石化废水的活性污泥—生物膜复合工艺及深度处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石化废水成分复杂,污染物浓度高、毒性强、难降解,对环境危害较大。目前国内大多石化厂的核心处理工艺为传统或改进的活性污泥工艺,该工艺存在有机物去除效果不稳定及硝化能力差等问题,已经无法满足处理要求。本课题针对目前石化废水处理中普遍存在的问题,对活性污泥与生物膜复合工艺处理石化废水进行研究,以期为石化污水处理厂的技术改造提供依据。
     本实验以活性污泥工艺为对照,主要考察了活性污泥与生物膜复合工艺对石化废水的处理效果、耐冲击负荷能力、污泥性能及溶解氧利用率等。结果表明,复合工艺对石化废水中CODcr的去除效果略好于活性污泥工艺,而对NH3-N的去除效果明显优于活性污泥工艺。另外,两种工艺对硫化物和油的去除效果类似。提高进水负荷时,复合工艺表现出较强的耐冲击负荷能力。以2 L/h连续运行时,石化废水进水平均CODcr为895mg/L, NH3-N为42.8 mg/L,硫化物为23.8 mg/L,油为47.1 mg/L,经复合工艺处理后出水平均CODCr为116 mg/L,NH3-N为0.82 mg/L,硫化物为0.053 mg/L,油为12.1 mg/L,平均去除率分别为87.0%、98.1%、99.8%、74.3%。利用RIS指纹技术及16S rDNA序列分析技术揭示了两种工艺好氧系统微生物的群落结构存在较大差异,同时也解释了两种工艺在宏观性能上的差异。与活性污泥工艺相比,复合工艺还具有氧的利用率高、污泥产量及回流量少、动力消耗较低、运行管理方便等优点,适用于改造超负荷或不具备硝化能力的石化污水处理厂。
     石化废水经复合工艺处理后,出水CODcr和油的浓度仍未达到GB8978-1996中的一级排放标准。分别采用微电解法和Fenton氧化法对复合工艺的生化出水进行深度处理,主要是通过实验确定最佳操作条件并在最佳条件下考察对CODCr和油的去除效果。结果表明,微电解法与Fenton氧化法都能对石化废水进行有效深度处理。在各自的最佳条件下,微电解法的出水CODCr为49.4 mg/L,油含量为3.7 mg/L,去除率分别53.9%和65.1%,Fenton氧化法的出水CODCr为30 mg/L,油含量为3.3 mg/L,去除率分别为60%和68%,两种工艺的出水水质均达到GB8978-1996中的一级排放标准。相比于微电解法,Fenton氧化法具有较高的污染物去除效果及较低的运行成本,因此,Fenton氧化法更适用于石化废水的深度处理。
Petrochemical wastewater which contains numerous toxic and refractory organic pollutants is greatly harmful to the environment. At present, the core process of many domestic petrochemical wastewater treatment plants (WWTPs) is traditional or improved activated sludge process (ASP). This process has many problems such as unstable organics removal efficiency and poor nitrogen removal capacity. Thus it cannot meet the current standards of petrochemical wastewater treatment. To solve these problems, treatment of petrochemical wastewater using biofilm-activated sludge hybrid process (HP) was studied in this thesis. It was expected that some theoretical and technical information could be obtained from this study to improve the performance of petrochemical WWTPs.
     The pollutants removal efficiency, resistance capacity to shock loadings, performance of sludge and oxygen utilization ratio of HP were compared with those of ASP in this thesis. The results showed that HP was slightly better than ASP in the removal of CODCr in petrochemical wastewater. Moreover, HP was obviously superior to ASP on the removal of NH3-N. In addition, the two processes had similar removal rate of S2- and oil. When the influent loads were increased, HP showed stronger resistance to shock loadings. When the inflow was 2 L/h and the average concentrations of CODcr, NH3-N, S2- and oil in the petrochemical wastewater were 895 mg/L,42.8 mg/L,23.8 mg/L and 47.1 mg/L, respectively, the average concentrations of CODcr, NH3-N, S2" and oil in the effluent of HP were 116 mg/L, 0.82 mg/L,0.053 mg/L and 12.1 mg/L, respectively, with average removal efficiencies 87.0%, 98.1%,99.8% and 74.3%, respectively. RIS (ribosomal intergenic spacer) fingerprints technique and 16S rDNA gene sequencing were used. The results indicate that there are many differences between microbial communities of aerobic reactors of the two processes, and the differences of the performances between the two processes are explained. Compared with ASP, HP is of higher oxygen utilization ratio, reduced sludge yield, decreased reflux quantity, lower power consumption, and easier operation. Thus HP is proper for upgrading of petrochemical WWTPs which are overloaded or cannot nitrify effectively.
     The concentrations of CODcr and oil in the effluent of HP didn't attain class 1 of the National Wastewater Integration Discharge Standard (GB8978-1996). Thus micro-electrolysis process (MEP) and Fenton oxidation process (FOP) were respectively used to treat the effluent of HP. The optimal operating conditions were selected under which the removal efficiencies of CODCr and oil were investigated. The results showed that MEP and FOP both have high treatment efficiency for HP effluent. Under the optimal operating conditions, the concentrations of CODCr and oil in the effluent of MEP are 49.4 mg/L and 3.7 mg/L, respectively, and the removal efficiencies of them are 53.9% and 65.1%, respectively. On the other hand, the concentrations of CODCr and oil in the effluent of FOP are 30 mg/L and 3.3 mg/L, respectively, and the removal efficiencies of them are 60% and 68%, respectively. The concentrations of CODCr and oil in the effluent of MEP and FOP attained class 1 of the National Wastewater Integration Discharge Standard (GB8978-1996). Compared with MEP, FOP has higher pollutant removal efficiency and lower operating cost. Thus FOP is more proper for advanced treatment of petrochemical wastewater.
引文
[1]殷永泉,邓兴彦,刘瑞辉,等.石油化工废水处理技术研究进展[J].环境污染与防治,2006,28(5):356~360.
    [2]《中国环境统计》专题组.中国环境统计2000[M].北京:中国环境科学出版社,2003.
    [3]石利军.摇动床技术和厌氧氨氧化石化废水生物脱氮[D].大连:大连理工大学环境与生命学院,2006.
    [4]陈洪斌,庞小东,李建忠,等.炼油废水的处理和回用进展[J].给水排水,2002,28(2):52~56.
    [5]王一欧,张丽华.炼油污水生化处理的改造[J].油气田环境保护,2001,11(4):40~44.
    [6]F Ma, J B Guo, L J Zhao, et al. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater [J]..Bioresource Technology,2009,100(2):597-602.
    [7]屈计宁,金志刚.石化混合废水生物硝化性能研究[J].化学世界,2000,增刊:41~44.
    [8]颜家保,夏明桂.A/O工艺处理炼油废水的效果分析及对策[J].武汉科技大学学报(自然科学版),2004,27(3):254~256.
    [9]庞金钊,曹宏斌,杨程,等.生物膜法去除石化废水氨氮实验[J].中国给水排水,1998,14(5):47~49.
    [10]I Sekoulov, S Brinke-Seiferth. Application of biofiltration in the crude oil process industry [J]. Water Science and Technology,1999,39(8):71-76.
    [11]王俊艳.炼油污水处理方法探讨[J].化工中间体,2009(10):24~28.
    [12]耿士锁.高效物化法处理炼油废水[J].环境导报,2000(3):12~14.
    [13]陈卫玮.CAF涡凹气浮处理含油废水的中试试验研究[J].油气田环境保护,2002,12(4):32~34.
    [14]游晓宏,陈晓琼.混凝技术及其发展[J].工业水处理,2002,22(11):7~9.
    [15]夏畅斌,黄念东.用硅酸盐铁铝混凝剂处理炼油厂污水[J].化工环保,2000,20(4):29~31.
    [16]王赞春,夏洁.SBR法处理炼油废水的研究[J].新疆环境保护,2002,24(3):28~31.
    [17]肖文胜,徐文国,杨桔才.UBAF处理炼油厂含油废水[J].工业水处理,2005,25(3):66~68.
    [18]黄广萍.生物接触氧化法处理石化废水[J].石油化工环境保护,1999,(2):20~23.
    [19]李景贤,罗麟,杨慧霞.MBBR法工艺的应用现状及其研究进展[J].四川环境,2007,26(5):97~101.
    [20]李兵,张建强.移动床生物膜反应器在污水处理中的应用[J].工业安全与环保,2007,33(4):6~8.
    [21]张景丽,幸福堂.移动床生物膜工艺特点、研究现状及发展[J].工业安全与环保,2003,29(4):13~15.
    [22]夏四清,王学江,高廷耀,等.悬浮填料浮动床石化废水处理初步研究[J].环境科学,2000,21(2):91~93.
    [23]夏四清,高廷耀,周增炎,等.悬浮填料生物反应器去除有机污染物和氨氮的中试研究[J].给水排水,2000,26(2):42~45.
    [24]王学江,夏四清,张全兴.用移动床生物膜反应器处理石化废水[J].化工环保,2001,21(6):333~336.
    [25]夏四清,高廷耀,周增炎.多级悬浮填料生物反应器处理石化废水[J].中国给水排水,2002,18(1):9-12.
    [26]樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1):68~74.
    [27]徐军祥,杨翔华,姚秀清,等.生物强化技术处理难降解有机污染物的研究进展[J].化工环保,2007,27(2):129~134.
    [28]马放,郭静波,赵立军,等.生物强化工程菌的构建及其在石化废水处理中的应用[J].环境科学学报,2008,28(5):885~891.
    [29]刘天竺,鄂利海,曲明.炼油厂生化处理水深度处理及回用技术研究[J].抚顺石油学院学报,2000,20(2):13~17.
    [30]高杰,单凤君.陶瓷膜在炼油废水深度处理中的应用[J].辽宁化工,2004,33(11):640~642.
    [31]李航宇,张英.双膜法应用于石化废水再生利用[J].中国给水排水,2004,20(4):94~96.
    [32]吴爱兵,孔繁钰,胡海修,等.膜技术在含油废水处理中的应用及研究现状[J].重庆石油高等专科学校学报,2003,5(4):35~38.
    [33]朱春媚,陈双全,杨曦,等.几种难降解有机废水的光化学处理研究[J].环境科学,1997,18(6):27~30.
    [34]金重阳,郑玉峰.光催化降解有机污染物技术现状及发展方向[J].环境科学保护,2003,29(117):12~15.
    [35]谷学谦,董秀芹.光催化氧化降解有机废物研究进展[J].化学工业与工程,2004,21(2):142~145.
    [36]L C Juang, D H Tseng, S C Yang. Treatment of petrochemical wastewater by UV/H2O2 photodecomposed system [J]. Water Science and Technology,1997,36 (12):357~365.
    [37]高峰,秦冰,桑军强.臭氧氧化处理炼油废水的生化处理出水[J].工业用水与废水,2009,40(1):46~48.
    [38]D F Bishop, G Stern, M Fleischman, et al. Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste waters [J]. Industrial & Engineering Chemistry Process Design and Development,1968,7(1):110~117.
    [39]毛悌如.化工废水处理技术[M].北京:化学工业出版社,2000.
    [40]M L Kremer, G Stein. The catalytic decomposition of hydrogen peroxide by ferric perchlorate [J].Trans. Frarday Soc,1959,55:959-973.
    [41]D R Grymonpre, A K Sharma, W C Finney, et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors [J]. Chemical engineering journal,2001,82(1-3):189~207.
    [42]贾胜娟,杨春风,赵东胜.Fenton氧化技术在废水处理中的研究和应用进展[J].工业水处理,2008,28(10):5-9.
    [43]陈忠林,朱洪平,邹洪波,等.Fenton试剂处理水中有机物的特性及其应用[J].黑龙江大学自然科学学报,2005,22(2):204-207.
    [44]贾保军,张爱丽.有机废水处理中复极固定床电解槽的研究进展[J].环境污染治理技术与设备,2003,4(11):21-25.
    [45]吴丹,史启才,周集体.电解法废水处理技术的研究进展[J].辽宁化工,2006,35(8):470~472.
    [46]朱晓兵,周集体,邱介山.微电解反应器应用于石油炼厂污水回用的中试研究[J].环境工程,2004,22(2):7-10.
    [47]国家环境保护总局.GB18918-2002城镇污水处理厂污染物排放标准[M].北京:中国标准出版社,2002.
    [48]丁永伟,王琳,王宝贞,等.活性污泥和生物膜复合/联合工艺在污水处理厂技术改造中的应用[J].给水排水,2005,31(12):41-45.
    [49]丁永伟,王琳,王宝贞,等.活性污泥和生物膜复合工艺的应用[J].中国给水排水,2005,21(8):30~33.
    [50]周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2000.
    [51]张绪强,季民.复合工艺在城市污水处理厂改造中的应用[J].环境保护科学,2004,30(126):23~25.
    [52]M Fouad, R Bhargava. Mathematical model for the biofilm-activated sludge reactor [J]. Journal of Environmental Engineering,2005,131(4):557~562.
    [53]王建龙,施汉昌,钱易.复合生物反应器处理废水的研究及进展[J].工业水处理,1997,17(1):6~9.
    [54]M F Hamoda, H A AI-Sharekh. Performance of a Combined Biofilm-Suspended Growth System for Wastewater Treatment [J]. Water Science and Technology,2000,41(1):167-175.
    [55]J L Su, C F Quyang. Nutrient Removal Using a Combined Process with Activated Sludge and Fixed Biofilm [J]. Water Science and Technology,1996,34(1-2):477-486.
    [56]E V Munch, K Barr, S Watts, et al. Suspended Carrier Technology Allows Upgrading High-rate Activated Sludge Plants for Nitrogen Removal via Process Intensification [J]. Water Science and Technology,2000,41 (4~5):5~12.
    [57]王建龙,吴立波,钱易,等.复合生物反应器处理废水特性的研究[J].中国给水排水,1998,14(2):29~32.
    [58]J L Wang, H C Shi, Y Qian. Wastewater Treatment in a Hybrid Biological Reactor (HBR):Effect of Organic Loading Rates [J]. Process Biochemistry,2000,36(4):297-303.
    [59]吴立波,王建龙,钱易,等.复合生物反应器对焦化废水中典型污染物处理特性的研究[J].给水排水,1999,25(2):40~43.
    [60]J Wanner, K Kucman, P Grau. Activated Sludge Process Combined with Biofilm Cultivation [J]. Water Research,1988,22(2):207~215.
    [61]M Takashima, R Yamamoto-Ikemoto. Filamentous Bulking Control by Sponge Media in Lab-scale SBR Process [J]. Environmental Technology,2003,24(1):17~22.
    [62]N Muller. Implementing biofilm carriers into activated sludge process-15 years of experience [J]. Water Science and Technology,1998,37(9):167-174.
    [63]周雹.城镇污水生物处理新工艺及其应用[J].中国给水排水,2003,19(12):36-39.
    [64]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [65]李桂平,周增炎.复合式活性污泥-生物膜反应器硝化能力的研究[J].重庆环境科学,2003,25(6):35~37.
    [66]陈海涛,王燕枫.复合式生物膜-活性污泥反应器的应用[J].江苏环境科技,2004,17(增):7-8
    [67]M Fouad, R Bhargava. Sludge production and settleability in biofilm-activated sludge process [J]. Journal of Environmental Engineering,2005,131 (3):417~424.
    [68]Z T Yu, W W Mohn. Bacterial diversity an community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA Sequencing [J]. Applied and Environmental Microbiology,2001,67(4):1565~1574.
    [69]田扬捷,杨虹,吴秀娟,等.综合应用ITS及16S rDNA进行环境微生物生态研究[J].微生物学通报,2004,31(4):85~88.
    [70]Y Qu, J Zhou, J Wang, et al. Microbial community dynamics in augmented sequencing batch reactors for bromoamine acid removal [J]. FEMS Microbiology Letters,2005,246(1):143~149.
    [71]王爱杰,任南琪.环境中的分子生物学诊断技术[M].北京:化学工业出版,2004.
    [72]郑雪松,杨虹,李道裳,等.基因间隔序列(ITS)在细菌分类鉴定和种群分析中的应用[J].应用与环境微生物学报,2003,9(6):678~684.
    [73]X Quan, H Shi, H Liu, et al. Enhancement of 2,4-dichlorophenol degradation on conventional activated sludge systems bioaugmented with mixed special culture [J]. Water Research,2004, 38(1):245-253.
    [74]赖其良,袁军,邵宗泽.一株印度洋深海食烷菌(Alcanivorax sp. P40)的烷烃羟化酶基因的克隆[J].台湾海峡,2008,27(2):141~146.
    [75]P E Rouviere, M W Chen. Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading beta-proteobacterium [J]. FEMS Microbiology Letters,2003,227(1): 101~102.
    [76]王爱杰,杜大仲,任南琪,等.脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用[J].哈尔滨工业大学学报,2004,36(4):423~425.
    [77]S D Yu, K J Gijs. Chemolithotrophic haloalkaliphiles from soda lakes [J]. FEMS Microbiology Ecology,52(3):95-287.
    [78]宋昊,邱森,章俭,等.高活性萘降解细菌Hydrogenophaga Palleronii LHJ38的研究[J].化工环保,2006,26(2):87~89.
    [79]A J Lambo, T R Patel. Cometabolic Degradation of Polychlorinated Biphenyls at Low Temperature by Psychrotolerant Bacterium Hydrogenophaga sp.IA3-A [J].Current Microbiology, 2006,53(1):48~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700