金明花,等.长期培肥定位试验耗竭阶段各培肥物质对土壤氮库持续效应的研究[J].东北农业大学学报,l998,29(3):209-218.
    [16]周顺利,张福锁,王兴仁.冬小麦不同氮营养品种对氮反应吸收与土壤硝酸盐耗竭的研究[J].中国农业科学,2002,35(6):667-672.
    [17]苏涛,王朝辉,宰松梅.休闲与施肥对夏玉米生长季节土壤矿质氮的影响[J].中国生态农土学报,2008,16(5):1078-1082.
    [18]周卫军,王凯荣,张光远.有机无机结合施肥对红壤稻田土壤氮素供应和水稻生产的影响[J].生态学报,2003,23(5):914-921.
    [1]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992:213-249.
    [2]顾祖良,平培良,王林兴,等.太湖水旱轮作条件下施用氮肥的环境和经济效益[J].土壤,1998,(5):255-257.
    [3]王曙光,许轲,戴其根,等.氮肥运筹对太湖麦区弱筋小麦宁麦9号产量与品质的影响[J].麦类作物学报,2005,25(5):65-68.
    [4]张霞,罗延庆,张胜全,等.限水条件下氮肥用量及施氮时期对冬小麦产量、土壤硝态氮含量的影响[J].华北农学报,2007,22(3):163-167.
    [5]张国印,孙世友,王丽英,等.氮肥施用量对土壤硝态氮含量和分布的影响[J].河北农业科学,2003,7(4):7-12.
    [6]张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报,2004,41(1):270-277.
    [7] Michael J. Ottman, Nancey V. Pope. Nitrogen Fertilizer Movement in the Soil as Influenced by Nitrogen Rate and Timing in Irrigated Wheat [J]. Soil Science Society of America, 2000, 64(5): 1883-1892.
    [8] Robert L. Westerman, Randal K. Boman, William R. Raun, et al. Ammonium and nitrate nitrogen in profiles of long-term winter wheat fertilization experiments [J]. Agronomy, 1994, 86(1): 94-99.
    [9] Carasella D. Nance, Lance R. Gibson, Douglas L. Karlen. Soil profile nitrate response to nitrogen fertilization of winter triticale [J]. Soil Science Society of America, 2007, 71(4): 1343-1351.
    [10] William R. Raun, Gordon V. Johnson. Soil-plant buffering of inorganic nitrogen in continuous winter wheat [J]. Agronomy, 1995, 87(5): 827-834.
    [11]吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,2003,23(10):2040-2049.
    [12]王东,于振文,于文明,等.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报,2006,l7(9):1593-1598.
    [13]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3--N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546.
    [14]王晓英,贺明荣,刘永环,等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响[J].生态学报,2008,28(2):687-694.
    [15]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J].应用生态学报,2008,19(4):799-806.
    [16]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦[J].生态学报,2001,21(11):1782-1789.
    [17]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669.
    [18]刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,33(7):1122-1128.
    [19]巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学,2002,35(11):1361-1368.
    [20]连纲,王德建.太湖地区麦季氮素淋失特征[J].土壤通报,2004,35(2):163-165.
    [21]王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报,2001,9(1):16-18.
    [1]朱兆良,文启孝.中国土壤中的氮素[M].江苏科学技术出版社,1992,213-249.
    [2]朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报,1994,9:15-17,22.
    [3]杨世花.国内外关于氮素在农田生态系统中损失过程的研究[J].黑龙江科技信息,2008,30:149.
    [4]赵俊晔,于振文,李延奇,等.施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响[J].植物营养与肥料学报,2006,12(4):466-472,494.
    [5]仇少君,彭佩钦,李玲.盆栽条件下红黄泥微生物量氮和固定态铵的动态变化[J].中国农业科学,2007,40(3):524-531.
    [6]孙克刚,姚健,朱洪勋.长期不同施肥对潮土中NO3--N累积及作物产量的影响[J].干旱地区农业研究,1999,17(1):35-38.
    [7]刘春增.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218.
    [8]赵俊晔,于振文.不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响[J].生态学报,2006,26(3):815-822.
    [9]苏涛,王朝辉,宰松梅,等.休闲与施肥对夏玉米生长季节土壤矿质氮的影响[J].中国生态农业学报,2008,16(5):1078-1082.
    [10]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.
    [11] Raun, W. R., Johnson G V. Soil-plant buffering of inorganic nitrogen in continuous winter wheat [J]. J.Agron.1995, 87(5): 827-834.
    [12] Johnson G V, Raun W R. Nitrate leaching in continuous winter wheat: use of a soil-plant buffering concept to account for fertilizer nitrogen [J]. J. Prod. Agric.1995, 8(4): 486-491.
    [13]李志宏,刘宏斌,张树兰,等.小麦-玉米轮作下土壤-作物系统对氮肥的缓冲能力[J].中国农业科学,2001,34(6):637-643.
    [14]彭令发,郝明德,来璐,等.黄土旱塬区长期施氮对土壤剖面养分分布的影响[J].西北植物学报,2003,23(8):1475-1478.
    [1]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992,212-249.
    [2]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [3]田光明,蔡祖聪,曹金留,等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J].土壤学报,2001,38(3):324-321.
    [4]蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32(增刊):128-135.
    [5]高文伟,黄炜,贾宏涛,等.追施氮肥对土壤氨挥发影响的初步研究[J].玉米科学,2009,17(4):112-114.
    [6]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(l1):1884-1888.
    [7]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤,2006,38(3):263-269.
    [8]田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响[J].土壤学报,2007,44(5):893-899.
    [9]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.
    [10]曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51-54.
    [11]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51-56.
    [12]张淑艳,松中照夫.不同施肥法及土壤对氨挥发影响的比较研究[J].土壤肥料科学,2003,19(6):176-178.
    [13]吴萍萍,刘金剑,杨秀霞,等.不同施肥制度对红壤地区双季稻田氨挥发的影响[J].中国水稻科学,2009,23(1):85-93.
    [14]张美良,吴建富.应用15N加对稻田生态系中氮素淋失和去向的研究[J].江西农业大学学报,1998,20(2):153-157.
    [15]张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中铵态氮转化和运移的研究[J].水利学报,1994,20,9(6):37-42.
    [16]王百群,戴鸣钧.土壤不同氮素在剖面土壤中移动特征的模拟研究[J].水土保持研究,2000,7(4):117-122.
    [17]习金根,周建斌.不同灌溉施肥方式下尿素态氮在土壤中迁移转化特征的研究[J].植物营养与肥料学报,2003,9(3):271-275.
    [18]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,l2(2):24O-244.
    [19]彭世彰,杨士红,徐俊增.节水灌溉稻田氨挥发损失及影响因素[J].农业工程学报,2009,25(8):35-39.
    [20]陈振华,陈利军,武志杰,等.辽河下游平原不同水分条件下稻田氨挥发[J].应用生态学报,2007,18(12):2771-2776.
    [21]黄进宝,范晓晖,张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J].土壤学报,2006,43(5):786-791.
    [22]张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报,2007,15(6):84-87.
    [23]李菊梅,李冬初,徐明岗,等.红壤双季稻田不同施肥下的氨挥发损失及其影响因素[J].生态环境,2008,17(4):1610-1613.
    [24]张启明,铁文霞,尹斌,等.藻类在稻田生态系统中的作用及其对氨挥发损失的影响[J].土壤,2006,38(6):814-819.
    [25] LIN De-Xi, FAN Xiao-Hui, HU Feng, et al. Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China [J]. Pedosphere, 2007, 17(5): 639-645.
    [26] FAN Xiao-Hui, SONG Yong-Sheng, LIN De-Xi,et al. Ammonia Volatilization Losses from Urea Applied to W heat on a Paddy Soil in Taihu Region,China [J]. Pedosphere, 2005, 15(1): 59-65.
    [27]叶全宝,张洪程,魏海燕,等.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究[J].作物学报,2005,31(11):1422-1428.
    [28]罗良国,闻大中,沈善敏.北方稻田生态系统养分渗漏规律研究[J].中国农业科学,2000,33(2):68-74.
    [29]邱卫国,唐浩,王超.上海郊区水稻田氮素渗漏流失特性及控制对策[J].中国环境科学,2005,25(5):558-562.
    [30]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636.
    [31]王小治,朱建国,宝川靖和,等.施用尿素稻田表层水氮素的动态变化及模式表征[J].农业环境科学学报,2004,23(5):852-856.
    [32]陈效民,潘根兴,沈其荣,等.太湖地区农田土壤中硝态氮垂直运移的规律[J].中国环境科学,2001,21(6):481-484.
    [33]沈阿林,刘春增,张付申,等.不同渗漏条件下尿素用量对水稻生长和氮肥利用率的影响[J].中国水稻科学,1997,11(4):231-237.
    [34] KONG W EI.PING, P.G.SAFFIG NA, A.W.W OOD and J.R.FRENEY. Evaluation of Methods for Control of Ammonia Volatilization from Surface—Applied Nitrogen Fertilizers to Sugarcane Trash in North Queensland [J]. Pedosphere, 1993, 3(4): 321-330.
    [35] Ruifa Hu, Jianmin Cao, Jikun Huang, Shaobing Peng. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China [J]. Agricultural Systems, 2007, (94): 331-340.
    [36] Rong-Fang Zhao, Xin-Ping Chen, Fu-Suo Zhang, etal. Fertilization and Nitrogen Balance in a Wheat-Maize Rotation System in North China [J]. Agron. J. 2006, 98:938-945.
    [37] William R. Raun and Gordon V. Johnson. Improving Nitrogen Use Efficiency for Cereal Production [J]. Agron. J. 1999, 91: 357-363.
    [38] William R. Raun, John B. Solie, Gordon V. Johnson, Marvin L. Stone. Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application [J]. Agron. J. 2002, 94: 815-820.
    [39] Y. Conrad, N. Fohrer. Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field [J]. Physics and Chemistry of the Earth, 2009, 34: 530-540.
    [1] K. G. Cassman, S. Peng, D. C. Olk, etal. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems [J]. Field Crops Research, 1998, 56:7-39.
    [2] J. K. Ladha, G. J. D. Kirk, J. Bennett, etal. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplas [J]. Field Crops Research, 1998, 56:41-71.
    [3]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [4]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [5] O.Panda, K.R.Mahata,等.水田土壤淋失及氨挥发对氮的转化及损失的影响[J].耕作与栽培,1990,2:54-55.
    [6]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636.
    [7]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446.
    [8]王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426-432.
    [9]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤,2006,38(3):263-269.
    [10]张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报,2007,15(6):84-87.
    [11]田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响.土壤学报,2007,44(5):893-900.
    [12]朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报.2006,12(1):1-4.
    [13]李伟波,墨整松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,34(1):67-73.
    [14]李荣刚,戴其根,皮家欢.江苏太湖稻麦两熟地区生态、经济施氮量的初步研究[J].江苏农业研究,2000,21(2):30-35.
    [15]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究[J].中国农业大学学报,1998,3(5):51-54.
    [16]冯涛,杨京平,孙军华,等.两种土壤不同施氮水平对稻田系统的氮素利用及环境效应影响[J].水土保持学报,2005,19(1):64-67.
    [17]苏涛,王朝辉,宰松梅,等.休闲与施肥对夏玉米生长季节土壤矿质氮的影响[J].中国生态农业学报,2008,16(5):1078-1082.
    [18]赵俊晔,于振文.不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响[J].生态学报,2006,26(3):815-822.
    [19]连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征[J].应用生态学报,2003,14(11):1879-1883.
    [20]连纲,王德建.太湖地区麦季氮素淋失特征[J].土壤通报,2004,35(2):163-165.
    [21]朱兆良,文启孝.中国土壤中的氮素[M].江苏科学技术出版社,1992,213-249.
    [22]朱兆良.稻田节氮的水肥综合管理技术的研究[J].土壤,1991,23:241-245.
    [23]曹兵,李新慧,张琳,等.冬小麦不同基肥施用方式对土壤氨挥发的影响[J].华北农学报,2001,16(2):83-86.
    [24]潘团胜.测土配方施肥技术在水稻上的应用效果试验[J].广西农学报,2006,21(5):17-18.
    [25]王小治,朱建国,宝川靖和,等.施用尿素稻田表层水氮素的动态变化及模式表征[J].农业环境科学学报,2004,23(5):852-856.
    [26]黄才洪,孙锡发,王昌全,等.尿素不同分施比例对稻田表层水中氮素动态变化特征的研究[J].西南农业学报,2008,21(4):1019-1023.
    [27] Toshihiro Hasegawa, Takeshi Horie. Leaf nitrogen, plant age and crop dry matter production in rice [J]. Field Crops Research, 1996, 47: 107-116.
    [28] Monitoring nitrogen forms in soil plant systems under different fertilizer managements a preliminary investigation [J]. European Journal of Agronomy, 1997, 7: 293-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700