电动多叶光栅放射治疗系统在临床中若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为吴阶平医学基金会临床科研资助基金课题,主要研究调强适形放射治疗及电动多叶光栅质量控制,并以此为背景结合临床应用,对调强适形放射治疗系统中临床应用方面的一些关键技术进行研究,进一步完善放射治疗系统,改进临床应用中电动多叶光栅不完善的电机驱动问题。从而完善整个调强适形放射治疗系统,解决临床实际问题。主要研究内容如下:
     医学图像分割问题是调强适形放射治疗三维重建的基础,图像分割好坏直接影响放射治疗照射的精度。本文以自动图像分割为主研究医学图像分割问题,提出一种自适应能量函数的马尔可夫随机场模型,在能量函数最小化过程(即像素标记场的更新过程)中动态调整条件概率模型能量函数的权值,进而获得观测场的全局最优的参数。在此基础上,利用形态学算子对肿瘤图像分割结果进行形态滤波,经过开运算和闭运算去掉空洞和孤立的噪声点,在肿瘤图像分割结果的基础上引入Canny边缘提取算子对区域进行边缘化,提取出封闭的边缘。
     医学图像三维重建是放射治疗系统的关键,而体数据的构造是三维重建的前提,本文提出了一种基于矢量距离变换的符号距离函数计算方法,首先定义符号距离函数,然后提出符号函数的构造方法,提高符号距离场计算的速度和效率,这种方法不但精度高,鲁棒性强,还加快了体数据场的构造。在体数据构造的基础上,利用MC(Marching Cubes)方法和MT(Marching Tetrahedral)方法对体数据进行三维重构实现可视化。研究了MT算法解决MC算法在实际应用中存在的二义性问题的方法。
     本文分别对规则野剂量模型、不规则野剂量模型进行了分析和总结,介绍了几种经典剂量计算方法蒙特卡罗法、Clarkson散射求和方法,研究了Day氏函数法,通过对标准散射剂量数据进行扇形积分求等效方野的Day氏函数法,计算不规则野的剂量分布,达到较高的精度。
     电动多叶光栅是调强适形放射治疗系统的关键技术和执行部件,探讨了电动多叶光栅适形调强的实现方式,对电动多叶光栅静态调强技术研究了其剂量分布的分级方法,提出了各射野形状的确定思路和方法;对电动多叶光栅动态叶片调强技术研究了调强原理,提出了满足电动多叶光栅的叶片运动模型及其控制策略,对叶片的运动规律及有限加速度问题进行了探讨,针对电动多叶光栅中直流伺服电动机、步进电机故障多的缺点,提出了用无刷直流电动机作为控制部件,进行临床实验解决了临床实际问题。
     最后,对调强适形放射治疗系统中图像分割、图像三维重建等关键技术研究进行了仿真实验,对无刷直流电动机作为电动多叶光栅控制部件进行临床应用验证,验证了以上的研究工作是有效的、可行的。
The project is aided financially by Wu Jieping Medical Foundation for Clinical Research. Intensity Modulated Radiation Therapy (IMRT) and the quality control of multi leaf collimator (MLC) are chiefly reaserched in this thesis. Based on that, some key techniques on clinical application of IMRT are lucubrated, the radiotherapy system is further perfected, and the matter about imperfect motor drive of MLC in clinical application is improved. The chief goal of this project is to perfect IMRT system and to solve the questions of clinical applications. The main contents are as follows.
     The problem about segmentation of medical images is the base of three-dimension reconstruction during IMRT, since the irradiation precision during radiotherapy is directly affected by the quality of image segmentation. In this dissertation, the research on medical image segmentation is carried out main aiming at automatic image segmentation, a MRF (Markov Random Field) model about self-reacting energy function is proposed, during the energy function is minimizated, the weighting factors of the energy function in the conditional probability model are dynamically adjusted, and the global optimization parameters about the observation field are obtained. Based on that, the segmented results of tumor images are filtered with morphology operator, some holes and isolated noise elements are eliminated by opening and closing operations. Finally, on the base of the segmented results of tumor images, Canny edge extraction operator is used to margin the regions and extract the closed edge.
     Three-dimension reconstruction of medical images is the key of radiation therapy system, and construction of volume data is the prerequisite of three-dimension reconstruction. In this dissertation, a method based on vector distance transformation is proposed to calculate the symbol distance function. By this method, which firstly define a symbol distance function and then put forward the construction method of the symbol function, the speed and efficiency of calculating symbol distance field are raised greatly. This method is not only precise and highly robust, but promotes the construction of volume data field. Marching cubes (MC) and marching tetrahedral (MT) algorithm are used to complete the three-dimension reconstruction of volume data and realize visualization based on the construction of volume data field. In the project, MT algorithm is probed into, and the practical application matter of MC algorithm is solved.
     The dose models of regular and irregula fields are analyzed and summarized in this thesis. A few traditional dose algorithms such as Monte Carlo method and Clarkson's scatter summation method are introduced, Day's function method is studied, by which the equivalent square field is obtained through sector integration to the standard scatter dose data and the dose distribution in irregular field is exactly calculated.
     The realizing ways of intensity modulation by MLC which is an important executive part of IMRT are discussed. Aiming at static intensity modulation techniques by MLC, the grade scale of dose distribution is also discussed, the methods and train of thoughts which are used to define the shapes of different irradiation fields are proposed; For dynamic leaf intensity modulation by MLC, the intensity modulation theory is studied, leaves moving model and strategy are put forward, leaves moving regular and the matter about the acceleration limit of leaves are discussed. Aiming at the weakness that the DC servo motors and step motors of MLC often have a breakdown, the brushless DC motors which have no carborn brush are proposed as control parts of MLC. By clinical experiment, the practical application questions of MLC in clinic are solved.
     Finally, the emulation experiments for the key techniques such as image segmentation and 3D reconstruction are carried out, the efficiency of brushless DC motors used as the control parts of MLC is put to the proof by clinical application, and the reaserches are verified to be effective and practicable.
引文
[1]Suit H D.Local control and patient survival.Int J Radiat Oncol Biol Phys,1992,(23):630-660.
    [2]Fuks Z,Leibel S A,Wallner K E,et al.The effect of local control on metastatic dissemination in carcinoma of the prostate:Long-term results in patient treated with 1-125 implantation.Int J Radiat Oncol Biol Phys,1991,(21):548-556.
    [3]Leibel S A,Scott C B,Mohiuddin M,et al.The effect of local-region control o distant metastatic in carcinoma of the head and neck:result of an analysis from the RTOG head and neck database.Int J Radiat Oncol Biol Phys,1991,(21):549-556.
    [4]Commission of the European communities.Medical Division:European Strategy for Canner Research(ⅫF-6/nv/91001P and 91002P),1995:1-28.
    [5]Tubiana M.The role of local treatment in the cure of cancer.Eur 5 Cancer,1992,28A:2061-2069.
    [6]王迎选,王所亭.现代立体放射治疗学.北京:人民军医出版社,1999.
    [7]谷铣之.肿瘤放射治疗学.北京:北京医科大学/中国协和医科大学联合出版社,1993.
    [8]包尚联,张怀岑,黄斐增.肿瘤放疗物理和医学物理师,物理,2004,33(8):48-51.
    [9]于金明,殷蔚伯,李宝生.肿瘤精确放射治疗学,济南:山东科学技术出版社,2004.
    [10]胡逸民.肿瘤放射物理学.北京:厦子能出版社.1999.
    [11]Takahashi S.Conformation radiotherapy:rotation techniques as applied to radiography and radiotherapy of canner.Acta Radiol Suppl,1965,242:1-42.
    [12]Wright K A,Promos B S,Trump J G,et al.Field shaping and selective protection in megavoltage therapy.Radiology,1959,76:101.
    [13]Proimos B S.Synchronous field shaping in rotational megavoltage therapy.Radiology.1960,74:753-757.
    [14]Proimos B S.Beam-shapers oriented by gravity in rotational therapy.Radiology.1963,87:928-932.
    [15]Trump J G,Wright K A,Smedal M J,et al.Synchronous field shaping and protection in 2-million-volt rotation therapy.Radiology,1961,(76):275.
    [16]Green A.Tracking cobalt project.Nature,1965,207:1311.
    [17]Bjarngard B E,Kijewski P K,Pashby C.Description of a computer controlled machine.Int J Radiat Oncol Biol Phys.1977,(2):142.
    [18]Chin L M,Kijewski P K,Svensson G K,et al.A computer-controlled radiation therapy machine for pelvic and para-aortic nodal areas.Int J Radiat Oncol Biol Phys,1981,(7):61-70.
    [19] Chin L M, Kijewski P K, Svensson G K, et al. Dose optimization with computer controlled gantry rotation, collimation motion and dose-rate variation. Int J Radiat Oncol Biol Phys, 1983, (9): 723-729.
    [20] Brahme A. Design principles and clinical possibilities with a new generation of radiation therapy equipment: a review. Acta Oncol, 1987, (26): 403-412.
    [21] Brahme A. Optimization of stationary and moving beam radiation techniques. Radiother Oncol, 1988,(12): 129-196.
    [22] Boyer A L, Ochran T G, Nyerick C E, et al. Clinical dosimetry for implementation of a mutileaf collimator. Med Phys, 1992, (19): 1255-1261.
    [23] Carol MP. Integrated 3D conformal planning multivane intensity modulating delivery system for radiotherapy. In Purdy JA.(ed): 3D Radiation Treatment Planning and Conformal Therapy. Madison, Wissconsin: Medical Physics Publishing. 1995:435-445.
    [24] Woo S Y, Sanders M, Grant W, et al. Dose the "Peakcock" have anything to do with radiotherapy? Int J Radiat Oncol Biol Phys, 1994, (29): 213-214.
    [25] Lin C C, Burman C, Chui C S, et al. Conformation radiation treatment of prostate cancer using inverse-planned intensity modulated photon beams produced with dynamic multileaf collimator. Int J Radiat Oncol Biol Phys, 1996, (35): 721-730.
    
    [26] 胡逸民.肿瘤放射治疗计划设计—治疗计划设计步骤.中华放射肿瘤学杂志.1981,3(4):305-312.
    
    [27] Galuin JM, Sims CS. The use of digitally reconstructed radiographs for 3D treatment planning and CT-simulation. Int J Radiat Oncol Biol Phys 27 (suppl 1): 141; 1993.
    [28] Kooy H M. Van Herk M, Barnes PD. et al. Image fusion for stereotactic radiotherapy and radiosurgery treatment planning. Int J Radiat Oncol Biol Phys, 1994, (28): 1229-1234.
    [29] Haken RKT .Kessler M L, Martel M K,et al. Use of Dose-volume hestograms and tumor control and normal-tissue complication probabilities for clinical planning. In :Purdy JA(ed).Syllabus: A categorical course in physics three-dimensional-radiation therapy treatment planning. 1994: 26-60.
    [30] Bortfeld T R, Kahler D L, Waldron T J, et al. X-ray field compensation with multileaf collimator. Int J Radiat Oncol Biol Phys, 1994, (28): 723-730.
    
    [31] Boyer A L. Use of MEC for intensity modulation. Med Phys, 1994, (21): 1007.
    [32] Boyer A L, Bortfeld TR, Kahler DL, et al. MEC modulation of X-ray beams in discrete steps. the use of computers in radiation therapy. Proc. 11th Conf. Housell AR (eds), Manchester, ICCR, 1994: 178-179.
    [33] Gavin J M and Han K. A comparison of segmentation techniques for beam modulation. Med Phys, 1994, (21): 921.
    [34] Convey D J and Rosenbloom M E. The generation of intensity modulated fields for conformal radiotherapy by dinamic collimation. Phys med Biol, 1992, (37): 1359-1374.
    
    [35] Svensson R, Kallman P and Brahme A. Analytical solution for the dynamic control of multileaf collimators.Phy Med Biol,1994,39:37-61.
    [36]Spiorus S V and Chui C S.Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators.Med Phys,1994,(21):1031-1041.
    [37]Stein J,Bortfield T,Dorschel B,et al.Dynamic x-ray compensation for conformal radiotherapy by means of multileaf collimation.Radiother Oncol,1994,(32):163-173.
    [38]Yu C X.Intensity modulation arc therapy with dynamic mutileaf collimation:an alternative to tomotherapy.Phy Med Biol,1995,(40):1435-1449.
    [39]Yu C X.Intensity modulation arc therapy:a new method for delivering conform radiation therapy.In sternick ES(ed),The Theory&Practice of Intensity Modulated radiation Therapy,Chapter&.Advanced Medical publishing,1997.
    [40]章毓晋.图像分割(图像图形学从书)北京:科学出版社,2001.
    [41]J.C.Bezdek.Pattern recognition with fuzzy objective function algorithms.New York:Kluwer Academic Publishing,1981.
    [42]汪家旺,王德杭,于立燕等.基于FCM肺结节检测研究.中国医学物理学杂志,2006,23(3):183-184.
    [43]张枸,邓辉文.基于减法聚类与聚类有效性评判的FCM聚类.重庆工学院学报,2006,20(5):59-62.
    [44]张磊.朱斌,南立军等.基于模糊均值聚类算法的图像分割.装甲兵工程学院学报,2006,20(4):68-70.
    [45]S.Z.Li.Markov random field modeling in computer vision.New York:Springer-Verlag,2001.
    [46]Grimson,W.E.L.From image to surface:a computational study of humam early visual system.Cambridge,MA:MIT Press,1981.
    [47]Geman.S.and Geman,D.Stochastic relaxation,Gibbs distribution and the bayesian restoration of images.IEEE Trans on PAMI,1984,6(6):721-741.
    [48]Silverman,J.F.and D.B.Cooper.Bayesian clustering for unsuptervised estimation of surface and texture models.IEEE Trans on PAMI,1988,(10):482-295.
    [49]Li,S.Z.Invariant surface segmentation through energy minimization with discontinuities.Int.Journal of Computer Vision,1990,5(2):161-194.
    [50]詹劲峰,戚飞虎,王海龙.基于时空马尔可夫随机场的运动目标分割技术.通信学报,2000,21(11):63-68.
    [51]张翠,郦苏丹.王正志.基于MRF场的SAR图像分割方法.遥感技术与应用,2001,16(1):66-68.
    [52]汪西莉,焦李成.基于多尺度马尔可夫随机场的图像分割.计算机科学,2003,30(7):174-176.
    [53]汪西莉,刘芳,焦李成.一种分层马尔可夫图像模型及其推导算法.软件学报,2003,14(9):1558-1563.
    [54]汪西莉,刘芳,焦李成.结合边缘信息的多尺度MRF图像分割.中国图像图形学报,2004, 9(6):660-665.
    [55]H.Deng and D.A.Clausi.Unsupervised segmentation of synthetic aperture radar sea ice imagery uasing a novel markov random field model.IEEE Trans.on Geosc.and Remote Sensing,43(3):528-538.
    [56]H.Deng and D.A.Clausi.Unsupervised image segmentation using a simple MRF model with a new implementation scheme.Proc.17th Int.Conf.on Pattern Recognition,vol.2,2004:691-694.
    [57]J.Serra.Image analysis and mathematical morphology.Academic Press,1982.
    [58]Canny J.A computational approach to edge detection.IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(6):124-127.
    [59]M.W.Jones,M.Chen.A new approach to the construction of surfaces from contour data.Computer Graphics Forum.1994,13(3):75-84.
    [60]R.Malladi,J.A.Sethian,B.C.Vemuri.Shape modeling with front propagation:a level set approach.IEEE Trans on Pattern Analysis and Machine Intelligence.1995,17(2):158-175.
    [61]Y.R.Tsai.Rapid and accurate computation of the distance function using grids.Technical report,Department of Mathematics,University of Califomia,Los Angeles,2000.
    [62]A.Rosenfeld,J.L.Pfaltz.Sequential operations in digital picture processing.J.ACM,1966,13(4):471-494.
    [63]Borgefors.Distance transformations in arbitrary dimensions.Comput.Vision Graph.Image Process.1984,27(3):321-345.
    [64]Borgefors.Distance transformations in digital images.Comput.Vision Graph.Image Process.1986,34(3):344-371.
    [65]P.E.Danielsson.Euclidean distance mapping.Comput.Graph.Image Process.1980,14:227-248
    [66]E.Lorensen,H.E.Cline.Marching cubes:A high resolution 3D surface reconstruction algorithm.computer graphics,1987,21(4):163-169.
    [67]Doi,A.Koide.An efficient method of triangulating equi-valued surfaces by using tetrahedral cells.IEICE Transactions.1991,E74(1):214-224.
    [68]M.Durst.Letters:additional reference to marching cubes.Computer Graphics.1988,22(2):72-73
    [69]A.Gueziec,R.Hummel.Exploiting triangulated surface extraction using tetrahedral decomposition.IEEE Trans.Vis.Comp.Graph.,1995,1(4):328-342.
    [70]G.M.Nielson,B.Hamann.The asymptotic decider:resolving the ambiguity in marching cubes.IEEE Proceedings of Visualization'91,1991:83-91.
    [71]Giertsen C.Volume visualization of sparse irregular meshes.IEEE Trans.on Computer Graphics and Application,1992,12(2):40-48.
    [72]唐泽胜.三维数据场可视化.北京:清华大学出版社,1999.
    [73]周勇,唐泽胜.适应于体绘制技术的3维有限元网格剖分.计算机学报,1995,18(5):339-350
    [74]Cunningham J.R.,Shrivastava P.N.Program IRREG-calculation of dose from irregularly shaped,radiation beams. Prog. Biomed., 1972, (2): 192.
    [75] Steidley K. D., Gamper C. A Clarson's sector integration routine for personal computer. Med. Phys., 1994, 21(1): 61-64.
    [76] M. J. Day, E. G. A. Aird. The equivalent field method for dose determination in rectangular fields. Br. J. Radiol. Suppl., 1983, (17): 105-114.
    [77] Morris T., Bengt E. B. Equivalent squares of irregular photon fields. Med. Phys., 1992, 20(4): 1229-1232.
    [78] Lind BK and Brahme A. Photon field quantities and units for kernel based radiation therapy planning and treatment optimization. Phys Med Biol, 1992, (37): 891-909.
    [79] Holmes T and Mackie TR. A filtered back-projection dose calculation method useful for inverse treatment planning. Med Phys, 1993, (21): 303-313.
    [80] Lind BK and Brahme A. Properties of an algorithm for solving the inverse problem in radiation therapy. Inverse Problem, 1990, (6): 415-426.
    
    [81] 谷铣之,殷蔚伯,刘泰福等.肿瘤放射治疗学(第二版).北京:人民卫生出版社,1994.
    
    [82] Cunningham J.R. Scater-air ratios. Phys. Med. Biol., 1972,(17):42-51.
    
    [83] Mohan R.,Chui C. S. Use of fast Fourier transforms in calculating dose distributions for irregular shaped fields for three-dimensional treatment planning. Med. Phys., 1987,14(1):70-77.
    [84] Mackie T. R., Scrimger J.W, Batista. J. J. A convolution method of calculating dose of 15-MV x-rays. Med. Phys., 1985,(12):188-196.
    [85] A. Ahnesjo, P. Andreo, A. Brahme. Calculation and application of point spread functions for treatment planning with high energy photon beams. Med. Phys., 1987,(26): 49-56.
    [89] Zhu XR, Low DA, Harms WB, Purdy JA. A convolution-adapted ratio-TAR algorithm for 3D photon beam treatment planning. Med Phys 1995 Aug,22(8):15-27.
    [87] Ahnesjo A.,Bengt K.,et al. A generalized pencil beam algorithm for optimization of radiation therapy. Med. Phys j 994,21(3):343-356.
    
    [88] Clarkson J R. A note on depth doses in fields of irregular shape. Br J Radiol, 1941,(15):35-39.
    [89] M .R. Sontag, J. R. Cunningham. Corrections to absorbed dose calculations for tissue inhomogeneities. Medical Physics, 1977,(4):431-436.
    [90] S .Webb,R .A.Fox. Verification by Monte Carlo methods of a power law tissue-air ratio algorithm for inhomogeneity corrections in photon beam dose calculations. Physics in Medicine and Biology, 1980,(25):225-240.
    [94] K J Cassell, Pauline A Hobday. The implementation of ageneralized Batho inhomogeneity correction for radiotherapy planning with direct use of CT numbers. Physics in Medicine and Biology, 1981,26(4):825-833.
    [92] Simon J .Thomas. A modified power-law formula for inhomogeneity corrections in beams of high-energy x-rays. Medical Physics, 1991,18(4):719-723.
    
    [93] Parker R P, Hobday P A, Cassell K J. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media.Physics in Medicine and Biology, 1979,24 (4):802-809.
    [94] Milan, J.; Bentley, R.E. The storage and manipulation of radiation dose data in a small digital computer. British Journal of Radiology, 1974, (47): 115-121.
    [95] E .El-Khatib, JJ.Batissta. Improved lung dose calculation using tissue-maximum ratios in the Batho correction.Medical Physics, 1984, 11(3): 279-286.
    [96] Mackie TR,EI-Khatib E ,Batista J. Lung dose corrections for 6 and 15MV x rays. Med. Phys., 1985, 12(3): 327-332.
    [97] Jordan T. F., Williams P C, The design and performance characteristics of a multileaf collimator. Phys. Med. Biol., 1994,39(2): 231-251.
    [98] Galvin, J. M., Smith A., Lally B. Characterization of a multi-leaf collimator system, Int. J. Radiat.Oncol. Biol. Phys., 1993, (25):181-192.
    
    [99] Klein E. E., Harms W. B., Low D. A.,et al. Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance, Int. J. Radiat. Oncol. Biol. Phys., 1995,(33): 1195-1208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700