西藏南部岗巴地区古近纪有孔虫生物地层学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古近纪为印度板块与亚洲板块碰撞、特提斯洋闭合的重要时期。西藏特提斯的消亡与青藏高原的形成是地球发展历史中的重大地质事件。本文选取西藏南部岗巴地区古近纪的经典剖面-宗浦剖面作为研究对象,利用生物地层学的方法进行探讨。
     本论文通过对宗浦剖面进行微体古生物(主要是底栖大有孔虫)地层学的精细研究,共鉴定出28属34种,对具体属种进行了详细的描述,并建立起该区古近纪有孔虫生物地层序列,把宗浦剖面划分为三个有孔虫化石组合带:Miscellanea–Lockhartia–Operculina组合带, Alveolina-Nummulites组合带, Orbitolites- Fascioites- Turborotalia组合带。并对古新世-始新世的界线(P/E)进行重新厘定,界线应当置于宗浦组与遮普惹组之间,即剖面第3层和第4层之间。以Miscellanea、Operculina两属分子和Lockhartia haimei Davies一属种的绝灭与Alveolina、Nummulites两属分子的大量出现为标志。此外,在岗巴宗浦剖面中的宗浦组与遮普惹组之间可见到一个明显的冲刷面,底部含底砾岩,夹粘土层,经研究这些底砾岩是遮普惹组下伏地层经剥蚀再沉积的产物。这可以作为此时海水突然变深及海底侵蚀或停积间断的证据,因此该界面是一海泛面,为平行不整合接触,无疑是古新世-始新世的天然界线。
     剖面的底栖大有孔虫在P/E界线附近呈现先灭绝、后复苏的演化特征,而界线上下岩性和沉积环境并未发生显著改变,联系在这一时期发生的全球增温事件(PETM事件),不难推断出致使出现这一现象的主要原因是PETM事件。根据P/E界线附近测得的碳氧同位素值分析,随着快到P/E界线δ13C出现负向偏移,最小峰值达到-8.5‰。其变化曲线与同一时期全球碳稳定同位素事件表现一致,进一步论证了P/E界线的位置;同时从地球化学的角度验证了PETM事件是造成该区底栖大有孔虫灭绝的主因。
Paleogene is an important period when the Indian plate knocked against the Asian plate, and when Tethys closed. The demise of the Tibetan Tethys and the formation of the Tibetan Plateau are major geological events in the history of the Earth. This paper selects Gamba areas Paleogene classic profile in southern Tibet - Zongpu section as the research object, the use of biostratigraphy are discussed.
     This paper carried a meticulous study through Micropaleontology (mainly large benthic foraminifera) study of stratigraphy, 28 genera and 34 species are identified in all, the specific species were described in detail,in order to establish ancient Paleogene foraminifer stratigraphic sequence of this area , the Zongpu section were divided into three foraminiferal fossil Zone: Miscellanea–Lockhartia–Operculina Zone, Alveolina-Nummulites Zone, Orbitolites- Fascioites- Turborotalia Zone. And Paleocene-Eocene boundary (P/E) is re-determined, Boundary should be placed between in Zongpu Fm and Zhepure Fm, that section is between 3 layers and 4 layers. Extinction of the elements of Miscellanea, Operculina and Lockhartia haimei Davies and large numbers of Alveolina,Nummulites are marked. In addition, between Zongpu Fm and Zhepure Fm in Zongpu section ,Gamba can see an obvious erosion surface at the bottom with basal conglomerate, clay. After study the basal conglomerate is a product of the stratum under Zhepure Fm re-deposition by erosion. This can be evidence of at this time of seawater suddenly deep and submarine erosion or intermittent positive stop, so the interface is a flooding surface, is parallel to the unconformity, is undoubtedly a natural boundary of the Paleocene - Eocene.
     Large benthic foraminifera of the P/E boundary in the section is near extinction at first, after the evolution of the recovery, while the upper and lower boundaries of lithology and sedimentary environment did not change significantly, contact occurred during this period of global warming event ( PETM event), it is easy to infer the main reasons causing this phenomenon is the PETM event. According to P/E boundary of the value of the measured of carbon-oxygen isotope analysis, with the coming P/E boundaryδ13C negative to offset the minimum peak value of -8.5‰. The curve with the same period, the performance of the global carbon-oxygen isotope event the same, and further demonstrates the P/E boundary position; also verified from the geochemical point of view the area PETM event is caused by the main cause of extinction of large benthic foraminifera.
引文
[1] A li J R, Hailwood E A. Magnetostratigraphic(re) calibration of the Paleocene/Eocene boundary interval in Holes 550 and 549 Goban Spur, eastern North Atlantic. Earth and Planetary Science Letters, 1998, 161(1-4): 201~213
    [2] Bains S, Corfield R M, and Norris R D. Mechanisms of climate warming at the end of the Paleocene. Science, 1999, 285: 724~727
    [3] Bains S, Norris R, Corfield R, et al. Termination of global warmth at the Palaeocene /Eocene boundary through productivity feedback. Nature, 2000, 407: 171~174
    [4] Be A.W.H., J.K.B Bishop, M.S. Sverdlove, et al. Standing stock, vertical distribution, and flux of planktonic foraminifera in the Panama Basin.Mar. Micropall, 1985, 9: 307~333
    [5] Beerling D. Increased terrestrial carbon storage across the Palaeocene Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161:395~405.
    [6] Bijma J, Erez J, and Hemleben C. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifera. J. Foram. Res, 1990, 2: 117~127.
    [7] Bice K, Marotzke J, Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean.Journal of Geophysical Research, 2001, 106: 11529~11542.
    [8] Bralower T J , Zachos J C, Thomas E, et al. Late Paleocene to Eocene paleocenography of the equatorial pacific ocean: stable isotopes recorded at ocean drilling program site865, allison guyot. Paleoceanography, 1995, 10: 8841~8865.
    [9] Bralower T J, Thomas D J, Zachos J C, et al. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link?. Geology, 1997, 25: 963~966
    [10] Christian Robert and James P Kennett. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology, 1994, 211~214
    [11] Changnon S A. Easterling D R. U S Policies Pertaining to Weather and Climate Extremes. Science, 2000, 289: 2053~2055.
    [12] Cramer B, Kent D. Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224: 144~166.
    [13] D. J. Beerling, D. W. Jolley. Fossil plants record an atmospheric CO2 and temperature spike across the Palaeocene-Eocene transition in NW Europe. Journal of the Geological Society, 1998, 155: 591~594
    [14] D. J. Beerling. Increased terrestial carbon storage across the Palaeocene-Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161: 395~405
    [15] Deborah J, Thomas and Timothy J, et al. New evidence for subtropical warming during the late Paleocene thermal maximum: Stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography, 1999, 14(5): 561~570
    [16] Deuser W.G, and Ross E.H.. Seasonally abundant plantonic forminifera of the Sargasso Sea: succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J. Foram. Res, 1989, 19: 268~293.
    [17] Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10: 965~971
    [18] Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate. Geology, 1997, 25: 259~262
    [19] Dickens G R. Methane oxidation during the Late Palaeocene thermal maximum. Bull Soc geol, 2000, 171: 37~49
    [20] Easterling D R, Meehl G A, Parmesan C, et al. Climate Extremes: Observations, Modeling, and Impacts. Science, 2000, 289: 2068~2074
    [21] Eldholm O, Thomas E. Environmental impact of volcanic margin formation. Earth and Planet ary Science Letters, 1993, 117: 319~329
    [22] Erez J, and B. Luz. Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim, Acta 1983, 47: 1025~1031
    [23] Erez J, Almogi-Labin A, and Avraham S. On the life history of planktonic foraminifera: lunar reproduction cycle in Globeriginoides sacculifer (Brady). Paleoceanogr, 1991, 6: 295~306
    [24] Fairbanks R.G., P.H. Wiebe, and A.W.H. Be'. Vertical distribution and Isotopic composition of living planktonic foraminifera in the western North Atlantic, Science , 1980, 207: 61~63
    [25] Fairbanks R.G. and P.H. Wiebe. Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance, Science ,1980, 209: 1524~1526
    [26] Fairbanks R.G., M. Sverdlove, R. Free, et al, Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin.Nature, 1982, 298: 841~844
    [27] Flavia Nunes and Richard D. Norris. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature, 2006, 439: 60~63
    [28] Gabriel J. Bowen, William C. Clyde, Paul L. Koch, et al. Mammalian Dispersal at the Paleocene/Eocene Boundary. Science, 2002, 295
    [29] Gibson T G,Bybell L M,Owens J P. Latest Paleocene lithologic and bitic events in neritic deposits of southwestern New Jersey. Paleoceanography, 1993, 8(4): 495~544
    [30] Gunnell G F, Bartels W S, Gingerich P D. Paleocene-Eocene boundary in continental North America: biostratigraphy and geochronology, Northern Bighorn Basin, Wyoming. Journal of Vertebrate Paleontology, 1993, 13(3): 39.
    [31] Hayden H. The geology of the provinces Tsang and U in Tibet. Mem. Geological Survey of India, 1907, 36: 122~201
    [32] Higgins J., Schrag D. Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 2006, 245: 523~537.
    [33] Hottinger L.Recherches sur les Alveolines du Puleocene et de l’Eocene. Mem. Suisses Pal., 1960,75/76:243
    [34] Hottinger L.,Krusat G. Un foraminifere nouveau intermedeaire entre Opertorbitolites et Somalina de I’Ilerdien pyreneen. Rev. Esp. Micropal, 1972, 249~271
    [35] Hottinger L. Processes determing the distribution of larger foraminifera in space and time. Utrecht Micropal. Bull, 1983, 30: 239~254
    [36] Hottinger, L. Shallow benthic foraminifera at the Paleocene-Eocene boundary. Strata, 1998, 1(9): 61~64
    [37] J. I. Baceta,V. Pujalte,J. Dinares-Turell, et al. The Paleocene/Eocene boundary interval in the Zumaia section (Gipuzkoa.Basque Basin): Magnetostratigraphy and high-resolution lithostratigraphy. Geology, 2000, Espana 13(2)
    [38] Jenkyns H C. Cretaceous anoxic events: form continents to oceans. Journal of the Geological Society, 1980, 137: 171~188
    [39] James F K, Howard M T, Klaus W, et al. Paleoclimates ocean depth, and the oxygen Isotopic composition of seawater. Earth and Planetary Science Letters, 2006, 252: 82~93
    [40] Jorgensen, B.B., J. Erez, N.P. Revsbech, et al. Symbiotic photosynthesis in a planktonic foraminiferan, G. sacculifer (Brady), studied with microelectrodes , Limnol.Oceanogr, 1985, 30: 1253~1267.
    [41] Karl T R, Knight R W, Easterling D R, et al. Indices of Climate Change for the United State. Bull Amer Meteor Soc, 1996, 77: 279~292.
    [42] Katz M, Cramer B, Mountain G, et al. Uncorking the bottle:What triggered the Paleocene/ Eocene thermal maximum methane release.Paleocenography, 2001, 16(6): 549~562.
    [43] Kaufmann E G. High resolution event stratigraphy regional and global Cretaceous bioevents. In: Walliser O H,eds. Global bioevents. Spinger-Verlag Lecture Notes in Earth Science 8, Spring-Verlag,Berlin, 1986, 279~336
    [44] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected lime stones and fossils. Geochimica et Cosmochimica Acta, 1964, 2 (28):1787~1816
    [45] Kennett J P,Stott L D. Abrupt deep sea warming,paleoceanographic changes and benthic extinctions at the end of the Palaoecene. Nature, 1991, 353: 225~322
    [46] Kent D, Cramer B, Lanci L, et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth and Planetary Science Letters, 2003, 211: 13~26.
    [47] Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: carbon cycles and true polar wander. C R Geoscience, 2003,335: 157~174.
    [48] Koch P L& Zochos J C. Mamalian biochronology of the Paleocene-Eocene boundary in North America,Europe and Asia. Journal of Vertebrate Palaeontology, 1993, (3 Suppl.): 47
    [49] Kureshy A A. The Tertiary larger foraminiferal zones of West Pakistan. Rovista Espanola de Micropaleontologia, 1977, 9(2): 203~219
    [50] Kureshy A A. The Tertiary larger foraminiferal zones of Pakistan. Rovista Espanola de Micropaleontologia, 1978, 10(3): 467~483
    [51] Li Guobiao, Wan Xiaoqiao. Eocene microfossils in southern Tibet and the final closing of the Tibet-Tethys. Journal of stratigraphy, 2003, 27(2): 99~108
    [52] Lisa Cirbus Sloan,Birger Schmitz,Marie-Pierre Aubry and James Zachos. Early Paleogene Warm Climates and Biosphere Dynamics: Meeting in Goteborg makes progress in deciphering the dynamics of past greenhouse worlds,Paleoceanography, 1999,14(5): 559~560
    [53] Lourens L, Sluijs A, Kroon D, et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 2005,435: 1083~1087
    [54] MacArthur R H, MacArthur J W, Preer J. On bird species diversity. II. Prediction of bird censuses from habitat measurements. Am Nat, 1962, 96: 167~174
    [55] Maclennan J, Jones S. Regional uplift, gas hydrate dissociation and the origins of the Paleocene Eocene thermal maximum. Earth and Planetary Science Letters, 2006, 245: 65~80
    [56] Miller K G, Fairbanks R G, and Mountain G S. Tertiary oxygen isotope synthesis, sea-level history, and continental margin erosion. Paleoceanography, 1987, 2: 1~19
    [57] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 2006, 441:601~605
    [58] Mu Enzhi, Ying Jixiang, Wen Shixuan. Stratigraphy of Mt. Everest region in southern Tibet China. Chinese Science, 1973,16(1): 59~71
    [59] Muller-Merz E, Strukturanalysc ausgewahlter rotaloider Foraminiferen. Schweizerische Pal. Abh, 1980, 101: 68
    [60] Norris R D,R?hl U. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature, 1999, 401: 775~778
    [61] Nunes F, Norris R. Abrupt reversal in ocean overturning during the Paleocene/Eocene warm period. Nature, 2006, 439: 60~63
    [62] Pak, D.K., Miller, K.G. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: Implications for deep water circulation. Paleoceanography, 1992, 7(4): 405~422
    [63] Peters R B, Sloan L C. High concentrations of greenhouse gases and polar stratospheric clouds: a possible solution to high latitude faunal migration at the latest Paleocene thermal maximum.Geology, 2000, 28: 979~982
    [64] Serra-Kiel, J., Hottinger, L., Caus, E, et al. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene, Bulletin de la Socie′te′Ge′ologique de France, 1998, 169: 281~299
    [65] Zachos J C,Pagani M,Sloan L,et al. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686~693
    [66]丁林.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约.中国科学(D辑) , 2003, 33 (1) : 47~58
    [67]高莉玲摘译.古新世/始新世过渡期碳循环和气候转暖的年代. Nature, 1999, 401(6755).
    [68]郝诒纯,茅绍智.微体古生物学教程.中国地质大学出版社, 1989, 1~351
    [69]郝诒纯,裘松余,林甲兴,等.有孔虫.科学出版社, 1980
    [70]郝诒纯,万晓樵.西藏定日的海相白垩、第三系.青藏高原地质文集(17),1985,227~232
    [71]何炎,章炳高,胡兰英等.珠穆朗玛峰地区中生代及新生代有孔虫.珠穆朗玛峰地区科学考察报告(1966-1968),古生物(第二分册).科学出版社, 1976,1~124
    [72]胡修棉,王成善. 100 Ma以来若干重大地质事件与全球气候变化.大自然探索, 1999,18 (1):53~58
    [73]黄思静.上扬子二叠/三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件.地球化学, 1994, 23(1): 60~67
    [74]李国彪,万晓樵,其和日格等.藏南岗巴—定日地区始新世化石碳酸盐岩微相与沉积环境.中国地质, 2002, 29(4): 401~406
    [75]李国彪,万晓樵.藏南岗巴-定日地区始新世微体化石与特提斯的消亡.地层学杂志,2003,27(2):99~108
    [76]李国彪,万晓樵,刘文灿.西藏南部古近纪微体古生物及盆地演化特征,地质出版社,2005
    [77]刘志飞.古新世-始新世界线全球构造事件在沉积学中的反映.成都理工学院学报增刊,1996,23(增刊)
    [78]刘志飞,胡修棉.白垩纪至早第三纪的极端气候事件.地球科学进展,2003,18(5): 681~687
    [79]穆恩之,尹集祥,文世宣等.中国西藏南部珠穆朗玛峰地区的地层.中国科学,1973,16(1):59~71
    [80]万晓樵.西藏岗巴地区白垩纪地层及有孔虫动物群.见:李廷栋主编,青藏高原地质文集,1985,16: 203~228
    [81]万晓樵,西藏第三纪有孔虫生物地层及地理环境.现代地质,1987,1(1):15~47
    [82]万晓樵.西藏白垩纪—早第三纪有孔虫于特提斯—喜马拉雅海的演化.微体古生物学报,1990,7(2):169~186
    [83]万晓樵,阴家润.西藏岗巴地区白垩纪中期微体生物群与古海洋事件.微体古生物学报,1996,13(1):43~56
    [84]万晓樵,李金和,张双增等.西藏札达晚白垩世—古新世浮游有孔虫及其时代意义.微体古生物学报,2005,22(1):10~18
    [85]万晓樵,王曦,于涛等.古新世/始新世全球增温在西藏岗巴地区的表现.地学前缘,2006,13(6):218~226
    [86]王成善,刘志飞.古新世-始新世界线的全球事件.地球科学进展,1996,11(3).
    [87]王世杰,董丽敏,林文祝,李春来,汪品先,赵泉鸿,吴锡浩.泥河湾组有孔虫化石群的锶同位素研究.科学通报,1995,40(22)
    [88]王曦,万晓樵,李国彪.西藏岗巴地区古新世-始新世界线地层及底栖大有孔虫的演替.微体古生物学报,2007,27(2):109~117
    [89]魏振声,谭岳岩.西藏地层概况.西藏自治区地质局,1979,37~41
    [90]文世宣.珠穆朗玛峰地区的地层,白垩系.珠穆朗玛峰地区科学考察报告.科学出版社,1966-1968,148~183
    [91]文世宣.珠穆朗玛峰地区的地层,第三系.珠穆朗玛峰地区科学考察报告(1966~1968).科学出版社,1974, 184~212
    [92]吴瑞荣,张守信等.现代地层学.武汉:中国地质大学出版社,1989
    [93]西藏自治区地质局综合地质大队(孙亦因等).中华人民共和国区域地质调查报告(1:100万).北京:地质出版社,1984
    [94]西藏自治区地质矿产局.西藏自治区区域地质志.北京:地质出版社,1993
    [95]西藏自治区测绘局.西藏自治区地图册.北京:中国地图出版社,1995
    [96]西藏地质矿产局.西藏自治区岩石地层.武汉:中国地质大学出版社,1997
    [97]夏林圻,马中平,李向民.青藏高原古新世-始新世早期(65~40 Ma)火山岩——同碰撞火山作用的产物.西北地质,2009,42(3)
    [98]徐钰林,万晓樵,苟宗海等.西藏侏罗、白垩、第三纪生物地层.武汉:中国地质大学出版社,1989,1~147
    [99]徐钰林,茅绍智.西藏南部白垩纪-早第三纪钙质超微化石及其沉积环境.微体古生物学报,1992,9(4):331~348
    [100]杨遵仪,吴顺宝,杨逢清.关于我国南方海相二叠-三叠系界线问题和接触关系.地球科学,1981,1
    [101]余光明,王成善.西藏特提斯沉积地质.中华人民共和国地质矿产部地质专报(三):岩石,矿物,地球化学,第12号,北京:地质出版社,1990
    [102]俞立中.环境磁学再城市污染研究中应用.上海环境科学,1999,18(4):175~178
    [103]章炳高,耿良玉.西藏南部早第三纪地层的再认识.地层学杂志,1983,7(4):310~312
    [104]章炳高,穆西南.西藏雅鲁藏布江以北海相第三系的发现.地质学杂志,1979,7(4):310~312
    [105]赵文金,万晓樵.西藏特提斯演化晚期生物古海洋事件.北京:地质出版社, 2003
    [106]赵玉龙,刘志飞.古新世—始新世最热事件对地球表层循环的影响及其触发机制.地球科学进展,2007,24(4):321~349
    [107]中国科学院青藏高原综合科学考察队(文世宣,章炳高等).西藏地层.科学出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700