洛川剖面典型古土壤生物标志物及植被环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物标志物是地质时期生物体的“遗迹”,其分布和地球化学组合特征可以反映当时的生物信息及沉积环境状况。生物残体经历漫长地质环境改造后,大部分物质的组成和结构发生变化,但以分子级存在的生物标志物却保留了生物原有的基本碳网骨架。目前,生物标志化已在古植被和古气候环境方面进行了大量的研究,研究载体己涉及到气溶胶、海相沉积物、湖相和泥炭沉积物、洞穴石笋、黄土、古植被、雪冰和海相碳酸盐等,并已取得了大量研究成果。
     中国黄土分布广泛、沉积连续、携带的环境信息丰富,与深海沉积物、极地冰芯并称为全球变化研究的三大支柱,国内外学者对中国黄土进行了大量的研究并取得了丰硕的成果,洛川剖面作为黄土高原中部的标准剖面之一,一直是人们关注的焦点。利用气相色谱-质谱联用仪(GC-MS)对连续取样的洛川黄土剖面弱古土壤层(L_1SS_1)和相邻黄土层(L_1LL_1,L_1LL_2)的生物标志物进行了检测,获得正构烷烃、正烷基-2-酮和酰胺等种类众多、丰度较高的生物标志物。W_(草/植)=nC_(31)/(nC_(27)+nC_(29)+nC_(31))、W_(木/植)=(nC_(27)+nC_(29))/(nC_(27)+nC_(29)+nC_(31))和W_(木/草)=(nC_(27)+nC_(29))/(nC_(31)+nC_(33))记录反映了草本与植被、木本与植被、木本与草本比例变化规律的古植被信息。通过磁化率、粒度和分子化石指标的相关性分析,认为磁化率、粒度记录了环境变化及主要气候事件;而分子化石能较好地反映古植被变化。当气候环境由干冷向暖湿变化、水热配置条件改善时,植被变化响应较迅速:当环境恶化、转向干冷时,响应较弱或滞后,这种现象可能是由于植被生态系统稳定性造成的结果。对洛川剖面S_4古土壤及相邻的L_5、L_4部分黄土样品的生物标志物进行连续检测,获得包括正构烷烃、正烷基-2-酮和类异戊二烯等丰富的类脂物分子。比较样品正构烷烃与磁化率的相关性、原地源正构烷烃与磁化率的相关性,结合CPI指标并考虑黄土的风成因素,认为源自地层生物标志物真实地反映了地质时期的植被状况。正构烷烃平均碳链长度(ACL)与磁化率和粒度变化有很好的对比性,记录了地质时期的环境变化信息,环境由冷干向暖湿变化时同步性较好,由暖湿向冷干转变时ACL值记录滞后。正构烷烃碳数分布及比值参数揭示:由黄土沉积L_5向古土壤S_4过渡时以C_(29)为主峰,显示以木本输入为优势;在古土壤S_4发育时期,以C_(31)为主峰,草本比例增大、木本比例减小,具明显的草本输入优势。正构烷烃C_(31)/(C_(29)+C_(31))比值可以作为植被类型指标,L_5黄土层C_(31)/(C_(29)+C_(31))值小于0.5,为荒漠植被类型,S_4古土壤层C_(31)/(C_(29)+C_(31))值大于0.5,为草本植被类型。对S_5古土壤及相临部分黄土的生物标志物研究,从正构烷烃分布特征看,高碳数具有显著的奇偶优势,所有样品均以C_(31)为主峰,丰度分布为:C_(27)     小狐山湖泊沉积(晚更新世中晚期湖相沉积)的生物标志物显示,正构烷烃以C_(29)为主峰,洛川剖面在该地质时期(Sm)却以C_(31)为主峰,表明洛川原地源的生物标志物虽然受源区影响,但并没有覆盖原地生物标志物的信号,洛川剖面的生物标志物揭示了相应地质时期的古植被和古环境。磁化率和粒度与原地源正构烷烃参数具有相关性揭示了正构烷烃与环境变化的一致性,证明正构烷烃来自该地质环境条件下的植被,由此重建的古植被是可靠的,正构烷烃有机分子表明洛川黄土塬发育草原植被。
Biomarker is the remnant of vegetation and animal in stratum, its distribution and geochemistry characters record bio-formation or geo-history environment. The component and configuration of bio-remnant could change with geohistory environment, but fossil molecules have original C-structure of biology. So far, there are lots of study works on paleo-vegetation and environment which have been done, the research areas have reached aerosol, marine sediments, lacustrine and peat sediments, cave stalagmite, loess, paleo-vegetation, glacier, and estuarine sediments (rocks), and lots of achievements are obtained.
     The loess is widely distributed in the Northwestern China and has served as one of the best archives for paleoenvironment reconstruction. Together with deep sea sediments and ice core studies, they were considered mainstays of the global changes and great achievements have been documented in the recent decades. Using the GC-MS, biomarkers of samples taken from the weak developed paleosol (L1SS1) and loess layers (L_1LL_1 and L_1LL_2) in Luochuan loess section, which is one of the standard Quaternary typical section in NW China, were measured continuously, it was found that all the samples are rich in n-alkanes and other biomarkers. The indices, such as W_(g/v) = nC_(31)/(nC_(27)+nC_(29)+nC_(31)), W_(w/v) = (nC_(27)+ nC_(29))/(nC_(27)+nC_(29)+nC_(31)), and W_(w/g) = (nC_(27)+ nC_(29))/(nC_(31)+nC_(33)) recorded the ratios between grass and total vegetation, trees and total vegetation, trees and grass, which further represents the vegetation change history. The CPI of all the tested paleosol (L_1SS_1) samples change from 5.60 to 11.50, and much larger than 1, which indicate that the influences unrelated to the climate during the soil formation are neglectable. Based on the relative relationship analyses between magnetic susceptibility, grain size and biomarker indices, it proved that the magnetic susceptibility and grain size, the relativity reaches as high as -0.81, recorded the environmental change and climatic events, while the biomarkers related to the paleovegetation changes. When the climate changed from cold-dry to warm-humid, that means the improvements of the temperature and precipitation, the vegetation changes very quickly. While the environment deteriorated, that means when the climate changed from warm-humid to cold-dry, the vegetation changes lagged the climate changes and/or resistant to the changes, this phenomena might attribute to the stability of the vegetation system itself. Biomarker of all the samples analyzed characterized by a high carbon number majority of C_(31), therefore, indicate that grass predominant the vegetation during interstadial of last glacier in Luochuan area and there was no forest developed during that time. We emphasize that this statement is limited in the study area and could be applied to situation all over the whole Loess Plateau as the climatic environment condition might be very different from studied area to the southern at that time, as that of today. Using gas chromatography-mass spectrometry (GC-MS) technique, we identified a series of biomarkers, including n-alkane, n-alkane-2-ones, isoprenoid etc from the loess-paleosol samples collected from the S_4 and adjacent L5, L4 of the Luochuan loess section, Northwestern China. Based on these data, especially n-alkanes and high-resolution magnetic susceptibility and grain size data, the paleoenvironment and paleovegetation history during S_4 was reconstructed. The CPI (Carbon Predominance Index) and correlation between n-alkanes and magnetic susceptibility and grain size data demonstrated that the molecular fossils in paleosol and loess layers can reflect the vegetation condition during the loess-paleosol formation, if the allochthonous organic inputs could be excluded reasonably. The ACL (average chain length) index is correlated well with paleomagnetic susceptibility and grain size variations, displaying their good synchrony with warm and humid climate. However, it relatively lagged behind the paleomagnetic susceptibility and the grain size variations when the climate began to deteriorate. During the formation period of paleosol, the n-alkanes were dominated by C_(31) homologue, indicating that the primary organic input originated from herbs. Our study also demonstrated that the herbs were more flourish than wood plants in Loess Plateau, especially in the Luochuan area during the warm and humid phase, and there was no typical forest vegetation developed in the studied period. The n-alkanes of S_5 palaeosol have odd-carbon preference, the carbon distribution in all samples peaked at C_(31) homologue, the abundance of C_(27)     The biomarkers of Xiaohushan lake sediments (MIS3) show that n-alkanes are dominated by C_(29), but n-alkanes of Luochuan section (Sm) is dominated by C31, which shows the biomarkers are influenced by those of original region, but it record Paleovegetation and environment. Our study provides the most important information of the paleovegetation during the Late Pleistocene in Luochuan area, northern of the Loess Plateau. It proved that biomarkers could provide useful information on the vegetation development in the past, and such kind of results can be useful for the reforestation in the area, which bears practical significance to improve the modern environment.
引文
1. Abas M.R.B., Simoneit B.R.T., Composition of extractable organic matter of air particle from Malaysia: initial study. Atmospheric Environment,1996,30:2779~2793
    2. Albaiges J., Algaba J., Grimalt J., et al., Extractable and bound neutral lipids in some lacustrine sediments. Organic Geochemistry,1984,6:502~507
    3. An Z S. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews,2000,19:171-187
    4. An Z S, Liu T.S. Lou Y.C., et al., The longoterm palaeomonsoon variation recorded by the loess-paleosol sequence in central China. Quaternary International, 1990,7(8):91~95
    5. Andersson J.G., Children of the Yellow Earth: Studies in Prehistoric China. Kegan Paul. Trench,Tubner & Co.Ltd. London, 1934
    6. Barber K.E., Chambeers F.M., Maddy D.et al., A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England. Holocene, 1994,4:198-205
    7. Bautista J.M., Gonzalez-Vila F.J., Martin F., et al., Supercritical-carbon-dioxide extraction of lipids from a contaminated soil. Journal of Chromatoraphy A.,1999, 845:365-371
    8. Bourdon S., Laggoun-Defarge R, Disnar J.et al., Organic matter sources and early diagenetic degradation in a tropical peaty marsh(Tritrivakely, Madafascar). Implications for environmental reconstruction during the Sub-Atlantic. Organic Geochemistry,2000,31: 421-438
    9. Boutton T.W., Archer S.R., Midwodd A.J., et al., δ~(13)C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderna,1998, 82:5-41
    10. Bozkurt S., Lucisano M., Moreno I.et al., Peat as a potential analogue for the long-term evolution in landfills. Earth-Science Reviews,2001,53:95~147
    11. Brassell S.C.,Eglinton G., Marlowe I.T., et al. Molecular stratigraghy: a new tool for climatic assessment. Nature, 1986,320:129~133
    12. Brassell S.C., Engel M.H., Macko S.A., Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene[A]. Organic Geochemistry: principles and applications[M]. Newyork:plenum Press, 1993,699-738
    13. Brineat D., Yamada K., Ishiwatari R., et al, Molecular isotopic stratigraphy of long-chain n-alkanes in lake Baikal Holocene and glacial age Sediments. Organic Geochemistry,2000, 31:287-294
    14. Bull,I.D.,Van Bergen,P.F.,Nott,C.J.,et al., Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments-V .The Fate of Lipids in Different Long-Term Experiments. Organic Geochemistry, 2000,31:389-408
    15. Calvin M. Molecular paleontology. Trans Leicester Literary Phil Soc, 1968, 42(6): 713-728
    16. Cayet, C. Lichtfouse, E. delta 13C of plant derived n-alkanes in soil particle-size fractions. Organic Geochemistry, 2001,32, 253-258
    17. Chapman M.R., Shackleton N.J., Zhao M., et al., Raunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28ka. Paleocea-nography,1996,11:343~357
    18. Chen J.S., Li L., Wang J.Y., et al., Water resource: Groundwater maintains dune landscape. Nature,2004,432~459
    19. Cranwell P.A. Branched-chain and cyclopropanoid acids in a recent sediment. Chemical Geology, 1973a,11(7):307~313
    20. Cranwell P A, Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol, 1973b, 3:259-265
    21. Cranwell P.A., Organic geochemistry of Cam Loch(Sutherland) sediments. Chemical Geology,1977,20:205~221
    22. Cranwell P.A., Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochem, 1987,11: 513~527
    23. Degen,E.T. Biogeochemistry of stable carbon isotope. In: G.Eglinton,eds. Organic Geochemistry. Berlin: Springerverlag,1969,304~329
    24. Ding Z. L., Yu Z.W., Rutter N.W.,et al., Towards an otbital time scale for Chinese loess deposit. Quaternary Science Reviews,1994,13:39~70
    25. Dupont L., Mook W.G., Palaeoclimate analysis of ~2H/~1H ratios in peat sequences with variable plant composition. Chem. Geol.,1987,66:323~333
    26. Fakes L A, Sun J. A carbon isotope record of the upper Chinese loess sequence Estimates of plant types during stadials and inter-stadials. Palaeogeography, Palaeoclimatology, Palaeo-cology, 1994,108:183-189
    27. Francisco J., Gonzalez-vilia, Oliva Polvillo, et al., Biomarker patterns in a time-resolved Holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/Spain border). Organic Geoche- mistry,2003,34:1601~1613
    28. Freeman K.H., Colarusso L.A., Molecular and isotopic records of C_4 grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta, 2001, 65(9):1439~1454
    29. Gagosian R B, Peltzer E T, Merrill J T, The importance of atmospheric input of terrestrial organic material to deep sea sediments. Organic Geochemistry, 1986,10: 661-669
    30. Gasse, F., Arnold, M., Fontes, J. C. et al., A 13000 year climate record from western Tibet. Nature, 1991,353: 742-745
    31. Gerard J M, Versteegh R R, de Leeuw J W, et al. Uk37' values for Isochrysis as a function of culture temperature, light intensity and nutrient concentrations. Organic Geochemistry, 2001, 32: 785-794
    32. Georgee S.C., Jardine D.R., Ketones in a Proterozoic dolerite sill. Organic Geo- chemistry, 1994, 21:829-839
    33. Gobe V., Leme L, Ambles A., Structure elucidation of soil macromolecular lipids by preparative pyrolysis and thermochemolysis. Organic Geochemistry, 2000, 31:409-419
    34. Grafenstein, U. V, Erlenkeuser, H., Kleinmann, A et al., High-frequency climatic oscillations during the last deglaciation as revealed by oxygen-isotope records of benthic organisms (Ammersee, Southern Germany). Journal of Paleolimnology, 1994,11:349
    35. Hanisch, S., Ariztegui, D. & Puttmann, W., The biomarker record of Lake Albano, central Italy - Implications for Holocene aquatic system response to environment- tal change. Organic Geochemistry, 2003,34:1223-1235
    36. Hedges J.I., Hu F.S., Devol A.H.,et al. Sedimentary organic matter preservation: a test for selective degradation under oxic conditions. American Journal of Science, 1999, 299: 529-555
    37. Hernandez,M.E., Mend,R., Peralba,M.C, et al. Origin and transport of n-alkan-2-ones in a subtropical estuary:potential biomarkers for seagrass-derived organic matter. Organic Geo- chemistry,2001,32:21~32
    38. Hinrichs K U, Schneiger R R, Muller P J, et al. A biomarker perspective on plaeo-productivity variations in two Late Quaternary sediment sections from southeast Atlantic Ocean. Organic Geochemistry, 1999, 30: 341-366
    39. Hu J., Peng P., Jia G., et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental recon-struction of Nansha area, South China Sea, during the last 30ka. Organic Geochemistry,2002,33:1197~1204
    40. Huang Y.H., Bol R., Harkness D.D., et al., Post-glacial variations in distribution, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Org Geochem,1996,24(3):274~287
    41. Huang Y, freeman K.H., Eglinton T.I., et al. ~(13)C analyses of individual lignin phenols in the lacustrine environment: A novel proxy for deciphering past terrestrial vegetation changes. Geology, 1999, 27:471-474
    42. Huang Y, Street Perott F.A., Perrott R.A., et al. Glacial-interglacial environ- mental chenges inferred from molecular and compound-specific δ~(13)C analyses of sediments from sacred lake, Mt.Kenya. Geochimica et Cosmochimica.Acta, 1999, 63:1383-1404
    43. Huang Y, Street—Perrott FA, Metcalfe S E, et al. Climate change as the dominant control on glac ial—interglacial variations in C3 and C4 plant abun- dance. Science, 2001, 293: 1647-1651
    44. Humphrey J.K., Ferring C.R., Stable isotopic evidence for latest Pleistocene and Holocene climatic change in north-central Texas. Quaternary Research, 1994,41:200-213
    45. Jvillanueva J, Flores J A, Grimalt J O. A detailed comparison of Uk37' and cocolith records over the past 290k years: implications to the alkenone paleotemperature method. Organic Geochemistry, 2002, 33: 897-905
    46. Jaffe R., Wolff G.A., Cabrera A.C., et al., The biogeochemistry of lipids in rivers from the Orinoco Basin. Geochim Cosmochim Acta, 1995,59:4507-4522
    47. Kawamura K, Ishiwatari R. Polyunsaturated fatty acies in a lacustrine sediment as a possible indicator of paleocli mate. Geochem Cosmochim Acta, 1981, 45:149~155
    48. Kienast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science, 2001, 291:2 132-2 134
    49. Kracht O., Gleixner G., Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Organic Geochemistry, 2000,31:645-654
    50. Kuder T, Kruge M.A., Preservation of biomolecules in sub-fossil plants from raised peat bogsa potential palaeoenvironmental proxy. Organic Geochemistry, 1998,29:1355-1368
    51. Kukla G. and An Z.S., Loess stratigraphy in central China. Palaeogeography Palaeo-clinatoligy Palaeoecology. 1989,72:203-223
    52. Lehtonen K., Ketola M., Occurrence if long-chain acyclic methyl ketones in Sphhagnum and Carex peats of various degrees of humification. Organic Geoche- mistry,1990,15:275~280
    53. Lichtfouse E, Berthier G, Houot S. Stable carbon isotope evidence for the microbial origin of C14-C18 n-alkanoic acids in soils. Organic Geochemistry, 1995,23:849~852
    54. Liu T, et al. Loess and the Environment. Beijing: China ocean Press, 1985,1-251
    55. Liu Tungsheng et al. Loess and the Environment. Beijing: Science Press, 1985, 1-481
    56. Maher, B. A., Thompson, R., Zhou, L. P., Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters,1994,125: 461-471
    57. Mertz, C., Kleber, M., Jahn, R., Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation. Organic Geochemistry, 2005, 36: 1311-1322
    58. Menot G., Burns S.J., Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland.Organic Geoche mistry,2001,32: 233-245
    59. Meyers, P. A., Ishiwatari, R. Lacustrine organic geochemistry: An review of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 1993, 20(7):867~900
    60. Miederma R., Koulechova I.N., Gerasimova M.I., Soil formation in Geryzems in Moscow district: micromophology, chemistry, clay mineralogy and particle size distribution. Catena, 1999,34:315-347
    61. Mix A C, Pisias N G, Rugh C, Lopez C,Nelson K. 1995. Benthic foraminifer stable isotope record from Site 849 (0~5Ma): Local and global climate changes. Proceedings of the Ocean Drilling Program, Scientific Results, 138: 371-412
    62. Morselli L., Setti L., Iannuccilli A. et al., Supercritical fluid extraction for the determination of petroleum hydrocarbons in soil. Journal of Chromatography A., 1999,845:357-363
    63. Naafs D., Van Bergen P.F., Boogert S.J., et al., Solvent-extractable lipids in an acid andic forest soil variations with depth and season. Soil Biology & Bioche- mistry, 2004,36: 297-308
    64. Nam P., Kapila S., Liu Q., et al., Solvent extraction and tandem dechlorination for decontamination of soil. Chemosphere,2001,43:485~491
    65. Nordi L.C., Boutton T.W., Hallmark C.T., et al., Late Quaternary vegetation and climatic change in central Texas based in the isotopic composition of organic carbon. Quaternary Research,1994,41:109~120
    66. Nott C.J., Xie S., Avsejs L.A., n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geoche- mistry,2000,31:231-235
    67. Oana, S. and E.S. Deevey. Carbon 13 in lake waters and its possible bearing on paleolim-nology. American Journal of Science, 1960, 258(A):253 -272
    68. Pendall E., Markgraf V., White J.W.C.et al., Multiproxy record of late Pleistocene-Holocene climate and vegetation changes from a peat bog in Pata- gonia. Quaternary Research,2001, 55:168-178
    69. Porter S C, An Z S. Correlation between climate events in the North-Atlantic and China during the last glaciation. Nature, 1995,375:305-308
    70. Poynter J G, Farrimond P, Brassell S C, et al. Aeolian-derived higher-plant lipids in the marine sedimentary record:Links with paleoclimate. In: Leinen,M., Sarnthein,M.(Eds.), Palaeoclimatology and PalaeometeoroJogy: Modern and Past Patterns of Global Atmosphere Transport. Kluwer,1989,435~462
    71. Quenea K., Derenne S., Largeau C., et al., Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Organic Geochemistry, 2004, 35:1355-1370
    72. Ramshaw E.H., Gas chromatography of vinyl ketones. Journal of Chromatogra- phy, 1963, 10:303-308
    73. Reddy C M, Eglinton T I, Palic R et al. Even carbon number predominance of plant wax n~alkane: A correction. Organic Geochemistry, 2000, 31: 331—336
    74. Rommerskirchen, F., Eglinton, G.., Dupont, L, et al., A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific d13C land plant biomarker and pollen records. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1101 (doi:10.1029/2003GC000541)
    75. Schefuss E, Ratmeyer V, Stuut J B W, et al. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochemica et Cosmochimica Acta, 2003,67 (10):1757-1767
    76. Schiegl W.E., Deuterium content of peat as a paleoclimatic record. Science, 1972,175: 512-513
    77. Schneider J K,Gagosian R B,Cochran J K et al. Particle size distribution of n-alkances and ~(210)Pb in aerosols off the coast of Peru. Nature, 1983,304:429-432
    78. Schwark L, Zink K, Lechterbeck J, Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 2002, 30:463-466
    79. Sicre M A, Marty J C, Saliot A. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment, 1987, 21(10):2247~2259
    80. Simoneit B.R.T., Aplication of molecular marker analysis to vehicular exhaust for source reconciliation. Int.j. Envir. Analyt. Chem., 1985,22:203-233
    81. Simoneit B.R.T., Cox R.E., Standley L.J., Organic matter of the troposphere-IV. Lipid in harmattan aerosols of Nigeria,1988,22(5): 983-1004
    82. Simoneit B.R.T., Cardoso J.N., Robinson N., An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the south Atlantic from about 30-70S. Chemosphere,1991,23: 447-465
    83. Simoneit, B. R. T., M. Kobayashi, et al,. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. Journal of Geophysical Research, 2004,109, D19S10, doi:10.1029/2004JD004598.
    84. Sikes E.L., Keigwin L.D., A reexamination of northeast Atlantic sea surface temperature and salinity over the last 16ka. Paleocea-nography,1996,11:327~342
    85. Van Geel B., Middeldrop A.A., Vegetational history of Carbury Bog (Co. Klidare, Ireland) during the last 850 years and a test of the temperature indicator value of ~2H/~1H measure ments of peat samples in relation to historical sources and meteorological data. New phytologist,1988,109:377~392
    86. Volkman J.K., Barrett S.M., Blackburn S.I., et al., Alkenones in gephyrocapsa oceanica: implications for studies of paleoclimate. Geochimica et Cosmochimica. Acta,1995,59: 513-520
    87. Volkman J.K., Farrington J.W., Gagosian R.B., et al., Lipid composition of coastal sediments from the Peru upwelling region. Advance in Organic Geochemstry, 1983,228-240
    88. Wakeham S G. Acomparative survey of petroleum hydrocarbon in lake sediments. Marine pollution Bulletin, 1976,7:206-211
    89. Wong, W.H., Sediments of the N. China rivers and their geological significance: a quantitative study of the phenomena of erosion and deposition in N. China. Bull. Geol. Coc.
    ??China, 1931,10:247-271
    
    90. Wu J. L. Composition of ~(18)O and ~(13)C in various carbonates of core RM in the Zoige basin and climatic significance. Chinese Geographical Science, 1996,17(1):18
    
    91. Xie S.C., Yao T., Kang Sh., et al., Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabandma in Qinghai-Tibetan Plateau. Science in China (Series D), 1999,42:383-391
    
    92. Xie S.C., Yi,Y., Huang,J.H., et al., Lipid Distribution in a Subtropical Southern China Stalagmite:A Record of Soil Ecosystem Response to Paleoclimate Change. Quaternary Research, 2003a ,60:340-347
    
    93. Xie S C, Nott N J, Avsejs L A et al. Palaeoclimate records in compound-specific 3D values of a lipid biomarker in ombrotrophic peat. Organic Geochemistry, 2000,31:1053-1057
    
    94. Ying G.G, Fan P., Origin of ketones in sediments of Qinghai Lake. Science in China(Series B),1993,36:237~241
    
    95. Yunker, M.B., Macdonald, R.W. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia. Organic Geochemistry,2003, 34: 1429-1454
    
    96. H C Zhang, B Li, M S Yang, et al., Dating paleosol and animal remains in loess deposits. Radiocarbon, 48,(1):109-116
    
    97. Zhang Hucai, Ma Yuzhen, Pen Jinlan, Li Jijun, Cao Jixiu, Chen Guangjie, Fang Hongbing, Mu Defen, H. J. Pachur, B. Wiinnemann & Feng Zhaodong, Palaeolake and palaeoenviron ment between 42 - 18ka BP BP in Tengger Desert, NW China. Chinese Science Bulletin, 2002,47, (23): 1946-1956
    
    98. Zhang, H. C, B. Wiinnemann, Ma, Y. Z., et al, Lake level and climate changes between 42,000 and 18,000 14C yr B.P. in the Tengger desert, Northwestern China. Quaternary Research, 2002,58, 62 - 72
    
    99. Zhang, H. C, Li, J. J., Ma, Y. Z., et al, Paleolake evolution and abrupt climate changes during last glacial period in NW China. Geophysical research Letters, 2001,28, 3203 - 3206
    
    100. ZHANG HuCai, CHANG FengQin, LI Bin, et al., Branched aliphatic alkanes of shell bar section in Qarhan Lake, Qaidam Basin and their paleoclimate signify- cance. Chinese Science Bulletin,2007,52( 9):1248-1256
    
    101. Zhang, H. C, Ma, Y. Z., Wiinnemann, B. and Pachur, H. -J, A Holocene climatic record from arid Northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162:389-401
    
    102. Zheng M., Wan T.S.M., Fang M., et al., Charaterization of the non-volatile organic compoundsin the aerosols of Hong Kong-identification abundance and origin. Atmospheric Environment,1997,31:227-237
    
    103. Zhou W.J., Xie S.C., Philip A.M.et al., Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry,2005,36:1272-1284
    
    104.奥勃鲁契夫,B.A.黄土问题.砂与黄土问题(乐铸,刘东生等译).科学出版社, 1958,67-100
    
    105.奥勃鲁契夫,B.A黄土的成因问题.砂与黄土问题(乐铸,刘东生等译).科学出版社,1958, 100-144
    
    106.奥勃鲁契夫,B.A.作为土壤的一种特殊类型.黄土,黄土的成因及其研究任务.砂与黄土??问题(乐铸,刘东生等译).科学出版社,1958,145-161
    
    107.陈承惠,林绍孟.西安-钻孔剖面第四纪孢粉组合及其古气候初步分析.第三届全国第 四纪学术论文集.北京:科学出版社,1982,139-141
    
    108.陈发虎,饶志国,张家武等.陇西黄土高原末次冰期有机碳同位素变化及其意义.科学通 报,2006,51(11):1310-1317
    
    109.陈辉,吕新苗,李双成.柴达木盆地东部表土花粉分析.地理研究,2004,23(2):201-210
    
    110.陈骏,王永进,季峻峰等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义.第四纪研 究,1999,14(2):164-167
    
    111.陈建芳.古海洋与古气候演化的生物标志化合物记录.海洋通报,1996,15(5):33-37
    
    112.陈肠,陈骏,季峻峰等.陕西洛川黄土剖面的白度参数及其古气候意义.地质评 论,2002,48(1):38-44
    
    113.段毅,文启彬,罗斌杰.沼泽沉积物中单体正构烷烃碳同位素研究.科学通报,1995, 40(19):1791-1794
    
    114.段毅,王智平.南沙海洋沉积单体长链正构烷烃成因的碳同位素证据.科学通 报,2001,46(23):2003-2006
    
    115.段毅.甘南沼泽沉积脂类生物标志化合物的组成特征.地球化学,2002,31(6):525-531
    
    116.范璞,张柏生,于心科.近代盐湖沉积物中的生物标志化合物.地球科学进展,1994, 9(3):5-17
    
    117.龚家栋,程国栋,张小由等.黑河下游额济纳地区的环境与演变.地球科学进 展,2002,17(4):491-496
    
    118.郭正堂,吴海斌,魏建晶等.用古土壤有机质碳同位素探讨青藏高原东南缘的隆升幅度. 第四纪研究,2001,21(5):392-398
    
    119.胡建芳,彭平安,贾国东等.三万年来南沙海区古环境重建:生物标志物定量与单体碳同位 素研究.沉积学报,2003,21(2):211-218
    
    120.黄麒,孟昭强,刘海玲.柴达木盆地察尔汗湖区古气候波动模式的初步研究.中国科学,B 缉,1990,(5):652-663
    
    121.季峻峰,陈骏,刘连文等.洛川黄土绿泥石的化学风化与磁化率增强.自然科学进 展,1999,9(7):619-623
    
    122.康惠跃,盛国英,傅家谟等.珠江澳门河口沉积物柱样品正构烷烃研究.地球化学, 2000,29(3):302-310
    
    123.李丙元,张青松,王富葆.咯刺昆仑山.西昆仑山地区的湖泊演化.第四纪研究,1991, (1):64-71
    
    124.李双林.南黄海HY126YA1孔末次冰期多层泥炭的发现及其古气候意义.海洋地质动 态,1999,196(3):3-5
    
    125.雷国良,张虎才,张文翔等.Mastersize2000型激光粒度仪分析数据可靠性检验及意义—— 以洛川剖面S4层古土壤为例.沉积学报,2006,24(4):531-539
    
    126.冷雪天,王升忠,王树生等.关于高位泥炭形成时代研究.东北师大学报自然科学版,1997, 3:104-111
    
    127.冷雪天,王升忠,赵红艳等.我国贫营养泥炭沉积的物质组、理化特性及水化学环境分析. 矿物岩石地球化学通报,2003,22(2):114-119
    
    128.李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574
    
    129.李丙元.羌塘高原北部湖泊演化初步探讨.青藏高原形成演化、环境变迁与生态系统研 究(1994),北京:科学出版社,1995,261-266
    
    130.梁斌,谢树成,顾延生等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义.地球??科学,2005,30(2):129-132
    
    131.林本海,安芷生,刘荣谟.最近60万年中国黄土高原季风变迁的稳定同位素证据.见:刘东 生,安芷生主编,黄土·第四纪地质·全球变化,第三集,北京:科学出版社,1992,51-54
    
    132.刘东生.黄土与环境.科学出版社,1985
    
    133.刘东生.史前黄土高原的植被景观.森林还是草原.地球学报,1994,(3/4):226-234
    
    134.刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应中国 科学,D辑,2002,32(10):830-836
    
    135.鹿化煜,安芷生,杨文峰.洛川黄土序列时间标尺的初步建立.高校地质学报,1996,(2):230- 236
    
    136.鹿化煜,安芷生,J.Vandenberghe等.洛川黄土地层定年的一个模式及其初步应用.沉积 学报,1997,15(3):150-152
    
    137.卢粤晗,孙用革,翁焕新.湖泊沉积有机质的地球化学记录与古气候古环境重建.地球化 学,2004,33(1):20-28
    
    138.吕厚远,郭正堂,吴乃琴.黄土高原和南海陆架古季风演变的生物记录与Heinrich事件. 第四纪研究,1996,(1):11-20
    
    139.吕厚远,刘东生,吴乃琴等.末次间冰期以来黄土高原南部植被演替的植物硅酸体记录. 第四纪研究,1999,(4):336-349
    
    140.彼得斯K.E.,莫尔多万J.M.,1998.生物标记化合物指南-古代沉积物和石油分子化石的 解释.姜乃煌,张永昌,林水汉,张大江,宋孚庆译.北京:石油工业出版社
    
    141.钱君龙,王苏民,薛滨等.湖泊沉积研究中一种定量估算陆源有机碳的方法.科学通 报,1997,42(8):1655-1657
    
    142.饶志国,陈发虎,曹洁等.黄土高原西部地区末次冰期和全新世有机碳同位素变化和 C3/C4植被类型转换研究.第四纪研究,2005,25(1):107-114
    
    143.任松,陈卫卫,卜建平等.超声波提取在近海沉积物油类测定中的应用.海洋环境科 学,2005,24(1):35-37
    
    144.盛国英,蔡克勤,阳学贤等.合同察汗淖(碱)湖沉积物中的长链不饱和酮及其古气候意义. 科学通报,1998,43(11):1090-1093
    
    145.施雅风,文启忠,曲耀光.新疆柴窝堡盆地第四纪气候环境变迁和水文地质条件.北京:海 洋出版社,1990,152-157
    
    146.孙广友等,罗新,Turner R.E.青藏东北部若尔盖高原全新世泥炭沉积年代学研究.沉积 学报,2001,19(2):177-181
    
    147.史念海.论历史地理时期我国植被的分布及其变迁.中国历史地理论丛,1991,3:43-73
    
    148.石建省,李铮华,魏明建等.黄土与古气候演化.地质出版社,1998,26-34
    
    149.孙建中,赵景波.黄土高原第四纪.北京:科学出版社,1992,51-54
    
    150.孙湘君,宋长青,王琫瑜等.黄土高原南缘10万年以来的植被-陕西渭南黄土剖面的花粉 记录.科学通报,1995,40(13):1222-1224
    
    151.宋建中,于赤灵,贾国东等.南海北部4Ma B.P.以来古海洋变迁的长链烯酮记录.第四纪 研究,2003,23(5):512-520
    
    152.唐小玲,毕新慧,陈颖军等.广州市空气颗粒物中烃类物质的粒径分布.地球化学,2005, 34(5):508-514
    
    153.卫克勤,林瑞芬.内陆封闭湖泊自生碳酸盐氧同位素剖面的古气候意义.地球化学,1995, 24(3):215-223
    
    154.万大娟,李顺义,舒月红等.土壤和沉积物中1,2,4-三氯苯的超声波提取.中山大学学报 (自然科学版),44(3):102-104
    
    155.王富葆,李升峰,申旭辉等.吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起.中国科学 (D辑),1996,26(4):329-335
    
    156.王华,洪业汤,朱咏煊等.红原泥炭腐殖化度记录的全新世气候变化.地质地球化学,2003, 31(2):51-56
    
    157.王红梅,刘育燕,王志远.四川剑门关侏罗-白垩系红层分子化石的古环境和古气候意义. 地球科学-中国地质大学学报,2001,26(3):229-234
    
    158.王云飞,王苏民,薛滨等.黄河袭夺若尔盖古湖的沉积学依据.科学通报,1995,40(8): 723-725
    
    159.王志远,喻建华,顾延生等.浙江长兴更新世红土中的分子化石及其古环境意义.海洋地 质与第四纪地质,2002,22(1):97-102
    
    160.王志远,刘占红,易轶等.不同气候和植被区现代土壤类脂物分子特征及其意义.土壤学 报,2003,40(6):967-970
    
    161.王志远,谢树成,陈发虎.临夏塬堡黄土地层S1古土壤中的正构烷烃及其古植被意义.第 四纪研究,2004,24(2):231-235
    
    162.王永焱等.黄土与第四纪地质1976-1980,陕西人民出版社,1982
    
    163.胁水铁五郎.支那的黄土.世界地理第三卷”支那”,1942,83-99
    
    164.谢树成,姚檀栋,康世昌等.青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义.中国 科学(D辑),1999,29(5):457-465
    
    165.谢树成,Evershed R.E,泥炭分子化石记录气候变迁和生物演替的信息.科学通报,2001, 46(10):863-866
    
    166.谢树成,王志远,王红梅等.末次问冰期以来黄土高原的草原植被景观:来自分子化石的证 据.中国科学(D辑),2002,32(1):28-35
    
    167.谢树成,梁斌,郭建秋等.生物标志化合物与相关的全球变化.第四纪研究,2003A,23(5): 512-528
    
    168.谢树成,易轶,刘育燕等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录. 中国科学(D辑),2003B,33(5):411-417
    
    169.谢树成,易秩,梁斌等.泥炭分子化石单体碳氢同位素的古气候意义.矿物岩石地球化学 通报,2003C,22(1):8-13
    
    170.谢树成,黄俊华,王红梅等.湖北清江和尚洞石笋脂肪酸的古气候意义.中国科学(D辑), 2005,35(5):246-251
    
    171.颜备战,贾蓉芬,胡凯.陕西渭南黄土剖面系列链烃化合物的分布与气候意义.地球化学, 1998,27(2):180-186
    
    172.杨明生,张虎才,丁虎等.黄土剖面古土壤和生物化石14C测年对比.地球科学-中国地 质大学学报,2005,30(5):589-596
    
    173.杨明生,张虎才,雷国良等.洛川黄土剖面末次冰期间冰段弱古土壤(L1SS1)分子化石及 其古植被与古环境.第四纪研究,2006,26(6):976-984
    
    174.杨杰东,陈骏,李春雷等.2.5 Ma以来大陆风化强度的演变.地质论评,2000,46(5):472-480
    
    175.伊海生,林金辉,王成善等.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同 位素异常.成都理工学院学报,2002,29(5):473-480
    
    176.阳学贤,盛国英,卢家烂等.内蒙古湖洞察汗淖(碱)湖沉积物中的生物标志物特征及其古 环境意义.地球化学,1996,25(6):536-544
    
    177.张干,盛国英,彭平安,郑洪汉.南极乔治王岛菲尔德撕半岛湖相沉积物的分子有机地球化 学特征.科学通报,2000,45卷(曾刊):2758-2762
    
    178.张虎才,张林源,张维信.兰州九州台黄土剖面碳氧同位素及黄土沉积环境研究.兰州大??学学报(自然科学版),1990,28(3):117-126
    
    179.张虎才,B.Wuennemann.腾格里沙漠晚更新世以来湖相沉积年代学及高湖面期的初步确 定.兰州大学学报,1997,33(2):97-91
    
    180.张虎才等.腾格里沙漠南缘武威黄土沉积元素地球化学特征.兰州大学学报(自然科学 版)1998,(4):157-164
    
    181.张虎才,马玉贞,彭金兰等.距今42-28ka腾格里沙漠古湖泊及古环境.科学通报2002, 47(24):1847-1857
    
    182.张虎才,明庆忠.中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形 成.地球科学进展,2006,21(5):532-538
    
    183.张虎才,常凤琴,李斌等.柴达木察尔汗湖贝壳堤剖面长链支链烷烃及其古环境意义.科 学通报,2007,6(52):707-714
    
    184.张虎才,杨明生,张文翔.洛川黄土剖面S_4古土壤及相邻黄土层分子化石与植被变化.中 国科学,2007,37(12):1634-1642
    
    185.张林源.青藏高原形成过程与我国新生代气候演变阶段的划分.青藏高原形成演化、环 境变迁与生态系统研究(1994).北京:科学出版社,1995,267-281
    
    186.张彭喜,张保珍,钱桂敏等.青海湖全新世以来古环境参数的研究.第四纪研究,1994, (3):225-336
    
    187.张则有.我国冻土区泥炭沼泽形成的特征.冰川冻土,1993,15(2):225-229
    
    188.张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积.第四纪研究,2001, 21(1):29-40
    
    189.赵景波,岳应利,杜娟.陕西洛川黄土中第五层古土壤与环境研究.中国沙漠,2004, 24(1):30-34
    
    190.赵景波,岳应利,杜娟.黄土的形成与气候旋回划分.中国沙漠,2002,22(1):11-15
    
    191.周卫建等,卢雪峰,武振坤等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳 测年.科学通报,2001,46(12):1040-1044
    
    192.钟艳霞,陈发虎,安成邦等.陇西黄土高原秦安地区全新世植被的讨论.科学通报,2007, 52(3):318-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700