六盘山群沉积物色度和粘土矿物测量及古气候意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪是全球构造-环境演变的重要转折时期,是距今最近的典型“温室地球”时期,作为地史时期“温室气候”阶段的一面镜子,研究该时期气候环境演变及其动力学机制对于认识过去气候变化和现今全球变暖的原因以及预测未来气候变化趋势具有重要的指示意义。
     六盘山盆地位于我国大陆中心部位,盆地内部连续出露的六盘山群沉积物较好地记录了早白垩世古气候信息。通过对盆地北部有高精度磁性地层年代控制的火石寨剖面下白垩统六盘山群中部沉积物的高密度采样和色度、化学元素、全岩矿物及粘土矿物定量分析,首次获得了128.11-112.97Ma时段高分辨率的颜色变化序列,和125-112.97 Ma时段粘土矿物组合特征。发现在地表冲积扇-辫状河沉积环境亮度值低并呈升高趋势、红度黄度值高且逐渐降低,在滨浅湖环境色度值趋势性不明显,波动幅度不大;亮度值与岩石胶结物有关而红度值与赤铁矿含量有关。六盘山群粘土矿物的组合特征为伊利石、高岭石、绿泥石和伊/蒙脱石混层;其中伊利石含量普遍较高,结晶度值为0.15-0.37,化学指数为0.22-0.46。综合分析色度、粘土矿物组合及与岩性、沉积环境关系表明,沉积物记录的气候条件总体相对温暖偏干,以125Ma为界分为两个变化阶段,其中第Ⅰ段(128.11-125Ma)岩性为三桥组上段冲积扇相和和尚铺组辫状河-扇三角洲相紫红色调为主的砂岩,以沉积物色度指标低亮度、高红度和黄度为特征,总体反映一种相对湿热的气候状态;第Ⅱ段(125-112.97Ma)岩性为李洼峡-马东山组下部滨浅湖-半深湖相杂色-绿色泥岩、灰岩、泥灰岩,总体为相对温暖偏干的气候状态。此阶段沉积物色度值变化不大(在115.4Ma之后略有增大);由下至上粘土矿物中伊利石含量表现为降低-稳定-升高的变化趋势,高岭石含量变化与之相反;岩石主要矿物中白云石、方解石的含量呈现出多-少-多的变化形式。通过沉积物中白云石、伊利石含量的变化,结合元素(K2O+Na2O+CaO)/Al2O3比值共同揭示了124-122.8Ma、114.8-113.8Ma期间发生了两次干旱事件。
     色度指标结合全球白垩纪气候变化趋势,发现在125Ma左右六盘山群记录的气候发生转型,与全球海平面温度在123.3Ma温度由高逐渐降低可能为同一事件,但时间上相对于海洋系统提前约1.7 Ma,同时在113.7Ma左右温度由降温趋势转变为升温趋势,疑似与白垩纪海洋沉积物中发现的112.2Ma左右温度转折(由降温趋势转变为升温趋势)相对应,可能指示陆相沉积物对全球气候变化的响应更敏感。
The Cretaceous is a significant transition of global tectonic and environmental system, which is the nearest typical greenhouse Earth state. As a mirror of "greenhouse climate" phase in earth history, it has important implications to recognize the causes of the past climate change and current global warming and to predict the future climate trends through studying the evolution of climate and environment in this period.
     The Cretaceous nonmarine sediments of the Liupanshan Group in Liupanshan basin, located in the central of China, have well documented the information of early Cretaceous climate. Based on the high-density sampling and measurement of the color, chemical elements and minerals and clay minerals of the sediments of the Liupanshan Gr. which has been already strictly constrained by high-density magnetostratigraphy, high-resolution color sequence ranging 128.11-112.97Ma, and clay mineral assemblages.ranging 125-112.97Ma were obtained for the first time. It is found that the brightness values (L*) of alluvial and fluvial sediments in the lower portion of the Liupanshan Gr. was low and gradually increased, the red (a*) and yellow value (b*) were high and decreased gradually, there was no conspicuous variation of color values in the sediment of a shallow lake environment. The L* fluctuations is related to the cement of the rock, and a* to the hematite content within the rocks. The rocks are characterized by a clay assemblage of illite, kaolinite, chlorite and illite/smectite mixed layer, Which is a mass amount of illite with the crystallinity of 0.15-0.37 and Chemical index of 0.22-0.46. Comprehensive analysis of color, clay mineral assemblages and the relationship with lithology and sedimentary environment, it is indicated that climate recorded by sediment were overall relatively warm, and was divided into two stages by the boundary at 125Ma. The early stage (128.11-125Ma) with the low L*, high a* and b*.The Lithology is the purplish red, visual color of sandstone in the upper Sanqiao Formation through Heshangpu Formation, indicative of a relatively humid and hot climate. The second stage (125-112.97Ma) with the shallow lake and semi-deep lake facies in Liwaxia Formation through Madongshan Formation, indicative of a relatively dry and warm climate. The characteristics of low L*, high a* and b* has a little change. The variation of illite content was decline-level-rise, but Kaolinite is reversely varied. The dolomite and calcite content was more-less-more. Combination of elements (K2O+Na2O+CaO)/Al2O3 ratio, Dolomite and Illite content reveals the two drought events during 124-122.8Ma and 114.8-113.8Ma.
     Analysis of color together with global climate trend in Cretaceous, it is founded that the early Cretaceous climate transition at 125Ma revealed by the record of the sediments of the Liupanshan Gr., which is approximately equivalent to the transition of global sea-surface temperature at 123.3 Ma, but it was about 1.7 Ma in advance. Meanwhile the temperature trend at 113.7Ma changed from decreasing to increasing, corresponding to the temperature transition(temperature trend change from decreasing to increasing) at about 112.2Ma founded in Cretaceous marine sediments, indicative of the land systems were more sensitive to global change than marine systems.
引文
1、An Z S, Kutzbach J E, Prell S C.Evolution of Asian monsoons and phrased uplift of the Himalaya-T ibetan plateau since Late Miocene times[J]. Nature.2001,411:63-66.
    2、AB Herman, RA Spicer.Palaeobotanical evidence for a warm Cretaceous Arctic Ocean[J]. nature. 1996
    3、Aoki,S.,The vertical change of the clay mineral composition in some deep-sea cores raised from the northern part of the central Pacific Basin:Aoki,Saburo,1984.Geol.Surv.Japan Cruise Rept,20:193-197. Deep Sea Research Part B.Oceanographic Literature Review,1985.32(12):p.1021-1022.
    4、Aradhna Tripati, Jan Backman, Henry Elderfield, et al.. Eocene bipolar glaciation associated with gl obal carbon cycle changes[J]. Nature.2005,436:341-346.
    5、Attila Voros.Escalation reflected in ornamentation and diversity history of brachiopod clades during the Mesozoic marine revolution[J].2010,Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2010.03.018
    6、Audley-Charles, M.G and A. Hallam (Eds).Gondwana and Tethys, Geological Society Special Publ ication No.37, Oxford University Press, Oxford,1988,79-100.
    7、Aziz H A, Dam J, Hilgen F J, et al.. Astronomical forcing in Upper Miocene continental sequences i mplications for the Geomagnetic Polarity Time Scale[J]. Earth and Planetary Science Letters.2004,222: 243-258.
    8、Barnes C R, Paleoceanography and paleoclimatology:An Earth system perspective[J]. Chemical Ge ology.1999,161:17-35.
    9、Barrera, E., and Savin, SM, Evolution of late Campanian-Maastrichtian marine climates and oceans, in Barrera, E., and Johnson, C., eds., Evolution of the Cretaceous ocean-climate system: Geological Society of America Special Paper 332, p.245-282.1999
    10、Barron E J. Cretaceous Plate Tectonic Reconstructions. Palaeogeography, Palaeoclimatology, Pala eoecology.1987,59:3-29.
    11、Barron E J.Chill over the Cretaceous[J].Nature.1994,370(6489):415.
    12、Berner R A, GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time [J]. American Journal of Science.1994,294:56-91.
    13、Berner R A, Kothavala Z, Geocarb III:A revised model of atmospheric CO2 over Phanerozoic ti me[J]. American J ournal of Science.2001,301:182-204.
    14、Bloemendal J, deMenocal P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements[J]. Nature1989,342:897-900.
    15、Broecker W S. Massive iceberg discharges as triggers for global climate change[J]. Nature.1994,3 72:421-424.
    16、Bruce W. Sellwood, Gerg. D. Price, Paul J. Valdes, Cooler estimates of Cretaceous temperatures[J] . Nature.1994,370:453-455.
    17、Chamley H. Clay Sedimentology. Berlin: Spinger,1989.1-623.
    18、Craggs,H.J. Late Cretaceous climate signal of the Northern Pekulney Range Flora of northeastern Russia[J]. Palaeogeography, apaslseoclimatoligy, Palaeoecoligy.2005.217.25-46.
    19、Chen Y, H. Wu, V. Courtillot, et al.Large N-S convergence at the northern edge of the Tibetan Plat eau? New Early Cretaceous paleomagnetic data from the Hexi Corridor, NW China, Earth Planet[J]. Sc i. Lett.2002,201,293-307.
    20、Creer K M, Morris A, Proxy-climate and geomagnetic palaeointensity records extending back to C A.75,000 BP derived from sediments cored from Lago Grande Di Monticchio, Southern Italy[J]. Quate rnary Science Reviews.1996,15:167-188.
    21、Cronin M, Tauxe L, Constable C, et al.,. Noise in the quite zone[J]. Earth Planet Sci Lett,2001,19 0:13-30.
    22、Crowley T J, Kim K-Y, Comparison of long-term greenhouse projections with the geologic record [J]. Geophys Res Lett,1995,22:933-936.
    23、Dupont-Nivet G, B. K. Horton, R. F. Butler, et al.,2004. Paleogene clockwise tectonic rotation of t he Xining-Lanzhou region, northeastern Tibetan Plateau, J. Geophys. Res.,109, B04401, doi:10.1029/ 2003JB002620.
    24、Dupont-Nivet G, Krijgsman W, Langereis C G, et al., Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature.2006,445:635-638.
    25、Ekart D P, Cerling T E, Montanez I P, et al., A 400 million year carbon isotope record of pedogenic carbonate:implications for paleoatmospheric carbon dioxide[J]. Am.J.Sci.1999,299:805-827.
    26、Esquevin J.Influence de la composition chimique des illites surcristallinite[J].Bull Centre Rech Rau-SNPA.1969,3(1),147-153
    27、Eric J. Barron, Chill over the Cretaceous[J]. Nature.1994,370:415.
    28、Evans M E, Heller F, Bloemendal J, et al., Natural magnetic archives of past global change. Surv[ J].Geophys.1997,18:183-196.
    29、Felix M.Gradstein,James G Ogg,Alan GSmith.A Geologic Time Scale 2004[M]. Cambridge:the U nited Kingdom at the University Press,2004.
    30、Fennessy M J, Kinter J L, Kirtman B, et al., The effects of orography on middle latitude northern h emisphere dry climates[J]. Clim.1992.5:1181-1291.
    31、Fernandez R N, Schulze D G, Coffin D L, et al., Color, organic matter and pesticide adsorption rel ationships in a soil landscape[J], Soil Sci. Soc. Am.J.1988,.52:1023-1026.
    32、Frakes LA. Climates throughout Geologic time[M]. New York, Elsevier.1979.310.
    33、Frost, GM., R. S. Coe, Z. Meng, et al., Preliminary Early Cretaceous paleomagnetic results from t he Gansu Corridor, China, Earth Planet[J]. Sci. Lett.,1995.129:217-232.
    34、Gerta K, Cretaceous climate, volcanism, impacts, and biotic effects[J]. Cretaceous Research,200 8.29:754-771.
    35、GJ Retallack. Soils of the past: an introduction to paleopedology[M].2001
    36、Griffin J J.The distribution of clay minerals in the world ocean[J].Deep-Sea Res,1968,15:433-459
    37、Guang Zhu, Yongsheng Wang, Guosheng Liu, et al.,40Ar/39Ar dating of strike-slip motion on th e Tan-Lu fault zone, East China[J]. Journal of Structural Geology.2005.27:1379-1398.
    38、Guillaume Dupont-Nivet, Wout Krijgsman, Cor G. Langereis, et al., Tibetan Plateau aridification li nked to global cooling at the Eocene-Oligocene transition[J].Nature.2007.445:635-638..
    39、Halim, N., J. P. Cogne, Y. Chen, et al., New Cretaceous and early Tertiary paleomagnetic results fr om Xining-Lanzhou basin, Kunlun and Qiangtang blocks, China: Implications on the geodynamic evol ution of Asia[J].Geophys.Res..1998.103(B9):21,025-21,045.
    40、Haq B U, Hardenbol J, Vail P R, Chronology of fluctuating sea levels since the Triassic [J]. Scienc e.1987.235:1156-1167.
    41、Hasegawa T, Pratt L M, Maeda H, et al., Upper Cretaceous stable carbon isotope stratigraphy of t errestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleo atmospheric CO2 [J].2003.189:97-115.
    42、Hay W W, Deconto R M, Wold C N, et al., Alternative global Cretaceous paleogeography.In: Barr er A E, Johnson C C. edited: Evolution of the Cretaceous Ocean-Climate System[J]. Geological Society of America, Special Paper.1999.332:1-47..
    43、Herman A B, Spicer R A,Palaeobotanical evidence for a warm Cretaceous Arctic Ocean[J]. Nature .1996.380:330-333.
    44、HG Krenmayr, Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria), Sedimentary Geology 1996.101, pp.149-172
    45、Hu S, Appel E, Wang S, et al., A preliminary magnetic study on Lacustrine sediments from Zoige Basin, Eastern Tibetan Plateau, China:Magnetostratigraphy and Environmental Implications[J]. Phys. C hem. Earth(A),1999.24(9):811-816.
    46、Irving E, North F K, Couillard R. Oil, climate and tectonics[J]. Can J Earth Sci.1974.11:1-17.
    47、Jan P Helmke, Michael Schulz, Henning A Bauch, Sediment color record from the Northeast Atla ntic reveals patterns of millennial-scale climate variability during the past 500,000 years[J]. Quaternary Research,2002.57:49-57.
    48、Jenkyns H C, Cretaceous anoxic events:From continents to oceans. Journal of the Geological Soci ety London.1980.137:171-188.
    49、Jenkyns H C, Tethys:past and present. Proceedings Geologists Association,1980.91,107-118.
    50、Jones C E, Jenkyns H C,Seawater strontium isotopes, oceanic anoxic events, and seafloor hydroth ermal activity in the Jurassic and Cretaceous[J]. American Journal of Science.2001.301:112-149.
    51、Kennett J P, Shackleton N J, Oxygen isotopic evidence for the development of the psychrosphere 38 Ma ago[J].Science.1976.260:513-515.
    52、Kissel C, Laj C, Labeyrite L, et al..Rapid climatic variations during marine isotopeic stage 3:mag netic analysis of sediments from Nordic Seas and North Atlantic [J]. Earth Planet. Sci.Lett.1999.171:48 9-502.
    53、Kump L R, Slingerland R L.Circulation and stratification of Early Turonian Western Interior Seaw ay: Sensitivity to a variety of forcings [M]//Barrera E, Johnson C. The Evolution of Cretaceous Ocean-Climate Systems. Special Paper of Geological Society of America.1999.332:181-190.
    54、Larson R L, Latest pulse of Earth:Evidence for a mid-Cretaceous superplume[J].Geology.l991.19 :547-550.
    55、Larson R L, Erba E.Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous ev ents and the biological, sedimentary and geochemical responses[J]. Palaeoceanography.1999.14: 663-6 78.
    56、Lee R. Kump, David Pollard, Amplification of Cretaceous Warmth by Biological Cloud Feedback s[J]. Science.2008.320:195.
    57、Li J J.Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change[J]. Lanzhou University Press, Lanzhou.1995.38-39.
    58、M. Wagreich, H.-G. Krenmayr.Upper Cretaceous oceanic red beds (CORB) in the Northern Calcar eous Alps (Nierental Formation, Austria): slope topography and clastic input as primary controlling fact ors[J].CretaceousResearch.2005.57-64
    59、Manabe S, Beoccoli A J, Mountains and arid climates of middle latitudes[J]. Science.1990.247:19 2-194.
    60、Manabe S, Terpstra T B, The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Atmos. Sci.,1974.31:3-42.
    61、Metcalfe I, Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys[J]. Australi an Journal of Earth Sciences.1996.43(6),605-623.
    62、Metcalfe, I. Origin and assembly of Southeast Asian continental terranes. in M.G.Audley-Charles, and A. Hallam (Eds.), Gondwana and Tethys, Geological Society of London Special Publication No.19 88.37,101-118.
    63、Molnar P.Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Pale ontologia Electronica,2005.8(1):1-23.
    64、Molnar P, England P, Martinod J, Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev[J]. Geophys..1993.31,357-396
    65、Norris R D, Bice K L, Magno E A, et al., Jiggling the tropical thermostal in the Cretaceous hotho use[J]. Geology.2002.30:299-302.
    66、Oldfield F, Environmental magnetism-a personal perspective[J]. Quaternary Science Reviews.199 1.10:73-85.
    67、Otto-Bliesner B L, Brady C E C, Shields C.Late Cretaceous ocean: coupled simulations with the N ational Center for Atmospheric Research Climate System Model [J]. Journal of Geophysical Research, 2002.107:4019-4033
    6、Pagani M, Freeman K H, Arthur M A, Late Miocene atmospheric CO2 concentration and expansio n of C4 grasses[J]. Science.1999.285:876-879
    69、Pearson P N and Palmer M R, Atmospheric carbon dioxide concentrations over the past 60 millio n years[J]. Nature.2000.406:695-699.
    70、Peck J A, King J W, Colman S M, et al..A rock-magnetic record from Lake Baikel, Siberia: Eviden ce for Late Quaternary climate change[J]. Earth Planet Science Letters,1994.122:221-238.
    71、Peck J A, King J W, Williams D F, et al..A 5 Ma climate proxy record from Central Asia: rock-ma gnetic results from the 1996 Lake Baikel Drilling Project[J]. Abstracts with Programs-Geological Socie ty of America.1997.29(6):374.
    72、Poulsen C J, Barron E J, Johnson C C, et al..Links between major climatic factors and regional oce anic circulation in the mid-Cretaceous [M]//Barrera E, Johnson C. Evolution of the Cretaceous Ocean-Climate System Special Paper of Geological Society of America.1999.332:73-89.
    73、Preece R C, Bridgland(Ed.),1998. Late Quaternary Environmental change in Northwest Europe: E xcavations at Holywell Coombe, Southwest England. London:Chapman&Hall.
    74、Price, G.D. & Grimes, S.T. New approaches for quantifying the Cretaceous terrestrial climate record. In Deep-Time Perspectives on Climate Change (eds Williams, M., Haywood, A.M., Gregory, F.J. & Schmidt, D.N.) p.2007.225-234.
    75、Quade J, Cerling T E, Bowman J R, Development of Asian monsoon revealed by marked ecologic al shift during the Latest Miocene in north Pakistan[J]. Nature.1989.342:163-166.
    76、RA Berner.The need for mass balance and feedback in the geochemical carbon cycle[J].K Caldeira-Geology.1997.v.25 no.10 p.955-956
    77、Ramstein G, Fluteau F, Besse J, et al..Effects of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 millions years[J]. Nature.1997.386:788-795.
    78、Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature.1992.359:117-1 20.
    79、Rea D K, Snoeckx H, Joseph L H, Late Cenozoic eolian deposition in the North Pacific:Asian dr ying, Tibetan uplift and cooling of the Northern Hemisphere[J]. Paleoceanography.1998.215-224.
    80、RM Leckie, TJ Bralower, R Cashman. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J].Paleoceanography,2002 VOL.17, NO.3
    81、Ruddiman W. F, Kutzbach J. E, Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West.[J]. Geophys. Res..1989.94(D15):18409-18427.
    82、Sadat Kolonic, Thomas Wagner, Astrid Forster, et al.,2005. Black shale deposition on the northwe st African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global or ganic carbon burial. Paleoceanography,20, PA1006, doi:10.1029/2003PA000950.
    83、Schlanger S O, Jenkyns H C, Cretaceous oceanic anoxic events: Cause and consequence. Geologie en Mijinbouw.1976.55:179-184.
    84、Shields J A, Paul E A, St Arnaud R J, et al., Spectrophotometric measurement of soil color and its relationship to moisture and organic matter[J].Can.J.Soil Sci,1968.48:271-280.
    85、SINGERA.The Paleoclimatic interpretation of clayminerals in sediments-a review[J].Earth-Seience Res,1984,21:251-293.
    86、Sobel, E. R., N. Arnaud, M. Jolivet, et al., Jurassic to Cenozoic exhumation history of the Altyn Ta gh range, NW China, constrained by Ar/Ar and apatite fission track thermochronology, in Paleozoic an d Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontin ental Deformation, edited by M. S.Hendrix and G. A. Davis, Geol. Soc. Am. Mem.,2001.194:247-267
    87、Sun J M, Zhang L Y, Deng C L, et al..Evidence for enhanced aridity in the Tarm Basin of China si nce 5.3Ma, Quaternary Science Reviews.2008.
    88、Sun J M, Zhu R X, An Z S.Tectonic uplift in the northern Tiberan Plateau since 13.7Ma ago inferr ed from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters.2005.235: 641-653.
    89、Tarduno J A, Sager W W.Polar standstill of the mid-Cretaceous Pacific Plate and its geodynamic i mplications[J]. Science.1995.269:956-959.
    90、Thompson R, Oldfield F. Environmental Magnetism, London: Allen & Unwin.1986.
    91、TJ Crowley, GR North.Paleoclimatology[M].New York:Oxford University Press.1991
    92、Torrent J, Schwertmann U, Fechter H, et al., Quantitative relationships between soil color and hem atite content[J].Soil Sci,1983.136:354-358.
    93、Walliser O H.Global Events and Events Stratigraphy in the Phanerozoic. Berlin Heidelberg, Spring er-verlag,1996.242-252.
    94、William L Balsam, Bobby C Deaton, John E Damuth, Evaluating optical lightness as a proxy for carbonate content in marine sediment cores, Marine Geology,1991.161:141-153.
    95、曹升庚.土壤颜色的测定和描述-门塞尔土壤比色卡的应用。见:土壤分类及土壤地理论文集,北京:科学出版社.1985.
    96、曹希强,郑祥民,周立旻等,2004.洪湖沉积物的磁性特征及其环境意义。湖泊科学,16(3):227-232.
    97、沉积岩粘土矿物相对含量X射线衍射分析方法(石油天然气行业标准).SY/T 5163-1995
    98、沉积岩中粘土矿物总量和常见非粘土矿物X射线衍射定量分析方法(石油天然气行业标准).SY/T 6210-1996
    99、陈发虎,张维信等.甘青地区的黄土地层学与第四纪冰川问题,北京:科学出版社1993.
    100、陈泮勤.国际地圈、生物圈计划——全球变化的研究[J].中国科学院院刊.1987,03
    101、陈丕基.中国陆相侏罗、白垩系划分对比述评[J].地层学杂志2000,24(2).
    102、陈一萌,陈兴盛,宫辉力等,2003.土壤颜色-一个可靠的气候变化代用指标[J].干旱区地理.29(3):309-313.
    103、程守田,李志德,黄焱球等.鄂尔多斯东北缘早白垩世冰川泥石流沉积的发现及其成因证据[J].地质科技情报,2002,21(2).
    104、程守田,星刘,郭秀蓉.古沙漠沉积及其层序单元——以鄂尔多斯白垩纪内陆古沙漠盆地为例[J].地球科学进展,2000,25(6).
    105、程或.六盘山地区新生代磁性地层年代与青藏高原东北缘的隆升[D].2005.1-90.
    106、戴霜,朱强,胡鸿飞等.六盘山群磁性地层年代[J].地层学杂志.2009,33(2):188-192.
    107、方大均,叶德泉.中国松辽盆地白垩纪岩石磁化率、剩磁强度与古气候意义[J].地球物理学报.1989.32(1):111-114.
    108、方小敏,潘保田,管东红等.兰州约60ka以来夏季风千年尺度不稳定性研究[J].科学通报.1999.44(4):436-439.
    109、冯增昭,王英华.中国沉积学[M].石油工业出版社.1994.
    110、高瑞祺,赵传本,乔秀云等.松辽盆地白垩纪石油地层孢粉学[M].北京:地质出版社,1999.
    111、高万一,林本海等,1992.黄土反射光谱研究与气候波动,黄土-第四纪-全球变化(第三集).北京:科学出版社.
    112、高万一,孙东怀等.黄土反射光谱初探,黄土-第四纪-全球变化(第一集).北京:科学出版社.1991.
    113、韩志艳,胡修棉,季峻峰等.北大西洋ODP1049孔Aptian—Albian期高频旋回大洋红层的成因:矿物学证据[J].地质学报,2008.82(1):124-132.
    114、何良彪.海洋沉积岩芯中粘土矿物变化与古气候变迁的关系[J].科学通报,1982,27(13):809-812
    115、胡鸿飞.六盘山地区白垩纪磁性地层年代与盆地演化[D]兰州大学.2007.
    116、胡修棉,王成善,李祥辉.藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件[J].自然科学进展.2001.11(7):721-728.
    117、黄清华,郑玉龙,杨明杰等.松辽盆地白垩纪古气候研究[J].微体古生物学报.1999.16(1):95-103.
    118、黄维,剑志民,Buhring C.南海北部ODP1144站颜色反射率揭示的千年尺度气候波动[J].海洋地质与第四纪地质.2003.23(3):6-10.
    119、季俊峰,陈骏,王洪涛.陕西洛川黄土-古土壤剖面中伊利石结晶度[J].地质评论.1997.43(2):181-185.
    120、季强.论热河生物群[J].地质论评.2002.48(3):290-296.
    121、江新胜,潘忠习,付清平.白垩纪时期东亚大气环流格局初探[J].中国科学(D辑),2000,30(5).
    122、蓝先洪.粘土矿物作为古气候指标矿物的探讨[J].地质科技情报.1990
    123、李建国,杜宝安.甘肃平凉安国镇白垩系六盘山群的孢粉植物群[J].古生物学报.2006.45(4):498-513.
    124、李世红,李春江,于涛等.Cs+和Yb3+在方解石、高岭石、蒙脱石、绿泥石和海绿石上的吸附实验研究[J].核化学与放射化学.2002.2:70-83
    125、李世杰,郑本新,焦克勤.西昆仑山区湖泊初探[J].海洋与湖沼.1993,24(1):37-44.
    126、李祥辉,王成善,Hugh Jenkyns等.西藏特提斯喜马拉雅白垩纪中期Cenomanian/Turonian期碳同位素偏移[J].地球科学-中国地质大学学报.2005.30(3):317-327.
    127、李钟,李强,聚合物——层状硅酸盐纳米复合材料制备原理[J].中国塑料.2001,6:29-34
    128、廖瑞君,衷存堤,肖晓林.江西白垩纪——新近纪陆相红色盆地的盆缘类型划分与盆地充填样式[J].地质通报,2003,22(9).
    129、林鸿福,林峰,袁慰顺,制备纳米复合材料的天然矿物——蒙脱石[J].中国建材.2001,11:77-78
    130、林西生,应凤祥,郑乃萱.X射线衍射分析技术及其地质应用[M].1990.北京:石油工业出版社
    131、刘长龄,刘钦甫.高岭石矿物结晶有序化程度与成因关系研究新进展[J].地质找矿论丛.2002,17(2):73-81
    132、刘东生.黄土与环境[M].北京:科学出版社.1985.
    133、刘东生,郭正堂.当前国际古全球变化研究的主要科学问题和任务:极地-赤道-极地大断面[J].地学前缘.1997,4(1).63-69
    134、刘俊伟.六盘山盆地早白垩世盆地构造演化[D].兰州大学.2010
    135、刘连文,郑洪波,翦知滑.南海沉积物漫反射光谱反映的220ka以来东亚夏季风变迁[J].地球科学-中国地质大学学报.2005
    136、刘兆生.宁夏六盘山地区早白垩世孢粉组合及其古植被、古气候的意义[J].古生物学报.1983.22:517-526
    137、刘志飞C.ColinA, Trentesaux A等.南海南部晚第四纪东亚季风演化的粘土矿物记录[J].地球科学,2004,34(3):272-279
    138、刘志飞Trentesaux A, Clemens S C等.南海北坡ODP1146站第四纪粘土矿物记录:洋流搬运与东亚季风演化[J].中国科学,2003,33(3):271-280
    139、刘志飞 赵玉龙李建如.南海西部越南岸外晚第四季粘土矿物纪录:物缘分析与东亚季风演化[J].地球科学.2007,37(9):1176-1184
    140、刘志飞,胡修棉.白垩纪至早第三纪的极端气候事件[J].地球科学进展,2003.18(5):681-690.
    141、鲁安怀.环境矿物材料在土壤、水体、大气污染治理中的作用[J].岩石矿物学杂志.1999,4:292-300
    142、鲁春霞.粘土矿物在古环境研究中的指示作用[J].中国沙漠,1997,17(4):456-460
    143、马宗晋,杜品仁,卢苗安.地球的多圈层相互作用[J].地学前缘.2001
    144、宁夏回族自治区地质矿产局.宁夏回族自治区区域地质志[M].北京:地质出版社,1990.
    145、宁夏区域地质调查院.区域地质测量报告《固原幅》(1/2.5万).2001
    146、彭淑贞,郭正堂.西峰晚第三纪红土记录的亮度学特征[J].第四纪研究.2003.23(1).
    147、齐骅.宁夏固原六盘山群下部的介形类化石.地层古生物论文集.1987,18:74-147
    148、任子平,鲁安怀,周平等.高岭土有机改性实验研究[J].岩石矿物学杂志.2001,4:485-489
    149、任子平,鲁安怀.有机粘土矿物在环境矿物学中的意义与应用前景[J].地学前缘.2000,7(2):546
    150、邵济安,韩庆军.内蒙古东部早中生代壳幔过渡带——捕虏体岩石高温高压下弹性波速度实验证据[J].中国科学D辑,2000.S1.
    151、申家年,王庆红,何江林,卢双舫.松辽盆地白垩纪湖泊水体温度与古气候温度估算[J].吉林大学学报(地球科学版).2008
    152、师育新,戴雪荣,宋之光等.我国不同气候带黄土中粘土矿物组合特征分析[J].沉积学报.2005,23(4):690-695
    153、宋春晖,白晋锋,赵彦德等.临夏盆地13-4.4Ma湖相沉积物颜色记录的气候变化讨论[J].沉积学报.2005.23(3):507-513.
    154、孙知明,杨振宇,杨天水等.海原地区早白垩世古地磁结果及其构造意义[J].地球物理学报.2001,44(5):678-686.
    155、汤顺青等.1990.色度学[M].北京:北京理工大学出版社.
    156、汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘.2002,9(2):337-344
    157、唐锡元,苏世民.六盘山盆地的构造特征.见:杨俊杰,鄂尔多斯盆地西缘掩冲带构造与油气.甘肃兰州:甘肃科学出版社.1990.148-160.
    158、唐玉虎,戴霜,黄永波等.兰州-民和盆地河口群沉积相和岩石磁化率-祁连山白垩纪隆升的记录[J].地学前缘.2008.15(2):261-271.
    159、万晓樵,刘文灿,李国彪,李艳.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质,2003.30(1):36-47.
    160、王伴月,阎志强,陆彦俊,陈国新.宁夏海原两个第三纪中期哺乳动物群的发现[J].古脊椎动物 学报.1994
    161、王成善,胡修棉.白垩纪世界与大洋红层[J].地学前缘.2005,12(2):11-21
    162、王东坡,刘立,A.F L.白垩纪红尘冰筏沉积的古气候及古地理意义[J].岩相古地理.1996,4(6).
    163、王新宇,漆宗能,王佛松.聚合物——层状硅酸盐纳米复合材料制备及应用[J].工程塑料应用.1999,27(2):1-5
    164、王毅,王艺,王恩德.改性蒙脱石吸附Pb2+、Hg2+的实验研究[J].岩石矿物学杂志.2001,4:565-567
    165、文启忠.中国黄土地球化学[M].北京:科学出版社,1989.
    166、吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展.2004.19(5):789-792.
    167、吴月英,陈中原,王张华.长江三角洲粘土矿物分布特征及其环境意义[J].华东师范大学学报.2005,9(1):92-98.
    168、夏应菲,汪永进,陈峻.李家岗下蜀黄土剖面的反射光谱研究[J].土壤学报.2000.
    169、须藤俊男.粘土矿物学[M].1981.
    170、徐丽,苗运法,方小敏等.青藏高原东北部西宁盆地中始新世-渐新世沉积物颜色与气候变化[J].兰州大学学报(自然科学版).2009.45(1):12-19.
    171、徐艇.中国一些盐湖粘土矿物的初步研究[J].海洋与湖沼.1988,19(3):278-285.
    172、颜文,陈忠,王有强等.南海NS93-5柱样的矿物学特征及矿物沉积序列[J].矿物学报.2000,20(2):143-149
    173、扬石岭,丁仲礼,秦小光等.黄土沉积中红光/反射光亮度值变化及古气候意义[J].第四纪研究,1999,19(4):379
    174、杨胜利,方小敏,李吉均等.表土颜色和气候定性至半定量关系研究[J].中国科学(D辑),2001,31(增刊):175-181.
    175、杨石岭,丁仲礼,秦小光等.黄土沉积中红光/反射光亮度值变化及古气候意义[J].第四纪研究.1999.(4)
    176、杨赞中,胡发社,任京成.粘土矿物在环境保护中的应用研究进展[J].中国非金属矿工业导刊.2000(2):23-26
    177、伊利石蒙皂石间层矿物X射线衍射鉴定方法(石油天然气行业标准).SY/T 5983-94
    178、殷鸿福等.中国古生物地理学[M].武汉:中国地质大学出版社.1988.
    179、翟淳.岩石学简明教程[M].北京:科学出版社.1987.
    180、张旗,王元龙,王焰.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约[J].岩石学报,2001,17(4).
    181、张岳桥,廖昌珍.晚中生代-新生代构造体制转换与鄂尔多斯盆地改造[J].中国地质.2006
    182、章晔,谢庭周,周四春等.勘查金矿的现场X射线荧光法[J].铀矿地质,1988,4(1).
    183、赵珊茸.结晶学及矿物学[M].北京:高等教育出版社.2004.
    184、赵文金,万晓樵.藏南定日地区Cenomanian/Turonian界线附近的生物古海洋事件[J].地质科学.2003
    185、赵文金,万晓樵.藏南定日地区白垩纪中期地球化学异常对海平面上升的响应[J].地球科学进展.2002
    186、赵杏媛.粘土矿物与粘土矿物分析[M].1990.
    187、赵重远,刘池洋,任战利.含油气盆地地质学及其研究中的系统工程[J].石油与天然气地质.1990
    188、赵重远.华北克拉通盆地天然气赋存的地质背景[J].地球科学进展.1990
    189、周德全.湖泊沉积记录与过去全球变化[J].矿物岩石地球化学通报.2006.
    190、周伟,王琦.1990.渤海南部海底沉积物颜色的研[J].海洋科学.3(3):31-35.
    191、周忠和.热河生物群漫谈[J].China Nature.2002
    192、朱凤冠,李秀珠,高水土.东海大陆架沉积物中粘土矿物的研究[J].东海海洋.1988,3(4):32-40
    193、朱丽东,周尚哲,李凤全等.庐山几红土剖面的色度气候意义[J].热带地理.2006.27(3):193-202.
    194、朱如凯.高岭石矿物缺陷结构研究-以晋北晚古生代煤系地层高岭岩为例[J].矿物学报.2006,16(3):245-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700