早白垩世陇中盆地与六盘山盆地沉积环境与地层磁化率测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁化率在恢复古气候环境记录方面发挥着重要的作用,但目前对于磁化率变化机制的研究还比较薄弱。本文通过对我国西部陇中盆地和六盘山盆地下白垩统地层岩性、沉积环境及磁化率变化研究,为探讨不同沉积环境、构造-气候背景下磁化率的变化机制提供基础资料。论文取得如下成果:
     1、陇中盆地内部两个次级盆地临夏盆地和兰州盆地下白垩统河口群划分出19个沉积岩相,构成冲积扇相、辫状河相、曲流河相、三角洲相、辫状河三角洲相和浅湖相,滨湖相、半深湖相8沉积体系。六盘山盆地下白垩统六盘山群划分出20个沉积岩相,构成冲积扇相、辫状河相、曲流河相、浅湖相、半深湖相5沉积体系。
     2、磁化率测量表明,六盘山盆地六盘山群质量磁化率值较高,低频质量磁化率为0.28-82.6×10-8kg/m3,平均值为10×10-8kg/m3,盆地边缘(7.07×10-8kg/m3)比盆地中部(18.8×10-8kg/m3)质量磁化率值低。陇中盆地下白垩统平均质量磁化率较低,且临夏盆地河口群明显高于兰州盆地河口群,前者平均低频质量磁化率为(2.1-53.6×10-8kg/m3),平均10.5×10-8kg/m3,后者低频质量磁化率为(1.5-23.9)×10-8kg/m3,平均值为7.9×10-8kg/m3。两盆地下白垩统低频和高频质量磁化率的变化趋势基本一致。
     3、从岩石岩性和颜色看,临夏盆地下白垩统河口群质量磁化率高值对应氧化色和沉积物颗粒最粗的含砾砂岩等水动力强的沉积环境,低值对应还原色和沉积物颗粒较细(除泥岩外最细)的粉砂岩。兰州盆地质量磁化率高值对应水动力弱的还原环境和沉积物颗粒最细的泥岩。对于六盘山盆地六盘山群,盆地西北部(火石寨剖面和寺口子剖面)质量磁化率高值对应红色色调和细粒的泥岩,为水动力较弱的沉积环境,盆地中部(六盘山主峰剖面)质量磁化率高值对应棕褐-褐红色和岩性最粗的砂岩,为水动力较强的沉积环境。盆地东北部(石岘子剖面)质量磁化率高值对应还原色和沉积颗粒较细的泥灰岩,为水动力较弱的沉积环境。
     4、对陇中盆地不同构造隆升阶段和不同气候阶段质量磁化率统计发现,磁化率高值对应构造隆升慢,气候湿热阶段;磁化率地质对应构造隆升快和气候温湿阶段。而六盘山盆地的情况则相反,磁化率高值对应气候温湿,低值对应气候湿热,具体原因还有待于分析。
The magnetic susceptibility is a useful proxy in reconstructing paleoclimate, but its mechanism of variation is still unclear. Based on the analysis of the lithology, sedimentary environments and susceptibility value for the Early Cretaceous strata in the Longzhong basin and Liupanshan basin, northwest of the China, this paper provide a insight into the understanding to the facies-, tectonic-and climate-dependent variation of the magnetic susceptibility, and some conclusions as following:
     1. There are19lithologic sequences in the Linxia and Lanzhou subasin of the Longzhong basin, which constitutes the alluvial fan, braided river, meandering river, river delta, braided delta, shallow lake, shore lake and semi-deep lake sedimentary facies. Whereas, there are20lithologic sequences in the Liupanshan basin, which compose the alluvial fan, braided river, meandering river, shallow lake and semi-deep lake sedimentary facies.
     2. Magnetic susceptibility measurements indicates that magnetic susceptibility value is high in the Liupanshan basin, low frequency mass magnetic susceptibility ranges between0.28-82.6x10-8kg/m,the mean value is10×10-8kg/m,and the value in the margin of the basin (7.07×10-8kg/m3) is lower than those in the central basin (18.8×10-8kg/m3).However, the mean magnetic susceptibility value of the Hekou group in the Longzhong basin is lower than in the Liupanshan basin.In detail,the value in Linxia subbasin is significantly higher than in the Lanzhou subbasin. The low frequency mass magnetic susceptibility in the Linxia basin ranges from2.1to53.6x10-8kg/m3, the mean value is10.5×10-8kg/m3,whereas the low frequency mass magnetic susceptibility in Lanzhou basin ranges from1.5to23.9×10-8kg/m3,the mean value is7.9×10-8kg/m3In general, the variation trend in low and high frequency mass magnetic susceptibility are accordance in the two basins.
     3.Dependent on lithology and color, high magnetic susceptibility value of Hekou group in the Linxia subbasin corresponds to the oxidation silt and coarse gravely sandstone which is in the,oxidation and high energy water environment. However low value corresponds to deoxidation environment and fine siltstone except to mudstone. The high value in the Lanzhou basin corresponds to deoxidation environment and fine mudstone. For the Liupanshan group, the high mass magnetic susceptibility value in the northwest of the basin(section Huoshizai and Shikouzi) corresponds to red color and fine grained mudstone, the high value corresponds to high energy water and oxidation environment, such as the brown color and coarse particle sandstone in the central basin(the highest peak in Linpanshan). In the northeastern of the basin, the high value corresponds to still water and deoxidation environment, such as reduced color and fine particle marlstone.
     4.The analysis for magnetic susceptibility in various phase of the tectonic uplift in Longzhou basin, Higher magnetic susceptibility value indicates a steady tectonic uplift stage and hydrostatic environment, but the lower value indicates rapid and strong tectonic uplift stage and high energy water sedimentary environment. Meanwhile, high magnetic susceptibility value indicates hot and humid climatic status and high energy water sedimentary environment, whereas lower value indicates humid climate conditions and hydrostatic environment. However, these relationship is inconsistent to those in the Liupanshan basin. The cause for this contrary should be uncovered by the more study with the other proxies.
引文
Allen PA, Allen J R, Basin analysis. Blackwell Scientific Publication.1990,141-308.
    Alvarez L W, AlvarezW, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction [J]. Science,1980,206:1095-1107.
    AnnamariaNador, MiklosLantos, agnes T6th_Makk, et al. Milankovitch_scalemulti_proxy records fromfluvial sediments of the last 216Ma, Pannonian Basin, Hungary. Quaternary Science Reviews.2003,22(20):2157-2175.
    AnZ. S., Porter, S. C., Zhou W., et al. Episode of strengthened summer monsoon climate of Younger Dryas ageon the Loess Plateau of central China. QuatRes.1993,39:45-54.
    Anne-Christine da Silva, Ken Potma, John A.W. Weissenberger, Michael T. Whalen, Marc Humblet,Cedric Mabille, Frederic Boulvain,Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada.Sedimentary Geology 214 (2009) 3-18.
    Bloemendal J. Paleoenvironmental implications of the magnetic characteristics of sediments from Deep-Sea Drilling Project Site 514, southeast Argentine Basin. Initial Report of the Deep Sea Drilling Project,1983,71:1097-1108.
    Boygle J.Variability of tephra in lake and catchment sediments. Svinavatn, Iceland. Global and Planetary Change,1999,21:129-149.
    Brachfeld S A. High-field magnetic susceptibility (x HF) as a proxy of biogenic sedimentation along the Antarctic Peninsula. Physics of the Earth and Planetary Interiors,2006,156:274-282.
    Collinson D W. Methods in Rock Magnetism and Paleomagnetism:techniques and Instrumaent-ation. Londaon [M]. Chapmanand Hall,1983.
    Dunlop D J, zdemir. RockMagnetism:Fundamentals and Frontiers [M]. Cambridge (UK) Cambridge University Press,1997.
    Ding Z. L., Xiong S. F., Sun J. M., et al., Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Ling tai,Loess Plateau, north_central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology.1999, (152):49-66.
    FENG Lian jun, CHU Xuelei, ZHANG Qirui, et al. CIA(chemical index of alteration) and its applications in theNeoproterozoic clastic rocks[J]. Earth Science Frontiers,2003,10(4): 539-544(in Chinese).
    Ghibaudo GSubacqueous Sediment gravity flow deposits:Practical criteria for their description an classification.SedimentoIogy,1992,39:423-454.
    Haflidason H,Eirisson J,Kreveld S V. The tephrochronlogy of iceland and the north atlantic region furing the middle and later quaternary:a review.Journal of Quaternary Science,2000, 15(1):3-22.
    Halim N, Cogne J P, Chen Y,et al. New Cretaceous and early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Qiangtang blocks, China:Implications on the geodynamic evolution of Asia[J]. J. Geophys.Res,1998,103(B9):21,025-21,045.1997, 27(1):9-14.
    Heller, F.,Liu T. S.Magneto stratigraphical dating of loess depositsin China. Nature.300:1982, 431~433.
    HessJ,Stott L D, Bender M L K, Kennet J Pand Schilling J G. The Oligocene marine microfossil record:age assessments using strontium isotopes[J]. Paleoceanography,1989,4:655-679.
    Horton B K, Nivet G D, Zhou J, et al. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau:Magneto stratigraphic and biostratigraphic results[J]. J. Geophys. Res,2004,109, B04402, doi:10.1029/2003JB002913.
    Horton B K,Schmittt J G.Sedimentology of the lacustrine fan-delta system,Miocene Horse Camp Formation,Nevada,USA.Sedimentology,1996,43:133-155
    Hopkinson J. Magnetic andother physical properties of iron at a high temperature[J]. Philosophical Transactions of the Royal Societyof London,1889, A180:443.
    Howarth R J, McArthur J M. Statistics for strontium isotope stratigraphy:a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma,with look-up table for derivation of numeric age[J]. J.Geol.,1997,105:441-456.
    Larrasoana J, Roberts A P, Rohling E J. Magnetic susceptibility of Mediterranean marine sediments as a proxy for Saharan dust supply? Marine Geology,2008,254:224-229, doi:10.1016/j.margeo.2008.06.003.
    Laurent Riquier Olivier Averbuch Xavier Devleeschouwer Nicolas Tribovillard.Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions Int J Earth Sci (Geol Rundsch) (2010) 99(Suppl 1):S57-S73DOI 10.1007/s00531-009-0492-7.
    Liu Q S, Torrent J, Maher B A, et al.,Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research,2005a,110(B11):B11102, doi:10.1029/2005JB003726.
    Lukeneder, S.,Zuschin, M.,Harzhauser, M.&Mandic, O.,(2011):Spatiotemporal signals and palaeoeniroments of endemic molluscan assemblages in the marine system of the Sarmatian Paratethys Acta Palaeontologica Polonica,56(4):767-784.
    Maciej G.Sliwinski,Michael T. Whalen,Franz J. Meyerand Frantisek Majs. Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Blackwell Publishing Ltd.TerraNova,2012, Vol00, No.0,1-9.
    Mark W. Hounslow, Barbara A. Maher. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments. Journal of Geophysical Research:Solid Earth (1978-2012), Volume 104, Issue B3, pages 1999,5047-5061.
    Michael T. Whalenand,James E. (JED) Day.Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate:upper devonian, western Canada sedimentary basin journal of sedimentary research,2010, v.80,1109-1127 research article doi:10.2110/jsr.2010.093.
    Prasannakumar,V.,Rajesh R.,Rajesh,S.&Pratheesh,P.First report of magnetic susceptibility records of Tertiary sediments at Thiruvallam, Kerala, India. IGCP 580,4th Annual Meeting,38-39.
    Frost G M, Coe R S, Meng Z, et al. Preliminary Early Cretaceous paleomagnetic results from the Gansu Corridor, China, Earth Planet[J]. Sci. Lett,1995,129:217-232.
    Grabowski J.Magnetostratigraphy of the Jurassic/Cretaceous boundary interval in the Western Tethys and its correlations with other regions:areiew.Volumina Jurassica,2001.9:105-128.
    Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism[M]. Cambridge University Press,1999.
    Maill A D.Principles of Sedimentary Basin Analysis.New York:Speinger,1984,668
    McArthur J M, Kennedy W J, Chen M, Thirlwall M Fand Gale A S. Strontium isotope stratigraphy for the Late Creataceous:direct numerical age calibration of the Sr-isotope curve for the U. S. Western interior Seaway. Palaeogeogr. Palaeoclim[J]. Palaeoecol,1994,108:95~119
    Miall A D.Lithofacies tyepes and vertical profile models in braided river deposits:A summary.In:Miall A D ed.Fluvial Sedimentology.Canadian Society of Petrodeum Geologists Memori,1978,5:597-604.
    Miller K G, Feigenson M D, Wright J D, et al. Miocene isotope reference section, Deep Sea Drilling Project Site 608:an evaluation of isotope and biostratigraphic resolution[J]. Pale-oceanography,1991,6:33~52
    Mock C, Arnaud N O, Cantagrel J M. An early unroofing in northeastern Tibet Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China)[J]. Earth and Planetary Science Letters,1999,171:107-122.
    NESBITT H W, YOUNG G M. Formation anddiagenesis of weathering profiles[J]. Journal of Geology,1989,97:129-147.
    Pan YX, LinM, HaoJ Q. Rock2magneticproperties related to thermal mineral alterations insideritesamples[J]. Chinese J. Geophys. (inChinese),1999,42(6):756-763.
    Pan YX, Zhu RX, Banerjee SK. Rockmagneticproperties Related to thermal treatment of siderite:Behavior andinterpretation[J]. J. Geophys. Res.,2000,105:783-794.
    Pawse A.Beske-Diehl S.Marshall S A.Use of magnetic hystersis properties and electron spin resonance spectroscopy for the identificatin of volcanic ash:a perliminary study.Geophys J Int,1998,132:712-720.
    PeckJ A, KingJW, ColmanSM, KravchinskyVA. Arockmagnetic recordfromLakeBarkal, Siberia: EvidenceofLateQuaternary climatechange. EarthPlanet SciLett.1994,122:221-238.
    Postma GDepositional architecture and facies of river and fan deltas:A synthesis.In:Colella A,Dawid B P eds.Coarse-Grained Deltas. International Association of Sedimentologists Special Publication,1990,10,10:13-28.
    Vleeschouwer,D. De, Da Silva, A. C. Boulvain, F.Crucifix,M. and Precessional P. and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics Claeys.Clim. Past,8,337-351,2012.
    Radan,S-C.&Randan,S. A magnetic susceptibility scale for lake sediments;inferences from the Danube Delta an the Razim-Sinoie lagoonal Complex(Romania).Geo-Eco-Marina,13, Bucuresti:2007,61-74.
    Roberts AP, Magnetic properties of sedimentary greigite (Fe3O4)[J]. Earth Planet. Sci. Lett.1995, 134:227-236.
    Rochette P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology,1987,9:1015-1020.
    Rhadakrishnamurty. C.,Likhite, S.D., Amin, B.S., Somayajulu. B.L.K.Magnetic susceptibility stratigraphy in ocean sediment cores. Earth and Planetary Science Letters.19684:464-468.
    Ritts B D, Biffi U. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J]. Geol. Soc. Am. Bull,2000,112:61-74.
    Robinson S G, Maslin, M A, McCave IN. Magnetic-susceptibility variations in upper Pleistocene deep-sea sediments of the NE Atlantic-Implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography,1995,10:221-250.
    Rohling E J, Grant K, Hemleben C, et al. New constraints on the timing of sea level fluctuations during early to middle marine isotope stage 3. Paleoceanography,2008,23:PA3219, doi:10.1029/2008PA001617.
    Salome A L, Meynadier L. Magnetic properties of rivers sands and rocks fromMartinique Island: tracers of weathering[J]. Phys. Chem. Earth,2004,29(13-14):933-945.
    Seguin M, Instabilityof FeCO3i n Air. Am. J. Sci.1966,264:562-568.
    Snowball, I.F., Thompson, R. A mineral magnetic study of Holocene sedimentation in Lough Catherine Northern Ireland. Borea.1990,19:127-146.
    SunJimin, ZhuRixiang, AnZhisheng.Teetonie uplift in the northern Tibetan Plateau since 13.7Ma ago inferred from molasses deposits along the altyn Tagh Fault. Earth and Planetary Seienee Letters.2005,235:641-653.
    Thompson, R., Oldfield, F. Environmental magnetism. London:Allen&Unwin.1986.1~227.The Global Sedimentary Geology Program(Repcet of An Internationg Workshop).1980,25-43.
    Tiedemann R, Haug G H. Astronomical calibration of cycle stratigraphy for Site 882 in the northwest Pacific. In:Rea, D.K., Basov, I.A.,Scholl, D.W., and Allen, J.F. (Eds.).,1995,145:College Station, TX (Ocean Drilling Program),283-292.
    Tong Jinnan, Qiu Haiou, Zhao Laishi,et al·Lower Triassic Carbon Isotope Excursion in Chaohu,Anhui Province,China [J] Journal of China University of Geosciences.2002,13(2): 98-106.
    Vail P R, Mitchum R M, Todd R Get al., Seismic stratigraphy and global changes of sea level. In:Payton C E, ed. Seismic stratigraphy-application to hydrocarbon exploration. American Association of Petroleum Geologist, Memoirs,1977,26:49-212.
    Vail P R, F Audemard, S A Bowman, P N Eisner, C perez-Cruz.The Stratigraphic signatures of Tectonics. Eustasy and Sedimentoloy-An Overview. Cycles and Events in Stratigraphy. Berlin Heidelberg:Springer-Ver-lag.1991,617-659.
    Walden, J., Oldfield, F.and Smith, J.P. Environmental Magnetism:a practical guide. Thvhnival Guide. No.6.Quaternary Research Association.London.1998,1-205.
    Williams, M. Evidence for the Dissolution of Magnetite in recent Scottish peats. Quaternary Research.1992,37:171-182.
    Yin C Y, Tang F,Liu Y, GaoL, Liu P, Xing Y, YangZ&Wang Z. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China:constraint on the age of Marinoanglaciation. Episodes,2005,28(1):48-49.
    Zhou L. P., Oldfield, F., Wintle, A. G., et al.1990. Partlypedogenicoriginof magnetic variations in Chinese loess. Nature.346:737-739.
    安芷生,G. Kukla,刘东生.洛川黄土地层学[J].第四纪研究.1989,(2):157-168.
    安芷生,S. Porter,G.Kukla,肖举乐.最近13万年黄土高原季风变迁的磁化率证据[J].科学通报.1990,35(7):529-532.
    蔡雄飞,陈斌,李长安等.再论基本层序、相分析在区域地层花粉中的作用—以陆相民和盆地下白垩统河口群细分为例[J].地层学杂志,2002,26(3):230-231.
    蔡雄飞,顾延生,李长安.兰州一民和盆地恐龙足印化石形成的地质特征[J].地层学杂志,2005,29(3):306-308.
    蔡雄飞,李长安,占车生等.民和盆地南缘盐锅峡组的建立及及其地质意义[J].岩相古地理,1999,9(3):16-20.
    蔡雄飞,李长安,朱伟元等.民和盆地红古城组的建立及其地质意义[J].甘肃地质学报,1998,7(2):49-53.
    曹建廷,沈吉,王苏民.内蒙古岱海气候环境演变的沉积纪录[J].地理学与国土研究.1999,15(3):82-86.
    曹希强,郑祥民,周立旻等.洪湖沉积物的磁性特征及其环境意义[J].湖泊科学.2004,16(3):227-232.
    陈全红,刘厚文,刘昊伟等.鄂尔多斯盆地上石炭统-中二叠统砂岩物源分析[J].古地理学报,2009,11(6):630-640.
    崔军文,唐哲民,邓晋福等.阿尔金断裂系[M].北京:地质出版社,1999,pp339.
    戴霜,黄永波,赵杰等.六盘山群沉积物磁化率记录的早白垩世气候变化[J].地学前缘.2010,17(3):242-249.
    戴霜,朱强,胡鸿飞等.六盘山群磁性地层年代[J].地层学杂志,2009,3(2):188-192.
    单卫国,王明伟.地层对比中层序地层学理论的运用—以滇东中下泥盆统为例[J].JOURNAL OF STRATIGRAPHY,2000,424(2):156-162.
    丁孝忠,郭宪璞,彭阳等.新疆塔里木盆地白垩纪-第三纪层序地层学研究[J].2002-06/243-248. ACTA GEOSCIENTIA SINICAJun.2002/243-248.
    方大钧,叶德泉.中国松辽盆地白至纪岩石磁化率剩磁强度与古气候意义[J].地球物理学学报.1989,32(1):111-114.
    方小敏,李吉均,S.Banerjee等.末次间冰期5e阶段夏季风快速变化的环境岩石研究[J].科学通报.1998,43(21):2330-2332.
    甘肃省地矿局兰州地质矿产勘查院.1:25万区域地质测量报告《兰州幅》[M],1999.
    甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社,1989,pp692.
    甘肃省区调队.1:20万中华人民共和国地质图说明书《兰州幅》[M],1965.
    甘肃省区调队.1:20万中华人民共和国地质图说明书《临夏幅》[M],1965.
    葛淑兰,石学法,朱日祥等.南黄海EY02-2孔磁性地层及古环境意义.科学通报,2005,50(22):2531-2540.
    郭宪璞,郝诒纯,叶留生等.新疆塔西南地区海相白垩系—第三系界线的地球化学异常[J].现代地质,2000,14(3):348-354.
    郝诒纯,郭宪璞,叶留生等.塔里木盆地西南地区海相白垩系-第三系界线[M].北京:地质出版社,2001.
    胡守云,王苏民,E.Appel等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学(D辑).1998,28(4):334-339.
    胡雪峰,龚子同,夏应菲等.安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J].土壤学报.1999.,36(3):301-307.
    黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锯同位素研究[J].地质学报,1997,71(1):45-53.
    黄维,翦志湣,Buhring C.南海北部ODP 1144站颜色反射率揭示的千年尺度气候波动[J]. 海洋地质与第四纪地质,2003,23(3):6-10.
    黄镇国,张伟强,陈俊鸿等.中国南方红色风化壳.北京:海洋出版社.1996,166-296.
    吉利明.民和盆地早白垩世晚期的孢粉组合[J].植物学报,1995,37(7):566-573.
    吉云平,夏正楷.不同类型沉积物磁化率的比较研究和初步解释[J].地球学报,2007,28(6):541-549.
    贾海林,刘苍字,张卫国等.祟明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报.2004,22(1):117-123.
    琚宜太,王少怀,张庆鹏等.福建三明地区被污染土壤磁学性质及其环境意义[J].地球物理学报,2004,47(2):282-288.
    孔立,戴霜,刘学等.六盘山群火石寨剖面沉积物色度记录的128.10-115.30Ma气候变化[J].兰州大学学报(自然科学版),2010,46(5):44-55.
    李国彪,万晓樵.西藏岗巴地区始新世介形虫化石组合[J].古生物学报.2004,43(3):400-406.
    李海燕,张世红.黄铁矿加热过程中的矿相变化研究基于磁化率随温度变化特征分析[J].地球物理学报,2005,48(6):1384-1391.
    李海兵,杨经绥,许志琴等.阿尔金断裂带印支期走滑活动的地质及年代学证据[J].科学通报,2001,46(16):1333-1338.
    李柒林.兰州一民和盆地早白垩世的沉积环境分析[J].沉积与特提斯地质,2000,20(4):97-98.
    梁亮,夏正楷,刘德成.中原地区距今5000-4000年间古环境重建的软体动物化石证据[J].北京大学学报(自然科学版).2003,39,532-537.
    刘东生等著.黄土与环境[M].北京:科学出版社.1985,1-481.
    刘秀铭,安芷生,强小科等.甘肃第三系红粘土磁学性质初步研究[J].中国科学(D辑).2001,31(3):192-20.
    刘秀铭,刘东生,F. Heller等.黄土频率磁化率与古气候冷暖变换[J].第四纪研究.1990,(1):42-50.
    刘育燕,林文姣,朱宗敏等.南方红土中的磁极倒转以及磁化率变动记录[J].地质科技情报.2003,22(3):33-40.
    卢升高,白世强.杭州城区土壤的磁性与磁性矿物学及其环境意义[J].地球物理学报,2008,51(3):762-769.
    吕厚远,吴乃琴,郭正堂等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B缉).1994,12:1290-1297.
    孟昌,孟庆泉,杜芳芳等.塔里木盆地西北缘海相白垩系—古近系界线[J].沉积物环境指标研究,2011,Vo1.29 No.2Apr.245-254.
    潘永信,林缅,郝锦绮.菱铁矿热转变过程中岩石磁学性质基本特征[J].地球物理学报,1999,42(6):756-763.
    裴军令,孙知明,李海兵等.青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义[J].2008,024(07):1613-1620.
    彭宇,周瑶琪,李斌阳.白垩系/古近系界线地质研究中的同位素异常特征[J].西部探矿工程.2006,5,92-93.
    彭元桥,童金南,HansJ. Hansen,Guang R. Shi.华南二叠-三叠系界线处的磁化率特征及其对比意义[J].华南地质与矿产,2000,2,22-28.
    彭元桥,童金南.扬子台区二叠系—三叠系界线层综合地层学研究[J].地球科学—中国地质大学学报,1999,24(1):39-48.
    青海地质局石油普查队.西宁盆地1:10万石油地质测量报告[M],1979,pp63.
    青海地质矿产局.青海省地质志[M],北京:地质出版社,1991,pp662.
    沈吉,汪勇,羊向东等.湖泊沉积记录的区域风沙特征及湖泊演化历史:以陕西红碱淖湖泊为例[J].科学通报,2006,51(1):87-92.
    孙雄伟,夏正楷.河南洛阳寺河南剖面中全新世以来的孢粉分析及环境变化[J].北京大学学报(自然科学版).2005,41(2):289-294.
    唐玉虎,戴霜,黄永波等.兰州-民和盆地河口群沉积相和岩石磁化率记录的白垩纪祁连山隆升[J].地学前缘,2008,15(1):1-15.
    万晓樵,李罡,陈丕基等.松辽盆地白垩纪青山口阶的同位素地层标志及其与海相Cen om an ian阶的对比[J].地质学报,2005,79(2):151-156.
    万晓樵,李呈,陈不基等.松辽盆地白坚纪青山口阶的同位素地层标志及其与海相Cenomanian阶的对比[J].地质学报,2(X)5,79(2):150-155.
    万晓樵.西藏第三纪有孔虫生物地层及地理环境[J].现代地质,1987,1(1):15-46.
    汪正江,陈洪德,张锦泉.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110.
    王建,刘泽纯,姜文英等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51(2):155-163.
    王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质.1999,19(3):39-47.
    王尚彦,殷鸿福.滇东黔西陆相二叠系—三叠系界线地层研究[M].武汉:中国地质大学出版社,2001.47-56.
    魏乐军,郑绵平,蔡克勤等.西藏洞错全新世早期盐湖沉积的古气候记录[J].地学前缘.2002,9(1):129-135.
    林文姣,刘育燕,朱宗敏.四川剑门关地区上侏罗统—下白垩统磁化率特征及其地质意义[J].地球科学.2001,26(3):247-257.
    吴瑞金.湖泊沉积物的磁化率、频率磁化率及其古气候意义—以青海湖、岱海近代沉积为例[J].湖泊科学,1993,5(2):128-135.
    夏凯生,谢世友,何多兴.重庆江北砾岩磁化率变化特征及其古环境意义[J].人民长江.2007,38(2):123-125.
    徐钰林,杨国栋,赵义勇.塔里木盆地北部三叠纪孢粉植物群及层序地层的划分[J].现代地质.1996,2(10):437-447.
    许靖华,何起祥.白垩纪末期生物大批死亡引起环境变化及其演化意义[J].长春地质学院学报,1982(1):1-18.
    许仕策,杨少坤,黄丽芬等.层序地层学在地层对比中的应用[J].地学前缘,1995,2(3-4):115-123.
    杨健强,崔之久,易朝露等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J].第四纪研究,2004,24(5):591-597.
    叶得泉.松辽盆地白至系介形类生物地层和磁性地层学意义[J].大庆石油地质与开发,1991,10(4):1-12.
    余静贤,张望平,赵清顺等.青海、甘肃民和盆地晚侏罗世-早白垩世孢粉组合[J].中国地质科学院地质研究所所刊,1982,5,111-126.
    袁海华.同位素地质年代学[M].重庆大学出版社,1987,7-128.
    张家强,李从先,丛友滋.水成沉积与风成沉积及古土壤的磁组构特征[J].海洋地质与第四 纪地质.1999,19(2):85-94.
    张拴宏,周显强,刘喜方.用磁化率各向异性研究构造变形的几个问题矿物岩石[J].1999,19(4):93-97.
    张振克,吴瑞金,王苏民.近2600年来内蒙古居延海湖泊沉积纪录的环境变化[J].湖泊科学,1998,10(2):44-51.
    赵坤玲.松辽盆地白垩系青山口组一段黑色页岩岩石磁学研究[D].中国地质大学(北京),2009。
    郑国璋,岳乐平.中国北方第四纪磁性地层记录的古地磁极倒转与气候变化耦合关系[J].地球科学与环境学报,2005,27(3):91-94.
    中国地质大学(武汉)地质调查研究院.1:25万区域地质测量报告《民和幅》[M],2005.
    周伟,王琦,赵其渊等.渤海南部海底沉积物颜色的研究[J].海洋科学,1990,14(3):31-35.
    宋春晖,白晋峰,赵彦德等.临夏盆地13-4.4 Ma湖相沉积物颜色记录的气候变化探讨[J].沉积学报,2005,23(3):507-513.
    周晓红,赵景波.近120年来高陵渭河河漫滩沉积物磁化率指示的气候变化[J].水土保持学报.2007,21(3):196-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700