促生长激素神经肽在感觉和交感神经节的表达及有关的痛觉调节机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
促生长激素神经肽(galanin,Gal)是一个由29/30个氨基酸(在大多数物种为29个氨基酸,在人为30个氨基酸)组成的神经肽,在神经系统有广泛的表达,可发挥调节伤害性刺激、神经元发育和神经营养等多种生物学功能。在周围感觉神经节神经元和交感神经节(sympathetic ganglion,SG)神经元都检测到Gal的表达。Gal在周围神经系统对损伤的适应性反应及调节痛觉传递的过程中可能发挥作用。Gal被认为是背根神经节(dorsal root ganglion,DRG)神经元损伤的标志物之一和交感神经元轴突受到严重损伤时神经元表型改变的一个标志。在正常成年动物,Gal在感觉神经元和SG神经元表达的水平很低;在周围神经损伤和炎症状态下,Gal的表达显著上调。
     外周去甲肾上腺素能系统与痛觉的调节有一定的关系。正常健康状态下,去甲肾上腺素(norepinephrine,NE)对痛觉的影响作用极小,在神经损伤或炎症时,去甲肾上腺素能系统发生的各种可塑性变化可影响其对抗伤害性刺激的效能。不同的α-受体的亚型在交感神经元有表达,这些受体激活后可影响交感神经系统的活性或神经递质的表达或释放,并最终导致不同的效应。有趣的是,在初级感觉神经元也有功能性的α-受体表达,α-受体在介导NE对疼痛调节作用的过程中起着关键的作用,并调节神经源性炎症和伤害性刺激的反应。但激活α-受体对Gal表达的影响作用尚有待于证实。
     神经生长因子(nerve growth factor,NGF)不仅是一种重要的神经营养因子,而且还是炎症和疼痛的重要调节因子。NGF不仅影响DRG感觉神经元内包括Gal在内的多种神经肽的表达,也可调节SG神经元内神经肽的表达。外源性NGF对DRG神经元和SG神经元Gal表达的影响作用目前尚不清楚。
     6-羟多巴胺(6-hydroxydopamine,6-OHDA)和辣椒素(capsaicin,CAP)分别可以毁损SG交感神经元和DRG感觉神经元。6-OHDA是高效的儿茶酚胺选择性的神经毒素,对SG神经元Gal的表达变化有类似于轴突切断所致的效应。然而,6-OHDA对SG神经元Gal表达的影响程度目前尚不清楚。CAP通过激活位于初级传入神经元的辣椒素受体(vanilloid receptor 1,VR1)而发挥作用,大剂量CAP可选择性毁损初级传入神经元。Gal的受体GalR2和VR1在DRG神经元共同表达。CAP是否可影响DRG神经元Gal及其受体GalR2的表达需要进一步探讨。
     感觉神经肽和VR1的表达反映了DRG神经元感受伤害性刺激的特性。在初级传入神经元表达的感觉神经肽P物质(substance P,SP)在介导伤害性刺激的过程中发挥作用,Gal和SP可在同一个DRG感觉神经元中共存。外源性的Gal是否能影响DRG神经元VR1以及SP的表达尚需要进一步证实。
     在正常情况下,Gal在感受伤害性刺激的过程中只发挥较小的作用,然而在神经病理状态下,Gal对伤害性刺激的调节可发挥重要的作用。在非炎性刺激和炎症刺激条件下,Gal是一个重要的疼痛或痛觉过敏的调节因子。然而,Gal产生这种兴奋性作用的机制并不清楚。大鼠足底注射福尔马林可诱发自发性疼痛行为反应,Gal对此是否具有影响作用及其作用机制目前尚不清楚。
     根据以上研究背景可知Gal与多种生理及病理生理机制相关。但是NE、CAP、NGF对DRG神经元Gal的表达的影响作用,NGF、6-OHDA、α-受体激动剂对SG神经元Gal表达的影响作用以及Gal在福尔马林诱发的炎性疼痛中的作用机制尚不清楚。因此,本研究建立了DRG神经元和颈上神经节(superiorcervical ganglion,SCG)神经元培养模型,用这两个培养模型,分别研究了NE、CAP、NGF对DRG神经元Gal的表达的影响作用,NGF、6-OHDA、α-受体激动剂对SCG神经元Gal表达的影响作用。用动物实验探讨了Gal在福尔马林诱发的伤害性刺激中的作用及其机制。此外,NGF所致的DRG和SCG神经元轴突再生与Gal表达的关系,CAP对DRG神经元GalR2表达的影响,外源性Gal对DRG神经元SP释放、VR1表达的影响作用在本实验中也进行了探讨。
     DRG取自胚胎15 d的Wistar大鼠,SCG神经元取自新生Wistar大鼠。DRG神经元和SCG神经元培养24 h后,再用阿糖胞苷(cytarabine,ara-C)作用24h抑制非神经元细胞生长。之后,用不同的处理因素作用4 d或正常培养4 d后用不同的处理因素作用4 h后进行检测。
     (1)NE及α-受体拮抗剂孵育DRG神经元:DRG神经元用NE(10~(-4)mol/L)孵育4 d,或在加入NE之前10 min,在培养液内预先加入α_1-受体拮抗剂哌唑嗪(10~(-6)mol/L)或α_2-受体拮抗剂育亨宾(10~(-5)mol/L)。检测对Gal及其mRNA的表达。
     (2)NGF孵育DRG神经元:DRG神经元用NGF(10 ng/ml)或NGF(10ng/ml)加NE(10~(-4)mol/L)孵育4 d,检测Gal及其mRNA的表达及单个神经元的轴突总长度。
     (3)CAP孵育DRG神经元:①DRG神经元用不同浓度的CAP(10~(-8)mol/L,10~(-7)mol/L,10~(-6)mol/L)孵育4 h,检测Gal和GalR2及其mRNA的表达;②DRG神经元用不同浓度的CAP(10~(-8)mol/L,10~(-7)mol/L,10~(-6)mol/L)孵育4 d,检测Gal和GalR2及其mRNA的表达。
     (4)外源性Gal孵育DRG神经元:DRG神经元用不同浓度的Gal(10~(-9)mol/L,10~(-8)mol/L,10~(-7)mol/L)孵育4 d,检测VR1及其mRNA、SPmRNA的表达及SP的释放。在加入Gal之前10 min,预先加入GalR拮抗剂M35(10~(-8)mol/L)或PKC抑制剂Calphostin C(10~(-7)mol/L),检测GalR拮抗剂及PKC抑制剂对Gal作用的影响。
     (5)选择性α-受体激动剂孵育SCG神经元:SCG神经元分别用α_1-受体激动剂苯肾上腺素(10~(-5)mol/L)和α_2-受体激动剂可乐定(10~(-5)mol/L)孵育4 d,检测Gal及其mRNA的表达。
     (6)NGF或/和6-OHDA孵育SCG神经元:SCG神经元用NGF(10 ng/ml)、6-OHDA(10~(-5)mol/L)、NGF(10 ng/ml)加6-OHDA(10~(-5)mol/L)孵育4 d,检测Gal及其mRNA的表达及单个神经元的轴突总长度。
     动物实验所用动物为体重为220~250g的雄性Wistar大鼠。随机分为5组,每组10只动物。Gal组、福尔马林组、福尔马林+Gal组、福尔马林+Gal+GalR拮抗剂组、福尔马林+Gal+PKC抑制剂组。在大鼠左侧后足底注射20μl 2%的福尔马林诱发炎症,同时注射20μl Gal(0.1 ng/μl),之后进行缩足反射行为学检测实验。GalR拮抗剂(M35)在注射Gal前20 min、PKC抑制剂(CalphostinC)在注射Gal前60 min注射。Gal组、福尔马林组分别只注射20μl Gal(0.1ng/μl)或20μl 2%的福尔马林。行为学检测后,取左侧腰骶部DRG和腰骶部SG,检测Gal及其mRNA的表达。
     本研究的结果显示:(1)用NE(10~(-4)mol/L)卵育4 d后,培养的DRG神经元中Gal及其mRNA的表达增加;用α_1-受体阻断剂哌唑嗪(10~(-6)mol/L)预处理可阻断NE的这一效应;用α_2-受体阻断剂育亨宾(10~(-5)mol/L)预处理则不影响NE引起的Gal及其mRNA的表达增加。(2)用NGF(10 ng/ml)孵育4 d后,培养的DRG神经元中Gal及其mRNA的表达降低;NGF还可抑制NE诱发的Gal及其mRNA表达。NGF能促进DRG神经元轴突再生,而NE则不能促进DRG神经元轴突再生。(3)CAP(10~(-6)mol/L)急性处理(4 h)或CAP(10~(-8)mol/L,10~(-7)mol/L)长期孵育(4d)均可促进Gal及其mRNA的表达,CAP(10~(-7)mol/L)长期孵育(4 d)可促进GalR2及其mRNA的表达。(4)外源性Gal可增加DRG神经元CAP诱发的SP释放量,但不影响SP及其mRNA的表达以及基础SP释放量。外源性Gal可促进DRG神经元VR1及其mRNA的表达,并呈剂量依赖方式。外源性Gal所致的DRG神经元VR1表达增加可部分地被GalR拮抗剂M35或PKC抑制剂Calphostin C所抑制。(5)α_2-受体激动剂可乐定(10~(-5)mol/L)可抑制SCG神经元Gal及其mRNA的表达,α_1-受体激动剂苯肾上腺素(10~(-5)mol/L)对SCG神经元Gal及其mRNA的表达无影响。(6)NGF(10 ng/ml)可抑制SCG神经元Gal及其mRNA的表达;6-OHDA(10~(-5)mol/L)孵育SCG神经元,可促进Gal及其mRNA的表达;联合应用NGF和6-OHDA,NGF不能抑制6-OHDA引起的Gal及其mRNA表达的上调,但NGF能促进SCG神经元轴突再生。(7)注射福尔马林可诱发大鼠自发性疼痛行为缩足反射,注射20μl Gal(0.1 ng/μl)可增加缩足反射的次数。在注射Gal前注射30μl(20 ng/μl)Gal受体拮抗剂M35或30μl PKC抑制剂Calphostin C(0.1ng/μl),可部分抑制Gal引起的疼痛增强效应。(8)大鼠足底内注射福尔马林可引起同侧腰骶部DRG内Gal mRNA表达增加,神经肽Gal的表达无变化。腰骶部SG内Gal及其mRNA表达均无变化。
     这些结果表明:(1)DRG神经元内Gal的表达可受NE、NGF、CAP等多种因素的影响。NE通过作用于α_1-受体,而不是α_2-受体,增强了DRG神经元Gal的表达,这可能是外周促进伤害性刺激的肾上腺素能调节机制之一。NGF抑制DRG神经元内Gal的表达,一定孵育时间和孵育浓度的CAP刺激DRG神经元,Gal及其受体GalR2表达上调。这反映了Gal所介导的伤害性刺激作用机制的复杂性。
     (2)SCG神经元内Gal的表达可受α_2-受体激动剂、NGF、6-OHDA等多种因素的影响。交感神经元α_2-受体的激活对Gal的表达有抑制作用,表明α_2-受体可能参与了Gal介导的损伤刺激或炎症反应。外源性NGF可使培养的SCG神经元Gal表达下调,而6-OHDA则可使Gal表达上调。
     (3)Gal可能介入了与VR1有关的伤害性刺激调节机制,GalR的活化和PKC通路被激活可能是其作用机制。Gal对福尔马林诱发的炎性疼痛的增强作用可能是由于Gal作用于GalR后激活了PKC细胞信号转导通路所致。选择性GalR拮抗剂和PKC抑制剂可能对炎性疼痛的治疗具有一定的应用价值。
Galanin(Gal),a 29-amino-acid neuropeptide in most species(30-amino-acid in human),is widely distributed throughout the nervous system including sensory ganglion and sympathetic ganglion(SG)neurons and is involved in the regulation of manifold functions including nociception,developmental and trophic effects.Gal may play a role in the adaptive response of the peripheral nervous system to injury and modulate pain transmission.Gal is recognized as one of the dorsal root ganglion(DRG)injury markers.Increased Gal expression was used as a marker of the change of phenotype that occurs in sympathetic neuronal cell bodies when their axons are severely damaged.Gal is normally expressed at low levels in sensory neurons and SG neurons and is markedly up-regulated within these neurons following peripheral nerve injury and inflammation in the adult.
     Peripheral noradrenergic system is involved in intrinsic control of pain. Norepinephrine(NE)has little influence on pain in healthy tissues,whereas noradrenergic system is subject to various plastic changes that influence its antinociceptive efficacy after injury or inflammation.Distinct alpha-adrenoreceptors are expressed in sympathetic neurons.Activation of distinct alpha-adrenoreceptors influences tone of sympathetic nervous system or neurotransmitter synthesis or release and finally results in different effects.Interestingly,functional alpha-adrenoreceptors are expressed in primary sensory neurons and regulate neurogenic inflammation and nociceptive responses.Alpha-adrenoreceptors have a key role in mediating pain regulatory effects of NE.These adrenoreceptors are functionally active may vary with the presence of nerve injury,inflammation or other physiological and pathophysiological conditions.It is not known whether activation of alpha adrenoreceptors could affect Gal expression in DRG and SG neurons.
     Nerve growth factor(NGF)initially interested neurobiologists because of its effects in the developing nervous system of the survival,differentiation and maturation.In the course of the last years,several lines of evidence converged to indicate that NGF is a major regulator of inflammatory and homeostatic pain states, influencing both sensory neuron phenotype and physiologic responses.NGF could influence the expression of several neuropeptides including Gal in both DRG and SG neurons.It is not clear whether exogenous NGF could affect Gal expression in DRG or SG neurons.
     6-Hydroxydopamine(6-OHDA)and capsaicin(CAP)could cause neurotoxicity on SG neurons and DRG neurons,respectively.The highly potent and catecholamine selective neurotoxin 6-OHDA could causes changes in the expression of Gal mRNA in the SCG similar to those seen after axotomy.It is not known to what extent Gal expression is affected by 6-OHDA in cultured SCG neurons.CAP,the pungent component of hot peppers,elicits a sensation of burning pain,via activation of vanilloid receptor 1(VRI,CAP receptor)expressed in primary sensory neurons that convey information about noxious stimuli to the central nervous system.Large dosage of CAP could selectively destroy primary sensory neurons.Interestingly,co-expression of GalR2 and VR1 in DRG neurons suggested that Gal-induced effects are mediated by GalR2 on CAP-sensitive primary sensory neurons.Whether expression of Gal and GalR2 was affected by CAP should be further studied.
     Neuropeptide expression and VR1 expression may reflect nociceptive properties of DRG neurons.Substance P(SP),an 11-amino acid-long neuropeptide, is expressed in primary sensory neurons and plays an important role in nociception. Gal immunoreactive cells are colocalized with SP immunoreactive cells in single sensory neurons of the rat DRG suggesting the functional significance of these neurotransmitters in the modulation of sensory action and neuropathic pain transmission.Whether exogenous Gal could affect expression of VR1 and SP should be verified.
     Gal is thought to play only a minor role in nociception under normal conditions. However,it may have a critical role in modulation of nociception in neuropathic states.Several lines of evidence demonstrated that Gal was involved in peripheral pain processing.In both non-inflammatory stimulation and inflammatory conditions, Gal is one of the important mediators in the processing of pain sensation or hypersensitivity.However,the possible mechanisms by which Gal exerts an excitatory action are still unknown.
     Based on the above research backgrounds,we know that Gal was involved in so many physiological and pathophysiological conditions.Whereas whether NE, CAP and NGF influence Gal expression in DRG neurons and NGF,6-OHDA and adrenoreceptor agonists affect Gal expression in SG neurons in vitro needs to be clarified.The effects and mechanisms of Gal in formalin-induced nociception remain unknown.In the present study,both DRG and superior cervical ganglion (SCG)neuronal culture models were established.Gal expression in DRG neurons induced by NE,CAP and NGF and Gal expression in SCG neurons induced by NGF, 6-OHDA and alpha-adrenoreceptor agonists were investigated using these two culture models,respectively.The effects and mechanisms of Gal in formalin-induced inflammatory pain were also investigated.In addition,the relationship between NGF-induced axonal regeneration and Gal expression,the effect of CAP on GalR2 expression in DRG neurons and the effect of exogenous Gal on SP release and VR1 expression in DRG neurons were investigated in the present experiment.
     DRG and SCG culture experiments.DRG and SCG were dissected out from embryonic 15-day-old or newborn Wistar rats,respectively.DRG and SCG cells were cultured in Dulbecco's Modified Eagle Medium with F-12 supplement (DMEM/F-12)media at 37℃with 5%CO_2 for 24 hours and then maintained in culture media containing cytarabine(ara-C)(5μg/ml)for another 24 hours to inhibit growth of non-neuronal cells.After that,DRG and SCG cells were maintained in different culture conditions for additional 4 days with media change every 2 days. Neurons were cultured continuously in culture media for 6 days as control.(1) Exposure of NE on DRG neurons:DRG neurons were exposed to NE(10~(-4)mol/L) for 4 days.When requested,DRG neurons were pretreated with alpha 1-adrenoreceptor antagonist prazosin(10~(-6)mol/L)or alpha 2-adrenoreceptor antagonist yohimbine(10~(-5)mol/L),10 minutes prior to the NE challenge.(2) Exposure of NGF on DRG neurons:DRG neurons were exposed to NGF(10 ng/ml)for 4 days.When requested,DRG neurons we,re exposed to NE(10~(-4)mol/L) during the 4 days NGF treatment.(3)Exposure of CAP on DRG neurons:DRG neurons were exposed to CAP(10~(-8),10~(-7),10~(-6)mol/L)for 4 hours as the acute treatment and exposed to CAP(10~(-8),10~(-7),10~(-6)mol/L)for 4 days as the chronic treatment.(4)Exposure of Gal on DRG neurons:DRG neurons were exposed to Gal(10~(-9),10~(-8),10~(-7)mol/L)for 4 days.When requested,DRG neurons were pretreated with GalR antagonist M35(10~(-8)mol/L)or PKC inhibitor(10~(-7)mol/L),10 minutes prior to the Gal treatment.(5)Exposure of selective alpha-adrenoreceptor agonists on SCG neurons:SCG neurons were exposed to alpha 1-adrenoreceptor agonist phenylephrine(10~(-5)mol/L)or alpha 2-adrenoreceptor agonist clonidine(10~(-5)mol/L).(6)Exposure of NGF or/and 6-OHDA on SCG neurons:SCG neurons were exposed to NGF(10 ng/ml), 6-OHDA(10~(-5)mol/L)and NGF(10 ng/ml)plus 6-OHDA(10~(-5)mol/L)for 4 days.
     Animal behavioral experiments.Male Wistar rats weighing 220-250 g were used in this experiment.Animals were randomly divided into 5 groups(n=10 per group):Gal group,formalin group,formalin+Gal group,formalin+Gal+GalR antagonist group,and formalin+Gal+PKC inhibitor group.Inflammation in the formalin-induced arthritis of the left tibiotarsal joint of male Wistar rats was induced by subcutaneous injection of 20μl 2%formalin into the plantar surface of the left hind paw.20μl Gal(0.1 ng/μl)was injected into the left hind paw simultaneously and flinching animal behavior would be examined at this time.GalR antagonist M35 was injected 20 min prior to Gal injection.PKC inhibitor Calphostin C was injected 60 min prior to Gal injection.Animals in Gal or formalin group,only 20μl Gal(0.1 ng/μl)or 20μl 2%formalin was injected into the left hind paw, respectively.After animal behavior examination,the expression of Gal mRNA and peptide in lumbosacral DRG and SG were examined.
     The results are as follows:(1)NE(10~(-4)mol/L)promoted Gal mRNA and Gal peptide expression in cultured DRG neurons after 4 days incubation.Pretreatment with alpha 1-adrenoreceptor antagonist prazosin(10~(-6)mol/L)could block the effects caused by NE,whereas alpha 2-adrenoreceptor antagonist yohimbine(10~(-5)mol/L) did not have the effects on NE induced elevation of Gal mRNA and Gal peptide levels.(2)NGF(10 ng/ml)inhibited Gal mRNA and Gal peptide expression as compared with control at the same time point.NGF also inhibited NE-induced the elevation Gal mRNA and Gal peptide expression in DRG cultures.NGF but not NE could promote axonal regeneration of DRG neurons.(3)Acute exposure(4 hours) of CAP(10~(-6)mol/L)and chronic exposure(4 days)of CAP(10~(-8)mol/L,10~(-7)mol/L) promoted Gal mRNA and Gal peptide expression in DRG cultures.Chronic exposure(4 days)of 10~(-7)mol/L CAP promoted GalR2 mRNA and GalR2 protein expression in DRG cultures.(4)Exogenous Gal sensitized CAP-evoked SP release, but did not have effects on SP mRNA,SP peptide expression and basal SP release in DRG cultures.Exogenous Gal promoted VR1 mRNA and VR1 protein expression in a dose-dependent manner in cultured DRG neurons after 4 days incubation.The elevation of VR1 expression could partially be inhibited by GalR antagonist M35 or PKC inhibitor Calphostin C.(5)The levels of Gal mRNA and Gal peptide expression in cultured SCG neurons decreased significantly after stimulation with alpha 2-adrenoreceptor agonist clonidine(10~(-5)mol/L).Alpha 1-adrenoreceptor agonist phenylephrine(10~(-5)mol/L)stimulation did not have effects on Gal mRNA and Gal peptide expression.(6)NGF(10 ng/ml)inhibited Gal mRNA and Gal peptide expression in cultured SCG neurons.Exposure of 6-OHDA(10~(-5)mol/L) promoted Gal mRNA and Gal peptide expression in SCG cultures,whereas NGF had no effect on the increase of Gal mRNA and Gal peptide expression induced by 6-OHDA treatment.NGF could promote axonal regeneration of SCG neurons.(7) Intraplantar injection of 20μl Gal(0.1 ng/μl)to formalin-induced inflammation male Wistar rats produced spontaneous flinches of the injected hindpaw. Intraplantar administration of M35 or calphostin C partially reversed the Gal potentiation of formalin-induced nociception.(8)The levels of Gal mRNA in lumbosacral DRG were increased after intraplantar injection of formalin.The expression of Gal peptide was not increased.Both Gal mRNA and Gal peptide expression in lumbosacral SG were not affected by intraplantar injection of formalin.
     The results in the present study indicate that:
     (1)Gal expression in DRG neurons might be affected by different stimulators such as NE,NGF,or CAP.NE,due to action on alpha 1-adrenoreceptors but not alpha 2-adrenoreceptors,increases Gal expression in DRG neurons indicating that it is one of the pronociceptive noradrenergic mechanisms in the periphery.NGF inhibits Gal expression in the absence or presence of NE on cultured DRG neurons. Certain concentrations or exposure time of CAP stimulation may be relevant to up-regulation of Gal and its receptor GalR2 expression in DRG cultures.These results implicated the complexity of the mechanisms of Gal-related nociception.
     (2)Gal expression in SCG neurons might be modulated by different factors such as alpha-adrenoreceptor,NGF,or 6-OHDA.Gal may be regulated by activation alpha 2-adrenoreceptors,but not alpha 1-adrenoreceptors in sympathetic neurons suggested alpha 2-adrenoreceptors may be involved in the Gal related injury or inflammatory responses.Gal expression was attenuated by administration of exogenous NGF and enhanced by administration of exogenous 6-OHDA in SCG cultures.
     (3)Exogenous Gal could induce CAP-evoked SP release and increase VR1 expression suggested that Gal may be,at least in part,correlated with VR1-related nociception.Activation of GalR and PKC pathway may be involved in the enhancement of formalin-induced inflammatory pain caused by exogenous Gal.The use of GalR antagonists and PKC inhibitor in the periphery may have therapeutic value in the treatment of inflammatory pain.
引文
1. Liu HX, Hokfelt T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci, 2002, 23 (10): 468-474.
    2. Holmberg K, Kuteeva E, Brumovsky P, Kahl U, Karlstrom H, Lucas GA, Rodriguez J, Westerblad H, Hilke S, Theodorsson E, Berge O-G, Lendahl U, Bartfai T, Hokfelt T. Generation and phenotypic characterization of a galanin overexpressing mouse. Neuroscience, 2005, 133 (1): 59-77.
    3. Jimenez-Andrade JM, Zhou S, Yamani A, Valencia de Ita S, Castaneda-Hernandez G, Carlton SM. Mechanism by which peripheral galanin increases acute inflammatory pain. Brain Res, 2005, 1056 (2): 113-117.
    4. Shi TJ, Hua XY, Lu X, Malkmus S, Kinney J, Holmberg K, Wirz S, Ceccatelli S, Yaksh T, Bartfai T, Hokfelt T. Sensory neuronal phenotype in galanin receptor 2 knockout mice: focus on dorsal root ganglion neurone development and pain behaviour. Eur J Neurosci, 2006, 23 (3): 627-636.
    5. Brumovsky P, Hygge-Blakeman K, Villar MJ, Watanabe M, Wiesenfeld-Hallin Z, Hokfelt T. Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse-possible implications for pain processing. J Chem Neuroanat, 2006, 31 (4): 243-262.
    6. Kerr BJ, Cafferty WB, Gupta YK, Bacon A, Wynick D, McMahon SB, Thompson SW. Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. Eur J Neurosci, 2000,12 (3): 793-802.
    7. Kerr BJ, Gupta Y, Pope R, Thompson SWN, Wynick D, McMahon SB. Endogenous galanin potentiates spinal nociceptive processing following inflammation. Pain, 2001,93 (3): 267-277.
    8. Blakeman KH, Hao JX, Xu XJ, Jacoby AS, Shine J, Crawley JN, Iismaa T, Wiesenfeld-Hallin Z. Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors. Neuroscience, 2003, 117(1): 221-227.
    9. Wendland JR, Schmidt KH, Koltzenburg M, Petersen M. No overlap of sensitivity to capsaicin and expression of galanin in rat dorsal root ganglion neurons after axotomy. Exp Brain Res, 2003, 153 (1): 1-6.
    10. Kerekes N, Mennicken F, O'Donnell D, Hokfelt T, Hill RH. Galanin increases membrane excitability and enhances Ca(2+) currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci, 2003, 18 (11): 2957-2966.
    11. Jimenez-Andrade JM, Zhou S, Du J, Yamani A, Grady JJ, Castaneda-Hernandez G, Carlton SM. Pro-nociceptive role of peripheral galanin in inflammatory pain. Pain, 2004, 110 (1-2): 10-21.
    12. Jimenez-Andrade JM, Lundstrom L, Sollenberg UE, Langel U, Castaneda-Hernandez G, Carlton SM. Activation of peripheral galanin receptors: differential effects on nociception. Pharmacol Biochem Behav, 2006, 85 (1): 273-280.
    13. Holmes FE, Mahoney SA, Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides, 2005, 39 (3): 191-199.
    14. Shortland PJ, Baytug B, Krzyzanowska A, McMahon SB, Priestley JV, Averill S. ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. Eur J Neurosci, 2006, 23 (2): 365-373.
    15. Holmberg K, Shi TJ, Albers KM, Davis BM, Hokfelt T. Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the NGF-overexpressing mouse. Exp Neurol, 2001, 167 (2): 290-303.
    16. Landry M, Holmberg K, Zhang X, Hokfelt T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohistochemistry. Exp Neurol, 2000, 162 (2): 361-384.
    17. Macdonald R, Bingham S, Bond BC, Parsons AA, Philpott KL. Determination of changes in mRNA expression in a rat model of neuropathic pain by Taqman quantitative RT-PCR. Brain Res Mol Brain Res, 2001,90 (1): 48-56.
    18. Hobson SA, Holmes FE, Kerr NC, Pope RJ, Wynick D. Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. J Neurochem, 2006, 99 (3): 1000-1010.
    19. Zvarova K, Vizzard MA. Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell Tissue Res, 2006, 324 (2): 213-224.
    20. Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res, 2004, 6 (7-8): 615-630.
    21. Landry M, Aman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hokfelt T. Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience, 2003, 117 (4): 795-809.
    22. Coronel MF, Brumovsky PR, Hokfelt T, Villar MJ. Differential galanin upregulation in dorsal root ganglia and spinal cord after graded single ligature nerve constriction of the rat sciatic nerve. J Chem Neuroanat, 2008, 35 (1): 94-100.
    23. Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol, 2006, 80 (2): 53-83.
    24. Shivachar AC, Eikenburg DC. Differential effects of epinephrine and norepinephrine on cAMP response and g(i3)alpha protein expression in cultured sympathetic neurons. J Pharmacol Exp Ther, 1999, 291 (1): 258-264.
    25. Brum PC, Hurt CM, Shcherbakova OG, Kobilka B, Angelotti T. Differential targeting and function of alpha2A and alpha2C adrenergic receptor subtypes in cultured sympathetic neurons. Neuropharmacology, 2006, 51 (3): 397-413.
    26. Chen Q, Li DP, Pan HL. Presynaptic alphal adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons. J Pharmacol Exp Ther, 2006, 316 (2): 733-742.
    27. Gold MS, Dastmalchi S, Levine JD. Alpha 2-adrenergic receptor subtypes in rat dorsal root and superior cervical ganglion neurons. Pain, 1997, 69 (1-2): 179-190.
    28. Shi TS, Winzer-Serhan U, Leslie F, Hokfelt T. Distribution and regulation of alpha (2)-adrenoceptors in rat dorsal root ganglia. Pain, 2000, 84 (2-3): 319-330.
    29. Xie J, Lee YH, Wang C, Chung JM, Chung K. Differential expression of ai-adrenoceptor subtype mRNAs in the dorsal root ganglion after spinal nerve ligation. Mol Brain Res, 2001, 93 (2): 164-172.
    30. Ma W, Zhang Y, Bantel C, Eisenach JC. Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha 2C-adrenoceptor co-expression and functional inhibition by clonidine. Pain, 2005, 113 (3): 386-394.
    31. Nicholson R, Dixon AK, Spanswick D, Lee K. Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci Lett, 2005, 380 (3): 316-321.
    32. Trevisani M, Campi B, Gatti R, Andre E, Materazzi S, Nicoletti P, Gazzieri D, Geppetti P. The influence of alpha (1)-adrenoreceptors on neuropeptide release from primary sensory neurons of the lower urinary tract. Eur Urol, 2007, 52(3): 901-908.
    33. Pluteanu F, Ristoiu V, Flonta ML, Reid G Alpha (1)-adrenoceptor-mediated depolarization and beta-mediated hyperpolarization in cultured rat dorsal root ganglion neurones. Neurosci Lett, 2002, 329 (3): 277-280.
    34. Andersson K-E. Mode of action of alpha 1-adrenoceptor antagonists in the treatment of lower urinary tract symptoms. Br J Urol, 2000, 85 (suppl 2): 12-18.
    35. Milani S, Djavan B. Lower urinary tract symptoms suggestive of benign prostatic hyperplasia: latest update on alpha-adrenoceptor antagonists. BJU Int, 2005, 95 (suppl 4): 29-36.
    36. Kingery WS, Guo TZ, Davies MF, Limbird L, Maze M. The alpha (2A) adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain, 2000, 85 (3): 345-358.
    37. Dogrul A, Uzbay IT. Topical clonidine antinociception. Pain, 2004, 111 (3): 385-391.
    38. Lavand'homme PM, Ma W, De Kock M, Eisenach JC. Perineural alpha (2A)-adrenoceptor inhibits spinal cord neuroplasticity and tactile allodynia after nerve injury. Anesthesiology, 2002,97 (4): 972-980.
    39. Wei H, Jyvasjarvi E, Niissalo S, Hukkanen M, Waris E, Konttinen YT, Pertovaara A. The influence of chemical sympathectomy on pain responsivity and alpha 2-adrenergic antinociception in neuropathic animals. Neuroscience, 2002, 114(3): 655-668.
    40. Birder LA, Perl ER. Expression of alpha 2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol, 1999, 515(Pt 2): 533-542.
    41. Petruska JC, Mendell LM. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett, 2004, 361 (1-3): 168-171.
    42. Ben-Zvi A, Ben-Gigi L, Yagil Z, Lerman O, Behar O. Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling. Cell Signal, 2008,20 (3): 467-479.
    43. Donnerer J, Schuligoi R, Stein C. Dicreased content and transport of substance P and Calcitonin gene-related peptide innervating inflammed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience, 1992, 49 (3): 693-698.
    44. Davis BM, Lewin GR, Mendell LM, Jones ME, Albers KM. Altered expression of nerve growth factor in the skin of transgenic mice leads to changes in response to mechanical stimuli. Neuroscience, 1993, 56 (4): 789-792.
    45. Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci, 1993, 13 (5): 2136-2148.
    46. Petty BG, Cornblath DR, Adornato BT, Chaudhry V, Flexner C, Wachsman M, Sinicropi D, Burton LE, Peroutka SJ. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol, 1994, 36 (2): 244-246.
    47. Amann R, Schuligori R, Herzeg G, Donnerer J. Intraplantar injection of nerve growth factor into the rat hind paw: local edema and effects on thermal nociceptive threshold. Pain, 1995, 64 (2): 323-329.
    48. Kato R, Kiryu-Seo S, Kiyama H. Damage-induced neuronal endopeptidase (DINE/ECEL) expression is regulated by leukemia inhibitory factor and deprivation of nerve growth factor in rat sensory ganglia after nerve injury. J Neurosci, 2002, 22 (21): 9410-9418.
    49. Thippeswamy T, Haddley K, Corness JD, Howard MR, McKay JS, Beaucourt SM, Pope MD, Murphy D, rMorris R, Hokfelt T, Quinn JP. NO-cGMP mediated galanin expression in NGF-deprived or axotomized sensory neurons. J Neurochem, 2007, 100 (3): 790-801.
    50. Engert S, Wendland JR, Schwab A, Petersen M. Leukemia inhibitory factor differentially regulates capsaicin and heat sensitivity in cultured rat dorsal root ganglion neurons. Neuropeptides, 2008,42 (2): 193-197.
    51. Shadiack AM, Sun Y, Zigmond RE. Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosci, 2001, 21 (2): 363-371.
    52. Winston J, Toma H, Shenoy M, Pasricha PJ. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain 2001,89(2-3): 181-186.
    53. Skoff AM, Adler JE. Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors. Exp Neurol, 2006, 197 (2): 430-436.
    54. Andres R, Herraez-Baranda LA, Thompson J, Wyatt S, Davies AM. Regulation of sympathetic neuron differentiation by endogenous nerve growth factor and neurotrophin-3. Neurosci Lett, 2008,431 (3): 241-246.
    55. O'Keeffe GW, Gutierrez H, Pandolfi PP, Riccardi C, Davies AM. NGF-promoted axon growth and target innervation requires GITRL-GITR signaling. Nat Neurosci, 2008,11 (2): 135-142.
    56. Saade NE, Farhat O, Rahal O, Safieh-Garabedian B, Le Bars D, Jabbur SJ. Ultra violet-induced localized inflammatory hyperalgesia in awake rats and the role of sensory and sympathetic innervation of the skin. Brain Behav Immun, 2008, 22 (2): 245-256.
    57. Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci U S A, 2001,98 (7): 4160-4165.
    58. Shadiack AM, Vaccariello SA, Zigmond RE. Galanin expression in sympathetic ganglia after partial axotomy is highly localized to those neurons that are axotomized. Neuroscience, 1995, 65 (4): 1119-1127.
    59. Mei Q, Mundinger TO, Lernmark K, Taborsky GJ Jr. Increased galanin expression in the celiac ganglion of BB diabetic rats. Neuropeptides, 2006, 40 (1): 1-10.
    60. Hyatt-Sachs H, Bachoo M, Schreiber R, Vaccariello SA, Zigmond RE. Chemical sympathectomy and postganglionic nerve transection produce similar increases in galanin and VIP mRNA but differ in their effects on peptide content. J Neurobiol, 1996, 30 (4): 543-555.
    61. Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch, 2005,451(1): 143-150.
    62. Jordt SE, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA, 2000, 97 (14): 8134-8139.
    63. Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, Wellisch OM, Neubert JK, Olah Z, Iadarola MJ. Deletion of Vanilloid receptor 1-expressiong primary afferent neurons for pain control. J Clin Invest, 2004, 113(9): 1344-1352.
    64. Calixto JB, Kassuya CAL, Andre E, Ferreira J. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Therapeut, 2005, 106 (2): 179-208.
    65. Kim S, Kang C, Shin CY, Hwang SW, Yang YD, Shim WS, Park MY, Kim E, Kim M, Kim BM, Cho H, Shin Y, Oh U. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1. J Neurosci, 2006, 26 (9): 2403-2412.
    66. Avelino A, Cruz C, Cruz F. Nerve growth factor regulates galanin and c-jun overexpression occurring in dorsal root ganglion cells after intravesical resiniferatoxin application. Brain Res, 2002,951 (2): 264-269.
    67. Schmidhuber SM, Starr A, Wynick D, Kofler B, Brain SD. Targeted disruption of the galanin gene attenuates inflammatory responses in murine skin. J Mol Neurosci, 2008, 34 (2): 149-155.
    68. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin-receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389 (6653): 816-824.
    69. Tang HB, Inoue A, Iwasa M, Hide I, Nakata Y. Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin. J Neurochem, 2006, 97 (5): 1412-1418.
    70. Abdulla FA, Stebbing MJ, Smith PA. Effects of substance P on excitability and ionic currents of normal and axotomized rat dorsal root ganglion neurons. Eur J Neurosci, 2001, 13 (3): 545-552.
    71. Lu CL, Pasricha PJ, Hsieh JC, Lu RH, Lai CR, Wu LL, Chang FY, Lee SD. Changes of the neuropeptides content and gene expression in spinal cord and dorsal root ganglion after noxious colorectal distension. Regul Pept, 2005, 131 (1-3): 66-73.
    72. Qinyang W, Hultenby K, Adlan E, Lindgren JU. Galanin in adjuvant arthritis in the rat. J Rheumatol, 2004, 31 (2): 302-307.
    73. Xing Y, Liu Z, Wang LH, Huang F, Wang HJ, Li ZZ. Butyrate sensitizes the release of substance P and Calcitonin gene-related peptide evoked by capsaicin from primary cultured rat dorsal root ganglion neurons. Neuroendocrinol Lett, 2006, 27 (6): 695-701.
    74. Kaleczyc J, Scheuermann DW, Pidsudko Z, Majewski M, Lakomy M, Timmermans JP. Distribution, immunohistochemical characteristics and nerve pathways of primary sensory neurons supplying the porcine vas deferens. Cell Tissue Res, 2002, 310(1): 9-17.
    75. Yoon YS, Hwang IK, Lee IS, Suh JG, Shin JW, Kang TC, Oh YS, Won MH. Galanin-immunoreactive cells and their relation to Calcitonin gene-related peptide-, substance P- and somatostatin-immunoreactive cells in rat lumbar dorsal root ganglia. Anat Histol Embryol, 2003, 32 (2): 110-115.
    76. Yu LC, Xu SL, Xiong W, Lundeberg T. The effect of galanin on wide-dynamic range neuron activity in the spinal dorsal horn of rats. Regul Pept, 2001, 101 (1-3): 179-182.
    77. Grass S, Crawley JN, Xu XJ, Wiesenfeld-Hallin Z. Reduced spinal cord sensitization to C-fibre stimulation in mice over-expressing galanin. Eur J Neurosci, 2003, 17 (9): 1829-1832.
    78. Post C, Alari L, Hokfelt T. Intrathecal galanin increases the latency in the tail-flick and hot-plate tests in mouse. Acta Physiol Scand, 1988, 132 (4): 583-584.
    79. Flatters SJ, Fox AJ, Dickenson AH. Nerve injury induces plasticity that results in spinal inhibitory effects of galanin. Pain, 2002,98 (3): 249-58.
    80. Hao JX, Shi TJ, Xu IS, Kaupilla T, Xu XJ, Hokfelt T, Bartfai T, Wiesenfeld-Hallin Z. Intrathecal galanin alleviates allodynia-like behaviour in rats after partial peripheral nerve injury. Eur J Neurosci, 1999, 11(2): 427-432.
    81. Wiesenfeld-Hallin Z, Xu XJ, Villar MJ, Hokfelt T. Intrathecal galanin potentiates the spinal analgesic effect of morphine: electrophysiological and behavioural studies. Neurosci Lett, 1990, 109 (1-2): 217-221.
    82. Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE. Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry, 1998, 37 (19): 6711-6717.
    83. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA. Protein kinase C activation potentiates gating of the Vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol, 2001, 534 (Pt-3): 813-825.
    84. Zhou Y, Zhou ZS, Zhao ZQ. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology, 2001, 41 (5): 601-608.
    85. Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA, 2001, 98 (12): 6951-6956.
    86. Hucho TB, Dina OA, Kuhn J, Levine JD. Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci, 2006, 24 (2): 527-534.
    87. Niiro N, Nishimura J, Hirano K, Nakano H, Kanaide H. Mechanisms of galanin-induced contraction in the rat myometrium. Br J Pharmacol, 1998, 124 (8): 1623-1632.
    88. Kerekes N, Landry M, Rydh-Rinder M, Hokfelt T. The effect of NGF, BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia. Brain Res. 1997,754(1-2): 131-141.
    89. Wang J, Ren Y, Zou X, Fang L, Willis WD, Lin Q. Sympathetic influence on capsaicin-evoked enhancement of dorsal root reflexes in rats. J Neurophysiol, 2004,92 (4): 2017-2026.
    90. Gil DW, Cheevers CV, Donello JE. Transient allodynia pain models in mice for early assessment of analgesic activity. Br J Pharmacol, 2008, 153 (4): 769-774.
    91. Banik RK, Sato J, Yajima H, Mizumura K. Differences between the Lewis and Sprague-Dawley rats in chronic inflammation induced norepinephrine sensitivity of cutaneous C-fiber nociceptors. Neurosci Lett, 2001, 299 (1-2): 21-24.
    92. Liu BG, Eisenach JC. Hyperexcitability of axotomized and neighboring unaxotomized sensory neurons is reduced days after perineural clonidine at the site of injury. J Neurophysiol, 2005,94 (5): 3159-3167.
    93. Koo ST, Lim KS, Chung K, Ju H, Chung JM. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain, 2008,135 (1-2): 11-19.
    94. Straub RH, Harle P. Sympathetic neurotransmitters in joint inflammation. Rheum Dis Clin North Am, 2005, 31 (1): 43-59, viii.
    95. Girard BM, May V, Bora SH, Fina F, Braas KM. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Pept, 2002, 109 (1-3): 89-101.
    96. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev, 2005, 85 (4): 1159-1204.
    97. Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res, 2006, 326 (2): 541-551.
    98. Boehm S, Huck S. Receptors controlling transmitter release from sympathetic neurons in vitro. Prog Neurobiol, 1997, 51 (3): 225-242.
    99. Xiao C, Zhou C, Atlas G, Delphin E, Ye JH. Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta (1) -adrenergic receptors - A possible mechanism underlying labetalol-induced analgesia. Brain Res, 2008, 1198: 34-43.
    100. Suarez V, Guntinas-Lichius O, Streppel M, Ingorokva S, Grosheva M, Neiss WF, Angelov DN, Klimaschewski L. The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur J Neurosci, 2006,24(6): 1555-1564.
    101. Kiryu-Seo S. Identification and functional analysis of damage-induced neuronal endopeptidase (DINE), a nerve injury associated molecule. Anat Sci Int, 2006, 81(1): 1-6.
    102. Norberg A, Griffiths WJ, Hjelmqvist L, Jornvall H, Rokaeus A. Identification of variant forms of the neuroendocrine peptide galanin. Rapid Commun Mass Spectrom, 2004, 18 (14): 1583-1591.
    103. Li Y, Wang Z, Dahlstrom A. Neuroendocrine secretory protein 55 (NESP55) immunoreactivity in male and female rat superior cervical ganglion and other sympathetic ganglia. Auton Neurosci, 2007, 132 (1-2): 52-62.
    104. Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, Sundler F. The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res, 1997, 775 (1-2): 166-182.
    105. Lynn B. Capsaicin: actions on nociceptive C-fibres and therapeutic potential. Pain, 1990,41(1): 61-69.
    106. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest, 2002, 110 (8): 1185-1190.
    107. Gauldie SD, McQueen DS, Pertwee R, Chessell IP. Anandamide activates peripheral nociceptors in normal and arthritic rat knee joints. Br J Pharmacol, 2001,132 (3): 617-621.
    108. Fernihough J, Gentry C, Bevan S, Winter J. Regulation of Calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett, 2005, 388 (2): 75-80.
    109. Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, El Kouhen R, Lee CH, Marsh K, Sullivan JP, rFaltynek CR, Jarvis MF. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther, 2005; 314 (1): 410-421.
    110. Hua XY, Hayes CS, Hofer A, Fitzsimmons B, Kilk K, Langel U, Bartfai T, Yaksh TL. Galanin acts at GalR1 receptors in spinal antinociception: synergy with morphine and AP-5. J Pharmacol Exp Ther, 2004, 308 (2): 574-582.
    111. Cridland RA, Henry JL. Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VJP, galanin, CGRP, TRH, somatostatin, and angiotensin II. Neuropeptides, 1988, 11 (1): 23-32.
    112. Puttick RM, Pinnock RD, Woodruff GN. Galanin-induced membrane depolarization of neonatal rat cultured dorsal root ganglion cells. Eur J Pharmacol, 1994,254 (3): 303-306.
    113. Wiesenfeld-Hallin Z, Villar MJ, Hokfelt T. The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res, 1989,486 (2): 205-213.
    1.Aantaa R,Marjamaki A,Scheinin M.Molecular pharmacology of a 2- adrenoceptor subtypes.Ann Med,1995,27(4):439-449.
    2.Bylund DB.Pharmacological characteristics of alpha-2 adrenergic subtypes.Ann N Y Acad Sci,1995,763:1-7.
    3.Summers RJ,McMartin LR.1993.Adrenoceptors and their second messenger systems.J Neurochem,1993,60(1):10-23.
    4.Sanders RD,Brian D,Maze M.G-protein-coupled receptors.Handb Exp Pharmacol,2008,(182):93-117.
    5.Nicholson R,Dixon AK,Spanswick D,Lee K.Noradrenergic receptor mRNA expression in adult rat superficial,dorsal horn and dorsal root ganglion neurons.Neurosci Lett,2005,380(3):316-321.
    6.Xie J,Lee YH,Wang C,Chung JM,Chung K.Differential expression of α_1-adrenoceptor subtype mRNAs in the dorsal root ganglion after spinal nerve ligation.Mol Brain Res,2001,93(2):164-172.
    7.Gold MS,Dastmalchi S,Levine JD.Alpha 2-adrenergic receptor subtypes in rat dorsal root and superior cervical ganglion neurons.Pain,1997,69(1-2):179-190.
    8.Shi TS,Winzer-Serhan U,Leslie F,Hokfelt T.Distribution and regulation of alpha(2)-adrenoceptors in rat dorsal root ganglia.Pain,2000,84(2-3):319-330.
    9.Ali Z,Raja SN,Wesselmann U,Fuchs PN,Meyer RA,Campbell JN. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain, 2000, 88 (2): 161-168.
    10. Chabal C, Jacobson L, Russell LC, Burchiel KJ. Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain, 1992,49 (1): 9-12.
    11. Choi B, Rowbotham MC. Effect of adrenergic receptor activation on post-herpetic neuralgia pain and sensory disturbances. Pain, 1997, 69 (1-2): 55-63.
    12. Davis KD, Treede RD, Raja SN, Meyer RA, Campbell JN. Topical application of clonidine relieves hyperalgesia in patients with sympathetically maintained pain. Pain, 1991,47 (3): 309-317.
    13. Drummond PD. Noradrenaline increases hyperalgesia to heat in skin sensitized by capsaicin. Pain, 1995, 60 (3): 311-315.
    14. Tsigos C, Reed P, Weinkove C, White A, Young RJ. Plasma norepinephrine in sensory diabetic polyneuropathy. Diabetes Care, 1993, 16 (5): 722-727.
    15. Kinnman E, Nygards EB, Hansson P. Peripheral alpha-adrenoceptors are involved in the development of capsaicin induced ongoing and stimulus evoked pain in humans. Pain, 1997, 69 (1-2): 79-85.
    16. Liu M, Max MB, Parada S, Rowan JS, Bennett GJ. The sympathetic nervous system contributes to cpasaicin-evoked mechanical allodynia but not pinprick hyperalgesia in humans. J Neurosci, 1996,16 (22): 7331-7335.
    17. Schattschneider J, Uphoff J, Binder A, Wasner G, Baron R. No adrenergic sensitization of afferent neurons in painful sensory polyneuropathy. J Neurol, 2006, 253 (3): 280-286.
    18. Birklein F, Riedl B, Claus D, Neundorfer B, Handwerker HO. Cutaneous norepinephrine application in complex regional pain syndrome. Eur J Pain, 1997, 1 (2): 123-132.
    19. Baron R, Wasner G, Borgstedt R, Hastedt E, Schulte H, Binder A, Kopper F, Rowbotham M, Levine JD, Fields HL. Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation. Neurology, 1999, 52 (5): 923-932.
    20. Schattschneider J, Binder A, Siebrecht D, Wasner G, Baron R. Complex regional pain syndromes: the influence of cutaneous and deep somatic sympathetic innervation on pain. Clin J Pain, 2006,22 (3): 240-244.
    21. Mailis-Gagnon A, Bennett GJ. Abnormal Contralateral pain responses from an intradermal injection of phenylephrine in a subset of patients with complex regional pain syndrome (CRPS). Pain, 2004, 111 (3): 378-384.
    22. Baik E, Chung JM, Chung K. Peripheral norepinephrine exacerbates neuritis-induced hyperalgesia. J Pain, 2003,4 (4): 212-221.
    23. Banik RK, Sato J, Yajima H, Mizumura K. Differences between the Lewis and Sprague-Dawley rats in chronic inflammation induced norepinephrine sensitivity of cutaneous C-fiber nociceptors. Neurosci Lett, 2001,299 (1-2): 21-24.
    24. Banik RK, Sato J, Giron R, Yajima H, Mizumura K. Interactions of bradykinin and norepinephrine on rat cutaneous nociceptors in both normal and inlamed conditions in vitro. Neurosci Res, 2004,49 (4): 421-425.
    25. Sato J, Suzuki S, Iseki T, Kumazawa T. Adrenergic excitation of cutaneous nociceptors in chronically inflamed rats. Neurosci Lett, 1993, 164 (1-2): 225-228.
    26. Hamalainen MM, Pertovaara A. The antinociceptive action of an alpha 2-adrenoceptor agonist in the spinal dorsal horn is due to a direct spinal action and not to activation of descending inhibition. Brain Res Bull, 1995, 37 (6): 581-587.
    27. Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science, 1991, 251 (5001): 1608-1610.
    28. Devor M, Janig W. Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett, 1981, 24 (1): 43-47.
    29. Devor M, Janig W, Michaelis M. Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. J Neurophysiol, 1994, 71(1): 38-47.
    30. Korenman EM, Devor M. Ectopic adrenergic sensitivity in damaged peripheral nerve axons in the rat. Exp Neurol, 1981, 72 (1): 63-81.
    31. Scadding JW. Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol, 1981, 73 (2): 345-364.
    32. Wall PD, Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp Neurol, 1974, 43 (3): 580-593.
    33. Zhang C, Yang SW, Guo YG, Qiao JT, Dafny N. Locus coeruleus stimulation modulates the nociceptive response in parafascicular neurons: an analysis of descending and ascending pathways. Brain Res Bull, 1997,42 (4): 273-278.
    34. Bossut DF, Perl ER. Effects of nerve injury on sympathetic excitation of A-delta mechanical nociceptors. J Neurophysiol, 1995,73 (4): 1721-1723.
    35. Leem JW, Gwak YS, Nam TS, Paik KS. Involvement of alpha 2- adrenoceptors in mediating sympathetic excitation of injured dorsal root ganglion neurons in rats with spinal nerve ligation. Neurosci Lett, 1997, 234(1): 39-42.
    36. Petersen M, Zhang J, Zhang JM, LaMotte RH. Abnormal spontaneous activity and response to norepinephrine in dissociated dorsal root ganglion cells after chronic nerve constriction. Pain, 1996, 67 (2-3): 391-397.
    37. Ren Y, Zou X, Fang L, Lin Q. Sympathetic modulation of activity in A delta-and C-primary nociceptive afferents after intradermal injection of capsaicin in rats. J Neurophysiol, 2005, 93 (1): 365-377.
    38. Xing JL, Hu SJ, Jian Z, Duan JH. Subthreshold membrane potential oscillation mediates the excitatory effect of norepinephrine in chronically compressed dorsal root ganglion neurons in the rat. Pain, 2003, 105 (1-2): 177-183.
    39. Hu SJ, Zhu J. Sympathetic facilitation of sustained discharges of polymodal nociceptors. Pain, 1989, 38 (1): 85-90.
    40. Roberts WJ, Elardo SM. Sympathetic activation of A delta nociceptors. Somatosens Res, 1985,3 (1): 33-44.
    41. Shea VK, Perl ER. Failure of sympathetic stimulation to affect responsiveness of rabbit polymodal nociceptors. J Neurophysiol, 1985,54 (3): 513-519.
    42. Sato J, Yajima H, Banik RK, Kumazawa T, Mizumura K. Norepinephrine reduces heat responses of cutaneous C-fiber nociceptors in Sprague-Dawley rats in vitro. Neurosci Lett, 2005, 378 (2): 111-116.
    43. Chung K, Kim HJ, Na HS, Park MJ, Chung JM. Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neurosci Lett, 1993, 162 (1-2): 85-88.
    44. Garcia-Poblete E, Fernandez-Garcia H, Moro-Rodriguez E, Catala-Rodriguez M, Rico-Morales ML, Garcia-Gomez-de-las-Heras S, Palomar-Gallego MA. Sympathetic sprouting in dorsal root ganglia (DRG): a recent histological finding? Histol Histopathol, 2003, 18 (2): 575-586.
    45. Honma Y, Yamakage M, Ninomiya T. Effects of adrenergic stimulus on the activities of Ca~(2+) and K~+ channels of dorsal root ganglion neurons in a neuropathic pain model. Brain Res, 1999, 832 (1-2): 195-206.
    46. McLachlan EM, Janig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature, 1993, 363 (6429): 543-546.
    47. Ramer MS, Bisby MA. Rapid sprouting of sympathetic axons in dorsal root ganglia of rats with a chronic constriction injury. Pain, 1997, 70 (2-3): 237-244.
    48. Grelik C, Bennett GJ, Ribeiro-da-Silva A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci, 2005, 21 (9): 2475-2487.
    49. Ruocco I, Cuello AC, Ribeiro-da-Silva A. Peripheral nerve injury leads to the establishment of a novel pattern of sympathetic fiber innervation in the rat skin. J Comp Neurol, 2000,422 (2): 287-296.
    50. Yen LD, Bennett GJ, Ribeiro-da-Silva A. Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. J Comp Neurol, 2006, 495 (6): 679-690.
    51. Ramer MS, Bisby MA. Normal and injury-induced sympathetic innervation of rat dorsal root ganglia increases with age. J Comp Neurol, 1998, 394 (1): 38-47.
    52. Ramer MS, Bisby MA. Differences in sympathetic innervation of mouse DRG following proximal or distal nerve lesions. Exp Neurol, 1998, 152 (2): 197-207.
    53. Ramer MS, Bisby MA. Sympathetic axons surround neuropeptide negative axotomized sensory neurons. Neuroreport, 1998, 9 (13): 3109-3113.
    54. Zoli M, Agnati LF. Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol, 1996, 49 (4): 363-380.
    55. Zhang JM, Li H, Munir MA. Decreasing sympathetic sprouting in pathologic sensory ganglia: a new mechanism for treating neuropathic pain using lidocaine. Pain, 2004, 109 (1-2): 143-149.
    56. Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain, 1998, 78 (2): 115-121.
    57. Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol, 1999, 515 (2): 533-542.
    58. Cho HJ, Kim DS, Lee NH, Kim JK, Lee KM, Han KS, Kang YN, Kim KJ. Changes in the alpha 2-adrenergic receptor subtypes gene expression in rat dorsal ganglion in an experimental model of neuropathic pain. NeuroReport, 1997, 8 (14): 3119-3122.
    59. Lavand'homme PM, Ma W, De Kock M, Eisenach JC. Perineural alpha 2A-adrenoceptor inhibits spinal cord neuroplasticity and tactile allodynia after nerve injury. Anesthesiology, 2002,97 (4): 972-980.
    60. Maruo K, Yamamoto H, Yamamoto S, Nagata T, Fujikawa H, Kanno T, Yaguchi T, Maruo S, Yoshiya S, Nishizaki T. Modulation of P2X receptors via adrenergic pathways in rat dorsal root ganglion neurons after sciatic nerve injury. Pain, 2006 120 (1-2): 106-112.
    61. Ma W, Zhang Y, Bantel C, Eisenach JC. Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha 2C-adrenoceptor co-expression and functional inhibition by clonidine. Pain, 2005, 113(3): 386-394.
    62. Lin Q, Zou X, Ren Y, Wang J, Fang L,Willis WD. Involvement of peripheral neuropeptide Y receptors in sympathetic modulation of acute cutaneous flare induced by intradermal capsaicin. Neuroscience, 2004, 123 (2): 337-347.
    63. Saegusa H., Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca~(2+) channel. EMBO J. 2001, 20 (10): 2349-2356.
    64. Abdulla FA, Smith PA. Ectopic alpha2-adrenoceptors couple to N-type Ca~(2+) channels in axotomized rat sensory neurons. J Neurosci. 1997, 17 (2), 1633-1641.
    65. Amir R, Michaelis M, Devor M. Membrane oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci, 1999, 19 (19): 8589-8596.
    66. Costa MR, Catterall WA. Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. J Biol Chem, 1984, 259 (13): 8210-8218.
    67. Khasar SG, McCarter G, Levine JD. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurosci. 1999, 81 (3): 1104-1112.
    68. Chen Y, Michaelis M, Janig W, Devor M. Adrenoreceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J Neurophysiol, 1996 , 76 (6): 3721-3730.
    69. O'Halloran KD, Perl ER. Effects of partial nerve injury on the responses of C-fiber polymodal nociceptors to adrenergic agonists, 1997, 759 (2): 233-240.
    70. Khasar SG, Green PG, Chou B, Levine JD. Peripheral nociceptive effects of alpha 2-adrenergic receptor agonists in the rat. Neuroscience, 1995, 66 (2): 427-432.
    71. Lee DH, Liu X, Kim HT, Chung K, Chung JM. Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. J Neurophysiol, 1999, 81 (5), 2226-2233.
    72. Tracey DJ, Cunningham JE, Romm MA. Peripheral hyperalgesia in experimental neuropathy: mediation by alpha 2-adrenoreceptors on post-ganglionic sympathetic terminals. Pain, 1995, 60 (3): 317-327.
    73. Moon DE, Lee DH, Han HC, Xie J, Coggeshall RE, Chung JM. Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic pain model. Pain, 1999, 80 (3): 589-595.
    74. Kingery WS, Guo TZ, Davies MF, Limbird L, Maze M. The alpha (2A) adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain, 2000, 85 (3): 345-358.
    75. Dogrul A, Uzbay IT. Topical clonidine antinociception. Pain, 2004, 111 (3): 385-91.
    76. Lavand'homme PM, Ma W, De Kock M, Eisenach JC. Perineural alpha 2A-adrenoceptor inhibits spinal cord neuroplasticity and tactile allodynia after nerve injury. Anesthesiology, 2002, 97 (4): 972-980.
    77. Nakamura M, Ferreira SH. Peripheral analgesic action of clonidine: mediation by release of endogenous enkephalin-like substances, 1988, 146 (2-3): 223-228.
    78. Wei H, Jyvasjarvi E, Niissalo S, Hukkanen M, Waris E, Konttinen YT, Pertovaara A. The influence of chemical sympathectomy on pain responsivity and alpha 2-adrenergic antinociception in neuropathic animals. Neuroscience, 2002,114 (3): 655-668.
    79. Gentili M, Juhel A, Bonnet F. Peripheral analgesic effect of intra-articular clonidine. Pain, 1996, 64 (3): 593-596.
    80. King EW, Audette K, Amman GA, Nguyen HO, Sluka KA, Fairbanks CA. Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain, 115 (3): 364-373.
    81. Binder W, Mousa SA, Sitte N, Kaiser M, Stein C, Schafer M. Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. Eur J Neurosci, 2004, 20 (1): 92-100.
    82. Romero-Sandoval EA, McCall C, Eisenach JC. Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain. J Neurosci, 2005, 25 (39): 8988-8994.
    83. Kress M, Fickenscher H. Infection by human varicella-zoster virus confers norepinephrine sensitivity to sensory neurons from rat dorsal root ganglia. FASEB J, 2001,15 (6): 1037-1043.
    84. Sasaki A, Takasaki I, Andoh T, Nojima H, Shiraki K, Kuraishi Y. Roles of alpha-adrenoceptors and sympathetic nerve in acute herpetic pain induced by herpes simplex virus inoculation in mice. J Pharmacol Sci, 2003, 92 (4): 329-336.
    85. Hong Y, Abbott FV. Contribution of peripheral alpha 1A-adrenoceptors to pain induced by formalin or by a-methyl-5-hydroxytryptamine plus noradrenaline. Eur J Pharmacol, 1996, 301 (1-4): 41-48.
    86. Liu B, Eisenach JC. Hyperexcitability of axotomized and neighboring unaxotomized sensory neurons is reduced days after perineural clonidine at the site of injury. J Neurophysiol, 2005,94 (5): 3159-3167.
    87. Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, Meyer RA. Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol, 1999, 81 (2): 455-466.
    88. Yagi J, Sumino R. Inhibition of a hyperpolarization-activated current by clonidine in rat dorsal root ganglion neurons. J Neurophysiol, 1998, 80 (3): 1094-1104.
    89. Pluteanu F, Ristoiu V, Flonta ML, Reid G. Alpha (1)-adrenoceptor-mediated depolarization and beta-mediated hyperpolarization in cultured dorsal root ganglion neurones. Neurosci Lett, 2002, 329 (3): 277-280.
    90. Eisenach JC, Zhang Y, Duflo F. Alpha2-adrenoceptors inhibit the intracellular Ca~(2+) response to electrical stimulation in normal and injured sensory neurons, with increased inhibition of Calcitonin gene-related peptide expressing neurons after injury. Neuroscience, 2005, 131 (1): 189-197.
    91. Wang J, Ren Y, Zou X, Fang L, Willis WD, Lin Q. Sympathetic influence on capsaicin-evoked enhancement of dorsal root reflexes in rats. J Neurophysiol, 2004,92 (4): 2017-2026.
    92. Rodrigues LL, Oliveira MC, Pelegrini-da-Silva A, de Arruda Veiga MC, Parada CA, Tambeli CH. Peripheral sympathetic component of the temporomandibular joint inflammatory pain in rats. J Pain, 2006, 7 (12): 929-936.
    93. Trevisani M, Campi B, Gatti R, Andre E, Materazzi S, Nicoletti P, Gazzieri D, Geppetti P. The influence of alpha (1)-adrenoreceptors on neuropeptide release from primary sensory neurons of the lower urinary tract. Eur Urol, 2007, 52 (3): 901-908.
    94. Knaus AE, Muthig V, Schickinger S, Moura E, Beetz N, Gilsbach R, Hein L. alpha (2)-Adrenoceptor subtypes-Unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int, 2007, 51 (5): 277-281.
    95. Koo ST, Lim KS, Chung K, Ju H, Chung JM. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain, 2007, 135 (1-2): 11-19.
    96. Hayashida K, DeGoes S, Curry R, Eisenach JC. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology, 2007, 106 (3): 557-562.
    97. Romero-Sandoval A, Bynum T, Eisenach JC. Analgesia induced by perineural clonidine is enhanced in persistent neuritis. Neuroreport, 2007,18 (1): 67-71.
    98. Karadas B, Kaya T, Gulturk S, Parlak A, Gursoy S, Cetin A, Bagcivan I. Additive interaction of intraperitoneal dexmedetomidine and topical nimesulide, celecoxib, and DFU for antinociception. Eur J Pharmacol, 2007, 556 (1-3): 62-68.
    99. Ma W, Eisenach JC. Neuronal nitric oxide synthase is upregulated in a subset of primary sensory afferents after nerve injury which are necessary for analgesia from alpha2-adrenoceptor stimulation. Brain Res, 2007, 1127 (1): 52-58.
    100. Xiao C, Zhou C, Atlas G, Delphin E, Ye JH. Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta (1)-adrenergic receptors-A possible mechanism underlying labetalol-induced analgesia. Brain Res, 2008, 1198: 34-43.
    101. Gil DW, Cheevers CV, Donello JE. Transient allodynia pain models in mice for early assessment of analgesic activity. Br J Pharmacol, 2008, 153 (4): 769-774.
    102. Koo ST, Lim KS, Chung K, Ju H, Chung JM. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain, 2008,135 (1-2): 11-19.
    103. Nag S, Mokha SS. Activation of alpha2-adrenoceptors in the trigeminal region produces sex-specific modulation of nociception in the rat. Neuroscience, 2006, 142 (4): 1255-1262.
    104. Hama A, Sagen J. Altered antinociceptive efficacy of tramadol over time in rats with painful peripheral neuropathy. Eur J Pharmacol, 2007, 559 (1): 32-37.
    105. Baron R. Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain, 2000, 16 (2 Suppl): S12-20.
    106. Michaelis M, Devor M, Janig W. Sympathetic modulation of activity in rat dorsal root ganglion neurons changes over time following peripheral nerve injury. J Neurophysiol. 1996, 76 (2): 753-763.
    107. Koltzenburg M, Kress M, Reeh P. The nociceptor sensitization by bradykinin does not depend on sympathetic neurons. Neuroscience, 1992, 46 (2): 465-473.
    108. Rubin G, Kaspi T, Rappaport ZH, Cohen S, Ravikovitch M, Lomazov P, Devor M. Adrenosensitivity of injured afferent neurons does not require the presence of postganglionic sympathetic terminals. Pain, 1997, 72 (1-2): 183-191.
    109. Gold MS, White DM, Ahlgren SC, Guo M, Levine JD. Catecholamine-induced mechanical sensitization of cutaneous nociceptors in the rat. Neurosci Lett, 1994,175 (1-2): 166-170.
    110. Levine JD, Taiwo YO, Collins SD, Tarn JK. Noradrenaline hyperalgesia is mediated through interaction with sympathetic postganglionic neurone terminals rather than activation of primary afferent nociceptors. Nature, 1986, 323 (6084): 158-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700