低压荷电纳滤膜的结构控制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳滤是一种以压力为推动力介于反渗透与超滤之间的膜过程,早期被称为“疏松反渗透”,目前被广泛应用于硬水软化、有机小分子分离、废水处理、食品工业等领域。针对目前纳滤膜操作压力普遍较高的问题,本课题通过选择合适的单体分别采用界面聚合、动态自组装、紫外接枝等方法在聚砜或聚丙烯腈超滤膜表面构建一层超薄的聚电解质分离层制备得到低压纳滤膜。
     以聚砜超滤膜为基膜,2,5-二胺基苯磺酸、均苯三甲酰氯为反应物,采用界面聚合法制备纳滤膜。结果表明,由于磺酸基团的空间位阻作用,减慢了界面反应速率,所得纳滤膜表层呈现疏松多孔结构。FTIR-ATR、XPS元素分析结果证实了表层聚酰胺的存在。随着水相或油相反应单体浓度的增加,纳滤膜的脱盐率呈现先增加后降低的趋势,通量的变化规律正好相反。在本实验范围内,酸吸收剂NaOH的加入有利于界面聚合反应的进行;延长反应时间,Na_2SO_4的脱除率先上升后下降,而通量则先下降后上升。当2,5-二胺基苯磺酸、均苯三甲酰氯的浓度均为0.5%时,二次反应后制备的纳滤膜脱盐率增大,对Na_2SO_4的脱除率由一次反应的54.4%增加为60.4%,该纳滤膜在操作压力为0.4MPa时,溶液通量为59.7 L/m~2.h。考察了不同操作压力下、不同盐浓度时膜的分离性能。结果表明,当操作压力不同时,本实验中所得纳滤膜的分离性能变化有两种情况,一种是随着压力的增大,脱盐率基本不变,而另一种则是随着压力的增大,脱盐率明显下降。随着盐浓度的增加,溶液中反离子的浓度随之增大,它们在静电力作用下大量中和膜表面电荷,使膜表面有效电荷密度降低,对同离子的排斥力减弱,从而导致了膜脱盐率的下降。该系列纳滤膜脱盐率较低,有可能在染料脱盐中使用。
     通过发散法合成了以N-(2-胺乙基)哌嗪为核的端胺基树状聚合物PAMAM,并以此为水相单体与均苯三甲酰氯发生界面聚合反应制备了高脱盐率的纳滤膜。FTIR-ATR、XPS元素分析结果证实了表层聚酰胺的存在。SEM照片显示该纳滤膜的表面形貌与2,5-二胺基苯磺酸制备的纳滤膜形貌明显不同,该膜表面由许多粒状颗粒紧密堆积而成;AFM分析结果表明,聚砜膜表面覆盖有聚酰胺后,粗糙度明显增大。考察了PAMAM代数、浓度、反应时间等因素对膜性能的影响。发现使用浓度相同而代数不同的PAMAM制备纳滤膜时,由于端胺基数目随代数的增加而增多,所以随着代数的增加,膜的交联度增大,脱盐率上升,通量下降。通过改变PAMAM的浓度可以非常方便地调节膜的结构及分离性能,随着PAMAM浓度的增加膜的脱盐率增大,同时对不同盐的脱除率逐渐趋于一致。例如第二代PAMAM即NG2的浓度为2.79×10~(-4)mol/L时,Na_2SO_4、MgCl_2、MgSO_4的脱除率分别为31.0%,30.2%和38.9%,当NG2浓度增加到1.12×10~(-3) mol/L时,三者的脱除率分别为75.7%,87.1和80.7%,当NG2浓度继续增加到4.46×10~(-3)mol/L时,三者的脱除率非常接近,分别为93.0%,92.3%和91.4%。随着反应时间的延长,膜的脱盐率提高,通量下降,当反应时间增长后三种盐脱除率之间的差异减小。操作压力增加,通量有所增大,但脱盐率基本不变。随着盐浓度的增加,NF-NG2-8膜的脱盐率及通量变化不大。
     与界面聚合相比,层层自组装是一种绿色环保的纳滤膜制备方法,驱动力主要为静电力、氢键、范德华力、疏水力作用等,目前该方法的主要缺点是效率较低。本实验以聚苯乙烯磺酸钠-马来酸共聚物(PSSMA)、聚苯乙烯磺酸钠(PSS)、聚烯丙胺盐酸盐(PAH)为原料,碱改性的PAN超滤膜为基膜,采用动态自组装的方法在低组装层数时制备了低压高通量荷电纳滤膜。组装双层数为2个双层[PAH/PSS]_1PAH/PSSMA纳滤膜为荷负电纳滤膜,当操作压力为0.2 MPa时,对Na_2SO_4的脱除率为91.4%,通量为28.6 L/m~2h;当操作压力增加到0.8 MPa后通量达到106.6 L/m~2h,而且Na_2SO_4的脱除率没有明显变化。组装双层数为2.5的[PAH/PSS]_1PAH/PSSMA/PAH纳滤膜为荷正电纳滤膜,当操作压力为0.2 MPa时,对MgCl_2的脱除率为90.4%,通量为23.8 L/m~2.h;当操作压力增加到0.8 MPa后,通量增大到83.8 L/m~2.h,对MgCl_2的脱除率为91.0%,通量远大于目前商品化产品。
     实验中系统地考察了组装方式、基膜、组装溶液pH值、聚电解质浓度、SS/MA比例、组装层数、聚电解质种类等因素对膜性能的影响。结果如下:动态自组装制备的纳滤膜比静态自组装制备的纳滤膜性能更好。为增强聚电解质与基膜的结合,首先对PAN基膜进行碱处理,实验中发现PAN水解过度会造成表层膜的机械性能下降,产生剥落。本实验中较佳碱改性条件为:NaOH1.5M,碱改性温度为45℃,时间为1.5h。红外分析结果证实PAN膜已部分发生水解。以碱改性膜为基膜制备的纳滤膜脱盐率比未改性膜为基膜制备的纳滤膜高。PSSMA中的弱电离基团羧酸是电荷的潜在贡献者,通过组装溶液pH值的调节,膜结构及性能发生变化。此外,使用SS/MA比例为3:1的PSSMA膜性能优于SS/MA比例为1:1的PSSMA制备的膜;当组装双层数大于2时,随着组装双层数的增加,通量减小,但脱盐率变化不大;通过改变表层物质的种类可方便地制备荷正电或荷负电的纳滤膜。当PAH为最外层时呈现荷正电特征,对NaGl等四种盐的脱除顺序为MgCl_2>MgSO_4>Na_2SO_4≈NaGl。将其用于CuCl_2的脱除时,效果良好,对500 mg/L-2000 mg/L的CuCl_2的脱除率能够稳定在88%左右。
     以甲基丙烯酰氧乙基三甲基氯化铵为反应单体采用紫外直接辐照接枝聚合可以非常便捷地制备得到低压荷正电纳滤膜。与上述界面聚合、层层自组装相比,表面活性层与支撑层之间以化学键连接,有利于提高膜的稳定性。红外及XPS分析证实了表面聚甲基丙烯酰氧乙基三甲基氯化铵的存在。当单体浓度为1.5 M,辐照时间仅为5min时,就可制备得到具有良好分离性能的纳滤膜。操作压力为0.2 MPa时,对1000 mg/LMgCl_2脱除率为94.8%,通量为20.3 L/m~2.h。通过调整单体浓度、辐照时间、辐照距离等条件,调节接枝率,可得到性能不同的纳滤膜。当单体浓度增大时,接枝率和脱盐率都先是增大后趋于不变;溶液通量呈现逐渐下降的趋势。延长辐照时间具有类似规律。本实验范围内,随着辐照距离的增加,接枝率下降,盐脱除率下降,而通量随之上升。对于MgCl_2脱除率大的纳滤膜一般随着压力的增大,脱盐率基本不变,通量增大。该纳滤膜对不同盐的脱除顺序为MgCl_2>NaCl>MgSO_4(?)Na_2SO_4,呈现明显的荷正电特征,对MgCl_2的脱除率高,而MgSO_4的脱除率低,适合SO_4~(2-)离子含量低的硬水软化中使用。此外,季铵盐在表面的聚合赋予膜良好的亲水性,同时由于季铵盐具有抑菌及杀菌的作用,因此初步实验结果表明膜的抗污染性能较好,室温下放置25天后,接枝有季铵盐的纳滤膜与原基膜相比,污染物明显减少。
Nanofiltration (NF) is a pressure-driven membrane process, which was previously considered as "loose" osmosis. It is suitable for applications as water softening, seperation of organic molecules, wastewater treatment and food processing. However, the operation pressure of the NF is relatively high. In order to obtain charged nanofiltration membranes with low operation pressure, a series thin polyelectrolyte films were constructed on the surface of polysulphone (PSf) or polyacrylonitrile (PAN) ultrafiltration membranes by interfacial polymerization, dynamic-self-assembly and UV-graft polymerization of appropriate substances, respectively.
     A series of NF membranes were prepared by interfacial polymerization of 2, 5-diaminobenzenesulfonic acid (DBSA) with trimesoyl chloride (TMC). The results indicated that the interfacial polymerization rate was reduced by the steric hindrance effect of -SO_3H group on 2, 5-diaminobenzenesulfonic acid. A loose structure surface can be observed on the surface of the substrate membrane. FTIR-ATR and XPS results confirmed the existence of polyamide on the surface of the substrate membrane. The concentration of the reaction monomers has great effects on the performances of the NF membranes. First, the salts rejection increased with the increase of the concentration of DBSA or TMC, however, it decreased by further increasing the concentration of DBSA or TMC, while the change of the solution flux was reverse. Adding NaOH was benefit for polymerization. The rejection of Na_2SO_4 first increased and then decreased with prolonging the reaction time accompanied with a decrease of solution flux at first and then increase. When the concentration of DBSA and TMC were 0.5%, the NF membrane prepared with twice-reaction showed higher salts rejection than the NF membrane prepared with once-reaction. For example, the Na_2SO_4 rejection of the twice-reaction sample was 6% higher than that of the once-reaction sample. The flux of the twice-reaction sample was 59.7 L/m~2.h at 0.4 Mpa. According to the performances at different operation pressure, there were two types NF membranes in this experiment: (1) The salts rejection of the NF membranes is independent of operation pressure, (2) The salts rejection of the NF membranes dose decrease with increasing the operation pressure. When the concentration of salts increase, the concentration of counter-ion increase too which will screen some surface charge and reduce the dielectric exclusion effect, so the salts rejection decreased with increasing the salts concentration. Taking into account of the performances of these NF membranes, these NF membranes may suitable for dye/salt separation.
     N-(2-aminoethyl)-piperazine cored amine ended Poly (amido-amine) (PAMAM) dendrimers were synthesized by divergent procedure. A series NF membranes with high salts rejection were prepared with PAMAM and trimesoyl chloride (TMC) via in situ interfacial polymerization. SEM images indicated that the surface morphology of these membranes were different from those of the membranes prepared with 2, 5-diaminobenzenesulfonic acid (DBSA) with TMC, it is comoposed of compact particles. AFM suggested that the substrate membrane became rougher by covering the polyamide layer. The effects of generation number, concentration of PAMAM and reaction time were discussed in this paper. Because the degree of cross-linking increased with the increase of PAMAM generation number, the NF membranes prepared by higher generation number PAMAM showed higher salts rejection and lower solution flux. The performances of the NF membranes changed with the concentration of PAMAM. A higher salts rejection coefficient could be obtained by polymerization with higher concentration of PAMAM, while the salts rejection difference among the different salts reduced. When the concentration of PAMAM(NG2) was 2.79×10~(-4)mol/L, the rejection of Na_2SO_4、MgCl_2、MgSO_4were 31.0%, 30.2% and 38.9%, respectively. The salts rejection of Na_2SO_4、MgCl_2、MgSO_4 increased to 75.7%, 87.1% and 80.7% , repectively when the concentration of NG2 was 75.7%, 87.1% and 80.7%. Further increasing the concentration of NG2 to 4.46×10~(-3)mol/L, the rejection of these three salts was very close. The salts rejection of Na_2SO_4、MgCl_2、MgSO_4 were 93.0%, 92.3% and 91.4%. Prolonging the reaction time was in favor of increasing the salts rejection. And the salts rejection difference among Na_2SO_4、MgCl_2、MgSO_4 was reduced when prolonging the reaction time. The salts rejection was increased accompanied with a similar solution flux by increasing the operation pressure. The salts rejection and the solution remained stable when the salts concentration was varied.
     Compared with interfacial polymerization, layer-by-layer self-assembly is an environmental benign technique for making NF membrane. Driven forces for self-assembly of molecules are electrostatics, hydrogen bonding, Vander Walls forces, hydrophobic interaction and others. Till now, layer-by-layer self assembly is a time-consuming method. In this experiment, a series of NF membranes with high solution flux at low operation pressure were prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA), poly (styrenesulfonic acid sodium salt) (PSS) and poly (allylamine hydrochloride) (PAH) on the modified poly-acrylonitrile ultra-filtration membrane. The [PAH/PSS]_1PAH/PSSMA (3:1) membrane composed of only 2 bilayers is a kind of negtively charged NF membrane, which exhibited 91.4% rejection of Na_2SO_4 and allowed solution flux of 28.6 L/m~2h at 0.2 MPa. The solution flux increased to 106.6 L/m~2h without obvious decrease in Na_2SO_4 rejection when the operation pressure increased to 0.8 MPa. The [PAH/PSS]_1PAH/PSSMA/PAH NF membrane with 2.5 bilayers is a kind of positively charged NF membrane, which exhibited a 90.4 % rejection of MgCl_2 and a permeate flux of 23.8 L/m~2.h at 0.2MPa, a 91.0% rejection of MgCl_2 and a permeate flux of 83.8 L/m~2.h at 0.8 MPa. The permeate flux was higher than that of the NF membranes in market.
     The effects as substrate, assembly method, assembly pH, concentration of polyelectrolyte, SS/MA ratio, bilayer number and others on the performences of the NF membranes were discussed in this paper. Compared with static self-assembly method, the NF membranes prepared by dynamic self-assembly method showed better performance. In order to improve the attachment of active substance, PAN ultra-filtraton membranes were modified by NaOH solution. Excessive hydrolysis would affect the mechanical strength and integrity of the substrate membrane. The appropriate modification condition was as follows: NaOH 1.5M, reaction temperature 45℃, reaction time 1.5 h. FTIR-ATR results indicated PAN was partly hydrolyzed by NaOH. The membranes assembled on the modified PAN membrane showed higher salts rejection than on the unmodified one. It reveals that the weakly charged groups in the mutilayer acted as potential charge contributors. Both the surface structure and the charge density of the membrane can be optimized by controlling the assembly pH. The NF membrane prepared with PSSMA (SS/MA=3:1) showed better properties than that of the membrane prepared by PSSMA (SS/MA=1:1). When the assembly bilayer number was larger than 2, the flux decreased with higher assembly number, while the salts rejection nearly remained unchanged. Positively and negatively charged NF membranes were obtained easily by changing the component of the terminal layer. A Positivly charged membrane can obtain when the terminal layer is PAH. The salts rejection order is as follows: MgCl_2> MgSO_4> Na_2SO_4≈NaCl. It is suitable for CuCl_2 removal. The rejection of CuCl_2 remained at about 88% when the concentration of CuCl_2 ranged from 500 mg/L to 2000 mg/L.
     UV-induced polymerization of 2-methacryloyl oxyethyl trimethyl ammonium chloride (MOTAC) on the polysulfone ultrafiltration membrane was applied to prepare NF membranes. Compared with the works mentioned above, the connection force between the substrate membrane and the active layer is chemical bonds which will be of benefit to increase the stability of membrane. FTIR-ART and XPS results confirmed the existence of the poly (2-methacryloyl oxyethyl trimethyl ammonium chloride) on the surface. The membrane prepared by polymerization of MOTAC with concentration of 1.5 M for 5min demonstrated high MgCl_2 rejection (94.8%) accompanied with high flux (20.3 L/m~2.h, 0.2 Mpa). Different NF membranes can be prepared by adjusting the monomer concentration, radiation time and radiation distance et al. The degree of grafting and salts rejection increased with increasing the concentration of monomer concentration. However, further increasing the concentration of MOTAC, the degree of grafting and salts rejection did not change a lot. Prolonging the radiation time demonstrated the similar phenomena. The degree of grafting and salts rejection decreased with enlarging the radiation distance accompanied with the increase of solution flux. The salts rejection of the NF membrane with high MgCl_2 nearly maintained stable at different operation pressure, while the flux increased with the increase of operation pressure. These membranes showed typical positively charged characteristic that the salts rejection order of them is MgCl_2> NaCl>MgSO_4(?)Na_2SO_4. It should be mentioned that the MgCl_2 rejection is high accompanied with very low MgSO_4 rejection. So these membranes are suitable for the hardness removal from sulfate-poor water. The primary experiments suggested that these membranes have well antifouling properties. Contributed to the existence of the poly (2-methacryloyl oxyethyl trimethyl ammonium chloride) which endowed the NF membranes with good hydrophilic and well anti-virus properties, the NF membranes demonstrated better anti-fouling properties in the primary experiments. Compared with the original PSf membrane, there were fewer pollutants on the NF membranes surface after the preservation in water for 25 days.
引文
[1] M. Mulder, "Basic Principles of Membrane Technology", 2~(nd) ed., Kluwer Academic Publishers, Dordrecht, 1997.
    
    [2]王湛,周狮主编,膜分离技术基础(第二版),化学工业出版社,北京,2006.
    
    [3]刘茉娥,膜分离技术应用手册,化学工业出版社,北京,2001.
    
    [4]徐又一,徐志康,高分子膜材料,化学工业出版社,北京,2005.
    
    [5]时钧,袁权,高从增,膜技术手册,化学工业出版社北京,2001.
    
    [6]王晓琳,丁宁编著,反渗透和纳滤技术及应用,化学工业出版社,2005.
    
    [7] W. Richard Bowen, A.Wahab Moohamad, N. Hilal, Characterisation of nanofiltrationmembranes for predictive purposes use of salts, uncharged solutes and atomic forcemicroscoscopy, J. Membr. Sci., 1997, 126: 91-105.
    
    [8] W. Richard Bowen, Julian S. Welfoot, Modelling of membrane nanofiltration-pore sizedistribution, Chem. Eng. Sci., 2002, 57:1393 - 1407.
    
    [9] W. Richard Bowen, Julian S. Welfoot, Modelling the performance of membranenanofiltration-critical assessment and model development, Chem. Eng. Sci., 2002, 57:1121-1137.
    
    [10] W.B. Samuel de Linta, Nieck E. Benesb, Predictive charge-regulation transport model fornanofiltration from the theory of irreversible processes, J. Membr. Sci., 2004, 243:365-377.
    
    [11] G.A. Jesus, J. M. Dickson, Mathematical modeling of nanofiltration membranes with mixedelectrolyte solutions, J. Membr. Sci., 2004,235:1-13.
    
    [12] M. Wu, D. Delai Sunb, J.H. Tay, Effect of operating variables on rejection of indium usingnanofiltration membranes, J. Membr. Sci., 2004,240:105-111.
    
    [13] C. Bellonaa, Jo¨rg E. Drewesa, P. Xu, G. Amy, Factors affecting the rejection of organicsolutes during NF/RO treatment-a literature review, Water Res., 2004, 38:2795-2809.
    
    [14] C. Bellona, J"org E. Drewes, The role of membrane surface charge and solutephysico-chemical properties in the rejection of organic acids by NF membranes, J. Membr.Sci, 2005, 249:227-234.
    
    [15]中恒正幸,膜物理化学,北京科学出版社, 1997,78-80.
    
    [16] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 1995,??107:1-21.
    
    [17] M. Soltanieh, W. Gill, Review of reverse osmosis membranes and transport models. Chem.Eng. Comm., 1981,12:279-286.
    
    [18] S. Nakao Sand Kimura Models of membrane transport phenomena and their applicationsfor ultrafiltration data, J. Chem. Eng. Japan., 1982,15:200-212.
    
    [19] J.C. Fair, F. Osterle J, Reverse electro-dialysis in charged capillary membranes. J. ChemPhys., 1971,54(8):3307-3312.
    
    [20] T. Tsuru, T.A. Doneva. Reverse osmosis of single and mixed electrolytes with chargedmembranes-experiment and analysis, J .Chem.Eng.Japan, 1991, (24):518-526.
    
    [21] X.L. Wang, D.X. Wang; Y. Tomi, Transport of organic electrolytes with electrostatic andsteric-hindrance effects through nanofiltration membrane, J.Chem.Eng.Japan, 1995,28(4):372-380.
    
    [22] X.L. Wang, T. Tsuru, S.I. Nakao, S. Kimura, Electrolyte transport through nanofiltra-tionmembranes by the space-charge model and the comparison with Teorell-Meyer-Sieversmodel, J. Membr. Sci., 1997, 103(1):117-133.
    
    [23]熊日华,王世昌,神经网络在膜技术中的应用,膜科学与技术,2003,23(6):44-48.
    
    [24] W. Richard Bowen, H. Mukhtar, Characterisation and prediction of separation performanceof nanofiltration membranes, J. Membr. Sci., 1996, 112: 263-274.
    
    [25] W. Richard Bowen, X. Cao, Electrokinetic effects in membrane pores and the determinationof zeta potential, J. Membr. Sci., 1998,140:267-277.
    
    [26]王晓琳,汪伟宁.纳滤分离过程最新进展,第四届全国膜和膜过程学术报告会议论文 集,南京,2002.
    
    [27] H.G. Hicke, I. Lehmanna, G. Malsch , M. Ulbricht , M. Becker, Preparation andcharacterization of a novel solvent-resistantand autoclavable polymer membrane, J. Membr.Sci., 2002,198:187-196.
    
    [28] W.H. Chan, S.C. Tsao, Preparation and characterization of nanofiltration membranesfabricated from Poly (amidesulfonamide) and their application in water-oil separation, J.Appl. Polym. Sci., 2003, 87: 1803-1810.
    
    [29] W. Richard Bowen, T.A. Doneva, H.B. Yin, Polysulfone-sulfonated poly (ether ether)??ketone blend membranes: systematic synthesis and characterization J. Membr. Sci., 2001, 181:253-263.
    
    [30]刘淑秀,姚仕仲,郑大威等,纳滤膜及其表面活性剂分离特性的研究,膜科学与技术, 1997,17:20-23.
    
    [31]周金盛,陈观文,CA/CTA共混不对称纳滤膜分离特性的研究,膜科学与技术,1999, 19(1):34-39.
    
    [32]高田耕一,高分子论文集,1988,1:45-53.
    
    [33] M. Bryjak , H. Hodgea , B. Dach, Modification of porous polyacrylonitrile membrane, Angew. Makromol. Chem. ,1998,260 : 25-29.
    
    [34]鲁学仁,高从堦,王更生珍,丙烯酸-丙烯腈共聚物盐荷电膜的制备和性能研究,水 处理技术,1997,23(1):1-6.
    
    [35]蹇锡高,张守海,戴英等,新型磺化聚醚砜酮复合纳滤膜,膜科学与技术,2001,21 (1):11-14.
    
    [36]龚承元,苏建勇,朱孟府,荷电微孔滤膜及其吸附性能的研究,水处理技术, 1998, 24(2):83-87.
    
    [37] P. W. Morgan, Condensation polymers: by interfacial and solution methods; IntersciencePublishers: John Wiley & Sons: New York, 1965.
    
    [38] P. W. Morgan, In encyclopedia of polymer science and engineering; Mark, H. F., Bikales,N. M., Overberger, C. G.,Menges, G., Kroschwitz, J. I., Eds.; John Wiley & Sons: NewYork, 1985; Vol. 8, p 221.
    
    [39] P.W. Morgan, Development of low temperature polymerization process and aromaticpolyamides, J. Polym. Sci.: Polym. Symp., 1985, 72:27-37 .
    
    [40] G.Y. Chai, W.B. Krantz, Formation and charaterization of polyamide membrane viainterfacial polymerization, J. Membr. Sci., 1994,93:175-192.
    
    [41] V. Enkelmann, G. Wegner, Machanism of interfacial polycondensation and the directsynthesis polyamide membrnaes, J. Appl. Polym. Symp., 1975,26:365-372.
    
    [42] R.G. Pearson, E.L. Williams, Interfacial polymerization of an isocyannate and adoil, J.Polym. Sci., 1985,23:9-18.
    
    [43] L.J.J.M. Janssen, A. Boersma, K. te Nijenhius, Encapsulation by interfacialpolycondensation. Ⅲ micocondencapsulation; the influence of process conditions on wall??permeability, J. Membr. Sci., 1993, 79:11-26.
    
    [44] S.K. Karode, S.S. Kulkami, A.K. Suresh, R.A. Mashelkar, Molecular weight distribution ininterfacial polymerization-model development and verification, Chem. Eng. Sci., 1997, 52(19):3243-3255.
    
    [45] J. Ji, J.M. Dickson, R.F. Childs, and B.E. McCarry, Mathematical model for the formationof thin-Film composite membranes by interfacial polymerization: porous and dense films,Macromolecules, 2000, 33: 624-633.
    
    [46]梁雪梅,陆晓峰,梁国明,等,界面聚合法制备聚芳酯复合纳滤膜Ⅲ.NF-1复合纳滤 膜的结构及性能,华东理工大学学报,1999,25(5):485-488.
    
    [47] S.Verissimo, K. V. Peinemann, J.Bordado. Influence of the diamine structure on thenanofiltration performance, surface morphology and surface charge of the compositepolyamide membranes, J. Membr. Sci., 2006,279: 266-275.
    
    [48] I.C. Kim, K.H. Lee, Preparation of interfacially synthesized and silicone-coated compositepolyamide nanofiltration membranes with high performance, Ind. Eng. Chem. Res., 2002,41:5523-5528.
    
    [49] B.B. Tang, Z.B. Huo, P.Y. Wu, Study on a novel polyester composite nanofiltrationmembrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride(TMC) I. Preparation, characterization and nanofiltration properties test of membrane, J.Membr. Sci., 2008, 320(l-2):198-205.
    
    [50] M.H. Liu, S.C. Yu, Y. Zhou, C.J. Gao, Study on the thin-film composite nanofiltrationmembrane for the removal of sulfate from concentrated salt aqueous: Preparation andperformance J. Membr. Sci., 2008, 310 (1-2): 289-295.
    
    [51] P.B. Kosaraju, K.K. Sirkar, Interfacially polymerized thin film composite membranes onmicroporous polypropylene supports for solvent-resistant nanofiltration, J. Membr.Sci., 2008, 321(2):155-161.
    
    [52] L.C. Li, B. G Wang, H.M. Tan, T.L. Chen, J.P. Xu, A novel nanofiltration membraneprepared with PAMAM and TMC by in situ interfacial polymerization on PEK-Cultrafiltration membrane, J. Membr. Sci., 2006, 269(1-2):84-93.
    
    [53] S. Verissimo, K.V. Peinemann, J. Bordado, New composite hollow fiber membrane fornanofiltration, Desalination, 2005,184(1-3):1-11.
    
    [54] F.J. Yang, D.L. Yang, S.H. Zhang, X.G Jian, Synthesis of polypiperazine-amide thin-filmmembrane on PPESK hollow fiber UF membrane, Chinese Chemical Letters, 2007, 18(8):966-968.
    
    [55] A.L. Ahmad, B.S. Ooi, A.W. Mohammad, J.P. Choudhury, Composite nanofiltrationpolyamide membrane: a Study on the diamine ratio and its performance evaluation, Ind.Eng. Chem. Res. 2004,43: 8074-8082.
    
    [56]卞晓锴,施柳青,梁国明,陆晓峰,聚乙烯醇复合膜的制备,膜科学与技术,2004, 24(2):12-14,22.
    
    [57] R.H. Huang, G,H. Chen, B.C. Yang, C.J. Gao, Positively charged composite nanofiltration membrane from quaternized chitosan by toluene diisocyanate cross-linking, Sep. Purif. Technol., 2008, 61:424-429.
    
    [58] R.H. Du, J.S. Zhao, Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane, J. Membr. Sci., 2004, 239:183-188.
    
    [59]江明,A.艾森伯格,刘国军,张军,大分子自组装,科学出版社,北京,2006.
    
    [60] A.Besheer, G. Hause, J. Kressler, K.Mader, Hydrophobically modified hydroxyethyl starch:synthesis, characterization and aqueous self-assembly into nano-sized polymeric micellesand vesicles, Biomacromolecules, 2007, 8(6):2045-2045.
    
    [61] N.A. Kotov, S. Magonov, E. Tropha, Layer-by-layer self-assembly of alumosilicatepolyelectrolyte composites: mechanism of deposition, crack resistance, and perspectives fornovel membrane materials, Chem. Mater., 1998,10 (3):886-895.
    
    [62] M.J. Wang, L.Y. Wang, H. Yuan, X.H. Ji, C.Y. Sun, L. Ma, Y.B. Bai, T.J. Li, J.H. LiImmunosensors based on layer-by-layer self-assembled Au colloidal electrode for theelectrochemical detection of antigen, Electroanalysis, 2004,16(9): 757-764.
    
    [63] H.C. Yoon , M.Y. Hong, H.S. Kim, Functionalization of a poly(amidoamine) dendrimerwith ferrocenyls and its application to the construction of a reagentless enzyme electrode,Anal. Chem., 2000, 72 (18):4420 - 4427.
    
    [64] P.J. San, Z.C. Liu, Z.Q. Tian, Layer-by-layer self-assembly of compositepolyelectrolyte-nafion membranes for direct methanol fuel cells, Adv. Mater., 2006,18(8):1068-1072.
    
    [65] Tang, H. L.; Pan, M, Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells, J. Phys. Chem. C., 2008; 112(30): 11556-11568.
    [66] B. Tieke, L. Krasemann, A.T. Hammond, Tailor-made membranes for alcohol/water pervaporation and ion separation prepared upon layer-by-layer adsorption of polyelectrolytes, Macromol. Sym., 2001,163 (1): 97-112.
    [67] A. Toutianoush, L. Krasemann, B. Tieke, Polyelectrolyte multilayer membranes for pervaporation separation of alcohol/water mixtures, Colloids Surf., A : Physicochemical and Engineering Asspects, 2002,(198-200) :881-889.
    [68] L. Krasemann, A. Toutianoush, B. Tieke, Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures, J. Membr. Sci., 2001, 181: 221-228.
    [69] L. Krasemann, B. Tieke, Composite membranes with ultrathin separation layer prepared by self-assembly of polyelectrolytes, Mater. Sci. Eng. C, 1999, (8-9):513-518.
    [70] A. Toutianoush, B. Tieke, Pervaporation separation of alcohol/water mixtures using self-assembled polyelectrolyte multilayer membranes of high charge density, Mater. Sci. Eng. C., 2002,22:459-463.
    [71] R. Malaisamy, M.L. Bruening, High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports, Langmuir, 2005, 21:10587-10592.
    [72] S.U. Hong, M.L. Bruening, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes, J. Membr. Sci., 2006,280:1-5.
    [73] M.D. Miller, M.L. Bruening, Correlation of the swelling and permeability of polyelectrolyte multilayer films, Chem. Mater., 2005,17: 5375-5381.
    [74] M.D. Miller, M.L. Bruening, Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition, Langmuir, 2004, 20: 11545-11551.
    [75] B.W. Stanton, J.J. Harris, M.D. Miller, et al. Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes, Langmuir, 2003,19: 7038-7042.
    [76] S.U. Hong, R. Malaisamy, M.L. Bruening. Optimization of flux and selectivity in Cl~- /SO_4~(2-) separations with multilayer polyelectrolyte membranes, J. Membr. Sci., 2006,283:366-372.
    [77] J. Pieracci, D.W. Wood, J.V. Crivello, G Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater., 2000,12: 2123-2133.
    [78] H. Chen, G. Belfort, Surface modification of poly (ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization, J. Appl. Polym. Sci., 1999, 72: 1699-1711.
    [79] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater., 2000,12: 2123-2133.
    [80] M. Taniguchi, G. Belfort, Low fouling synthetic membranes by UV-assisted graft modification: varying monomer type, J. Membr. Sci., 2004,231:147-157.
    [81] M. Taniguchi, J.E. Kilduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci., 2003,222: 59-70.
    [82] J. Pieracci, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes using selective UV wavelengths, Chem. Mater., 2002,14: 256-265.
    [83] M. Taniguchi, J. Pieracci, W.A. Samsonoff, G. Belfort, UV-assisted graft polymerization of synthetic membranes: mechanistic studies, Chem. Mater., 2003,15:3805-3812.
    [84] H. Yamagishi, J.V. Crivello, G. Belfort, Evaluation of photochemically modified poly (arylsulfone) ultrafiltration membranes, J. Membr. Sci., 1995,105:249-259.
    [85] Z.P. Zhao, J.D. Li, D.X. Zhang, C.X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma I. Graft of acrylic acid in gas. J. Membr. Sci., 2004,232:1-8.
    [86] G. Oster, O. Shibata, Graft copolymer of polyacrylamide and natural rubber produced by means of ltraviolet light, J. Polym. Sci., 1957, 26(113): 233-234.
    [87] A.M. Mika, R.F. Childs, J.M. Dichson, et al., A new of polyeltralyte-filled microfiltration membranes with environmentally controlled porosity, J. Membr. Sci., 1995, 108:37-56.
    [88] T. Kndo, H. Kubota, R. Katakai, Effect of ethylene glycol dimethacrylate derivatives on photografting of methacrylic acid on low-density polyethylene, Eur. Polym. J., 1998,
    ??34:1099-1103.
    
    [89] H.M. Ma, R.B. Davis, C.N. Bowman, A novel sequehtial photoinduced living graft polymerization, Macromolecules, 2000,33:331-335
    
    [90]谭绍早,陈震华,陈中豪,聚丙烯腈纳滤膜的制备及对造纸废水的截留性能,中国造纸学 报,2002,17(2):63-66.
    
    [91] S. Bequet, T. Abenoza, P. Aptel, et al., New composite membrane for water softening,Desalination, 2000,131:299-305.
    
    [92] C.Q. Qiu , F. Xu, Q. T. Nguyen, Z.H. Ping, Nanofiltration membrane prepared from cardopolyetherketone ultrafiltration membrane by UV-induced grafting method, J. Membr. Sci.,2005,255:107-115.
    
    [93] C.Q. Qiu, Z.H.Ping, L.H. Zhang, Preparation of PEK-C nanofiltration membrane by UVirradiation graft-polymerization and influence of chain transfer agent, Acta ChimicaSinica,2005 ,63(20):1906-1912.
    
    [94] C.Q. Qiu, Q.T. Nguyena, L.Z. Zhang, Z.H. Ping, Nanofiltration membrane preparation byphotomodification of ardo polyetherketone ultrafiltration membrane Sep. Purif. Technol.,2006,51:325-331.
    
    [95] B. Conlan, T.A.Edgell, M. Lazar, et al., US 2005 224355-A1.
    
    [96] S. Sridhar, US 2005 214192-A1; WO2005092793-A1; EP1586562-A1.
    
    [97] L. Xu, S.Y. Wang, X.Y. Zeng. The maltitol purification and concentration by nanofiltration,Desalination, 2005,184 (1): 295-303.
    
    [98] S.S.Chen, B.C. Hsu, C.H. Ko, P.C. Chuang, Recovery of chromate from spent platingsolutions by two-stage nanofiltration processes, Desalination, 2008, 229(1-3): 147-155.
    
    [99] C. Evgenia, T. Jorg, Nanofiltration of bivalent nickel cations-model parameterdetermination and process simulation, Desalination, 2008,224(1-3): 12-17.
    
    [100] B.Van der Bruggen, I.De Vreese, C.Vandecasteele. Water reclamation in the textileindustry: nanofiltration of dye baths for wool dyeing, Ind. Eng. Chem. Res.2001,40:3973-3978.
    
    [101] S. H.Kang, Y. K.Chang, H. N.Chang, Recovery of ammonium lactate and removal ofhardness from fermentation broth by nanofiltration, Biotechnol. Prog., 2004, 20: 764-770.
    
    [102] M. Mika, P. Teuvo , N. Marianne, NF270, a new membrane having promising??characteristics and being suitable for treatment of dilute effluents from the paper industry, J.Membr. Sci., 2004, 242 :107-116.
    
    [103] A. Favre-Reguillon, G Lebuzit, J. Foos, et al, Selective concentration of uranium fromseawater by nanofiltration, Ind. Eng. Chem. Res., 2003,42:5900-5904.
    
    [104] M. Mika, P. Arto, N. Marianne, Comparison of nanofiltration and tight ultrafiltrationmembranes in the filtration of paper mill process water, Desalination, 2002,149:131-136.
    
    [105] M. Miguel, N. Maria, Derivateion of adsorption parameters for nanofiltration membranesusing a 1-pK Basic Stern model, Desalination, 2002,149: 95-100.
    
    [106] R. Liikanen, I. Miettinen, R.Laukkanen. Selection of NF membrane to improve quality ofchemically treated surface water, Water. Res., 2003, 37: 864-872.
    
    [107] S.Bequet, T. Abenoza, P. Aptel, et al., New composite membrane for water softening,Desalination, 2000,131: 299-305.
    
    [108] H.A. Kim, J.H. Choi, S.S. Takizawa, Comparison of initial filtration resistance bypretreatment processes in the nanofiltration for drinking water treatment, Sep. Purif.TechnoL, 2007, 56(3):354-362.
    
    [109] S. Sayed, S. Tarek, I. Dijkstra, C. Moerman, Optimum operation conditions of directcapillary nanofiltration for wastewater treatment, Desalination, 2007,214(1-3): 215-226.
    
    [110] R. Ferrarini, A. Versari, S.Galassi, A preliminary comparison between nanofiltration andreverse osmosis membranes for grape juice treatment, J. Food. Eng., 2001, 50:113-116.
    
    [111]徐昌洪,孔庆颐,蔡德玲,方家骥,采用纳滤膜的谷氨酸提取方法,CN13132752001.
    
    [112]武嘉文,孔凡宾,纳滤膜法提纯大豆低聚糖的方法,CN1364764 2002.
    
    [113] W. Zhang, G.H. He, P. Gao, G.H. Chen. Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics, Sep. Purif. Technol. 2003, 30: 27-35.
    
    [114]杨瑞金,许时婴,王璋,周凤娟,应用纳滤技术进行寡肽溶液的脱盐和浓缩, CN1392155, 2003
    
    [115] H. Ohya, I. Okazaki, M. Aihara, S. Tanisho, et al., Study on molecular weight cut-off performance of asymmetric aromatic polyimide membrane, J. Membr.Sci., 1997, 123(1):143-147.
    
    [116] B. M. Bhoslea, R. Subramanian, K. Ebert, Deacidification of model vegetable oils using??polymeric membranes Eur. J. Lipid Sci. Technol., 2005,107: 746-753.
    
    [117] H. Essis-Tome, C.K. Diawara, L. Robbiola, et al., Preparation and characterization of anovel electronically conductive and chemically modified nanofiltration type membrane,Electrochem. Commun., 2004,6:1061-1068.
    
    [118] R.Jeantet, J.L.Maubois, P.Boyaval, Semicontinuous production of lactic acid in abioreactor coupled with nanofiltration membranes, Enzyme. Miccrob. Techol., 1996,19(8):614-619.
    
    [119] J. Palmeri, P. Blanc, A. Larbot, P. David . Hafnia ceramic nanofiltration membranes: PartⅡ. Modeling of pressure-driven transport of neutral solutes and ions, J. Membr.Sci., 2000,179: 243-266.
    
    [120] Z.Q. Zhu, X.S. Feng , A. Penlidis , Self-assembled nano-sryctureed polyelectrolytecomposite membranes for perveration, Mater. Sci. Eng. C, 2006,26:1-8.
    
    [121]赵瑶兴,孙翔玉编著,有机分子结构光谱鉴定,科学出版社,北京,2003.
    
    [122] J. Ji, B. J. Trushinski, R. F. Childs, et al., Fabrication of thin-film composite membraneswith pendant, photoreactive diazoketone functionality, J. Appl. Polym. Sci. 1997,64:2381-2398.
    
    [123] L.J.J.M. Janssen and K.te Nijenhuis. Encapsulation by interfacial polycondensation.Ⅰ.Thecapsule production and a model for wall growth, J. Membr.Sci., 1992, 65:59-68.
    
    [124] L.J.J.M. Janssen and K.te Nijenhuis.Encapsulation by interfacial polycondensation.Ⅱ.Thecmembrane wall structure and the rate of the wall growth, J. Membr.Sci., 1992, 65:69-75.
    
    [125]俞三传,金可勇、潘巧明、高从皆。聚哌嗪酰胺复合纳滤膜的研制,膜科学与技术, 2001,21(1):1-3.
    
    [126] P.Y. Pontailer, A. Ismail, M. Ghoul, Mechanisms for the selective rejection of solutes in nanofiltration membranes, J. Membr. Sci., 1997,12:175-181.
    
    [127]谭惠民,罗运军编著,树枝状聚合物,化学工业出版社,北京,2002.
    
    [128] M. Wells, and R.M. Crooks, Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 10. preparation and properties of chemically sensitive dendrimer surfaces, J. Am. Chem. Soc, 1996, 118: 3988-3989.
    
    [129] H. Tokuhisa, and R.M. Crooks, Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 12. two new methods for surface-immobilization and functionalization of chemically sensitive dendrimer surfaces, Langmuir, 1997,13: 5608-5612.
    [130] O. Finikova, A. Galkin, V. Rozhkov, M. Cordero, C. Hagerhall, and S. Vinogradov, Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors, J. Am. Chem. Soc, 2003,125: 4882-4893.
    [131] J.L. Mynar, T.J. Lowery, D.E.Wemmer, A. Pines, and J.MJ. Frechet, Xenon biosensor amplification via dendrimer-cage supramolecular constructs, J. Am. Chem. Soc, 2006, 128: 6334-6335.
    [132] Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, and Y. Shirota, Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4',4" -tri(N-carbazolyl)triphenylamine (TCTA) and 4,4',4"-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA), as hole-transport materials, Adv. Mater., 1994, 6(9): 677-679.
    [133] X.T. Tao, Y.D. Zhang, T. Wada, et al., Hyperbranched polymers for electroluminescence applications, Adv. Mater., 1998,10(3): 226-230.
    [134] B. Verheyde, and W. Dehaen, Synthesis of dendrimers containing 1,3,4-oxadiazoles J. Org. Chem., 2001, 66: 4062-4064.
    [135] GM. Stewart, and M.A. Fox, Dendrimer-linear polymer hybrids through ROMP, Chem. Mater., 1998, 10: 860-863.
    [136] Q.Z. Zhang, J.Q. Liu, X.D. Tang, J.Z. Zhang, Studies on photochemistry of a carbosiliane photochromic liquid crystalline dendrimer of second generation containing thirty-six 4-hexyloxyazobenzene mesogenic groups in its periphery, Acta Polymerica Polymerica Sinic, 2005, (4): 544-548.
    [137] J.F. Huang, H.M. Luo, CD. Liang, et al., Hydrophobic br(?)nsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence, J. Am. Chem. Soc, 2005,127:12784-12785.
    [138] M. Kawa, and J.M.J. Frechet, Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects, Chem. Mater., 1998,10:286-296.
    [139] K. Aoi, K. Tsutsumiuchi, A.Yamamoto, and M. Okada, Globular carbohydrate macromolecule "sugar balls", 2~a synthesis of mono(glycopeptide)- persubstituted dendrimers by polymer reaction with sugar-substituted a-amino acid N-carboxyanhydrides (glycoNCAs), Macromol. Rapid Commun, 1998,19: 5-9.
    [140] I.J. Majoros, A. Myc, T. Thomas, C.B. Mehta, and J.R. Baker, Jr, PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality, Biomacromolecules, 2006, 7: 572-578.
    [141] J. Khandare, P. Kolhe, O.Pillai, S. Kannan, M. Lieh-Lai, R.M. Kannan, Synthesis, cellular transport, and activity of polyamidoamine dendrimer- methylprednisolone conjugates, Bioconjugate Chem. 2005,16(4): 1049-1049.
    [142] G.N. Marine J. Derk, S. Meike, L. Myriam, A. Marc, W. Bjoem,. et al., Self-assembly, DNA complexation, and pH response of amphiphilic dendrimers for gene transfection, Langmuir, 2007,23: 737-746.
    [143] C.B. Gorman, B.L. Parkhurst, W.Y. Su, and K.Y. Chen, Encapsulated electroactive molecules based upon an inorganic cluster surrounded by dendron ligands, J. Am. Chem. Soc., 1997,119:1141-1142.
    [144] R.W.J. Scott, C. Sivadinarayana, O.M. Wilson, Z. Yan,et al., Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors, J. Am. Chem. Soc, 2005,127: 1380-1381.
    [145] S.A. Kuzdzal, C.A. Monnig, G.R. Newkome, and C.N. Moorefield, A study of dendrimer-solute interactions via electrokinetic chromatography, J. Am. Chem. Soc, 1997, 119:2255-2261.
    [146] G. Camhati, N.J. Turro, and D.A. Tomalia, Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants, J. Am. Chem. Soc, 1990,112:8515-8522.
    [147] A.S. Kovvali, and K.K. Sirkar, Dendrimer liquid membranes: CO_2 separation from gGas mixtures, Ind. Eng. Chem. Res., 2001,40: 2502-2511.
    [148] T.Chung, M.L.Chung, K.P.Pramoda, et al, PAMAM dendrimer-induced cross-lingking modification of polyimide membranes, Langmuir, 2004, 20:2966-2969.
    [149] J.Won, J.Jegal, Y.S.Kang, Nano-thin film formation on polymeric supports, C.R.Chimie, 2003,6:1185-1192.
    [150] B.J.Cha, Y.S. Kang, J. Won, Preparation and characterization of dendrimer layers on poly(dimethysiloxane) films, Macromolecules, 2001,34:6631-6636.
    [151] L.C. Li, B.G. Wang, H.M. Tan, T.L. Chen, J.P. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Mem. Sci., 2006,269(1-2):84-93.
    [152] D.A. Tomalia and J.R.Dewald, 1985, U.S. Pat., 4.507.466
    [153] L. Shao, T.S. Chung, S.H. Goh, K.P. Pramoda, Transport properties of cross-linked polyimide membranes induced by different generation of diaminbutane (DAB)dendrimers, J. Mem. Sci., 2004,238:153-163.
    [154] B.Schoeler, G. Kumaraswamy, F. Caruso, Investigation of the influence of polyelectrolyte charge density on the growth of multilayer thin films prepared by the layer-by-layer technique, Macromolecules, 2002,35(3): 889-897.
    [155] W.Q. Jin, A. Toutianoush, and B.Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir, 2003,19:2550-2553.
    [156] S.U. Hong, R. Malaisamy, and M.L. Bruening, Separation of fluoride from Other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 2007,23:1716-1722.
    [157] N. Li, Z.Z. Liu, S.G. Xu, Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics, J. Membr. Sci., 2000,169:17-28.
    [158] C.C. Chen, B.H. Chiang.Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes, J. Membr. Sci., 1998,143: 65-73.
    [159] G.J. Zhang, W.L. Gu, S.L. Ji ,et al. Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures, J .Membr. Sci, 2006,280 : 727-733.
    [160] N.W. OH, J.Jegal, K.H. Lee, Prepartion and characterization of nanofiltration composite membranes using polyacylonitrile (PAN).I.Preparation and modification of PAN supports, J. Appl. Polym. Sci., 2001, 80: 1854-1862.
    [161] N.W. OH, J.Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN).II.Preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci., 2001,80 (14): 2729-2736.
    
    
    [162] J. Choi, M.F. Rubner, Influence of the degree of ionization on weak polyelectrolytemultilayer assembly, Macromolecules, 2005, 38:116-124.
    
    [163] A.I. Petrov, A.A. Antipov, G.B. Sukhorukov, Base-acid equilibria in polyelectrolytesystems: from weak polyelectrolytes to interpolyelectrolyte complexes and multilayeredpolyelectrolyte shells, Macromolecules, 2003, 36:10079-10086.
    
    [164]何曼君,陈维孝,董西侠,高分子物理,复旦大学出版社,上海,2000.
    
    [165] B. Tatineni, M. Hideyuki, Adsorption characteristics of As(III) and As(V) with titaniumdioxide loaded Amberlite XAD-7 resin, Anal. Sci., 2002,18:1345-1349.
    
    [166] S. Irdemez, N. Demircioglu, Y.S. Yidiz, et al., The effects of current density and phosphateconcentration on phosphate removal from wastewater by electrocoagulation usingaluminum and iron plate electrodes, Sep. Purif. Technol. 2006, 52:218-223.
    
    [167] A.E. Yilmaz, R. Boncukcuoglu, M.M. Kocakerim, et al., The investigation of parametersaffecting boron removal by electrocoagulation methodJ. Hazard. Mater.,2005,125:160-165.
    
    [168] A.E. Yilmaz, R. Boncukcuoglu, M.T. Yilmaz, et al., Adsorption of boron fromboron-containing wastewaters by ion exchange in a continuous reactor, J. Hazard. Mater.,2005,117:221-226.
    
    [169] R. Boncukcuoglu, A.E. Yilmaz, M.M. Kocakerim, et al., An empirical model for kineticsof boron removal from boron-containing wastewaters by ion exchange in a batch reactor,Desalination, 2004,160:59-166.
    
    [170] A. Mellah, D. Benachour , Solvent extraction of heavy metals contained in phosphoricacid solutions by 7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline in kerosene diluentHydrometallurgy, 2006, 81:100-103.
    
    [171] Nightingale, E.R.,Jr., Phenomenological theory of ion salvation. Effective radii ofhydrated ions, J. Phys. Chem., 1959,63:1381.
    
    [172] I. Bellobono, B. Marcandalli, E. Selli, D. Comi, L. Righetto, Photosynthetic membranes.A model study of the influence of photoinitiated grafting and graft polymerization of1,6-hexanediol diacrylate and 4-(N-ethyl,N-2-acryloxyethyl)amino-4'-nitro-azobenzene, asco-monomers, onto polypropylene ribbon, on permeation and diffusion coefficients ofoxygen and nitrogen Polym. Photochem., 1985, 6: 339-346.
    [173] I. Bellobono, E. Selli, B. Marcandalli, D. Comi, Photosynthetic membranes III: Influence of photo-cross-linking on permeation and diffusion coefficients of hydrogen and carbon monoxide through asymmetric membranes prepared by photografting of 1,6-hexanediol diacrylate onto cellulose, J. Photochem.,1986, 35:231-237.
    [174] I.Bellobono, M. Zeni, E. Selli, B.J. Marcandalli, Photosynthetic membranes IV: kinetic investigation of photoinitiated grafting and photo-cross-linking of an epoxydiacrylate resin onto cellulose, Photochem,1986, 35:367-374.
    [175] I. Bellobono, F. Muffato, C.Ermondi, E. Selli, L. Righetto, Gas separation membranes containing carbon immobilized by photochemical grafting onto polymers, J. Membr. Sci., 1991,55:273-281.
    [176]S.Matsui, T. Ishiguro, A. Higuchi, T.Nakagawa, Memory effects in polymers.I. Orientational memory in the molten state; its relationship to polymer structure and influence on recrystallization rate and morphology, J. Appl. Polym. Sci. Part B: Polym. Phys., 1997, 35: 2259-2268.
    [177] S. Matsui, T. Nakagawa, Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. II. Irradiation of membranes with high-pressure mercury lamp, J. Appl. Polym. Sci., 1998, 67:49-60.
    [178] M. Ulbricht, H. Schwarz, Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation, J. Membr. Sci., 1997,136:25-33.
    [179] R. Darkow, M. Yoshikawa, T. Kitao, G. Tomaschewski, J. Schellenberg, Photomodification of a poly(acrylonitrile-co-butadiene-co-styrene) containing diaryltetrazolyl groups J. Polym. Sci.: Part A.: Polym. Chem., 1994, 32:1657.-1664.
    [180] S. Chadda, B. McCarry, R. Childs, C. Rogerson, I. Tse-Sheepy, J.Dickson, Novel thin-film composite membranes containing photoreactive groups part I: Choosing the photoreactive group, J. Appl. Polym. Sci., 1987, 34:2713-2732.
    [181] S.I. Kuroda, A. Nagura, K. Horh and I. Mita. Degration of aromatic polymers-III.crosslingking and chain scission during photodegradation of polysulphones, Eur. polym. J., 1989,25:621-627.
    [182] T.Yamashita, H.Tomitaka, T.Kudo, K.Horie, et al., Degradation of sulfur-containing aromatic polymers: photodegradation of polyethersulphone and polysulfone, Polym. Degrad. Stab., 1993,39:47-54.
    [183] S.I. Kuroda, I.Mita. Degradation of aromatic polymers: Part IV-Effect of temperature and light intensity on the photodegradation of polyethersulfone. Polymer degradation and stability, 1990,27:257-270.
    [184] H. Yamagishi, J.V. Crivello, G Belfort. Development of a novel photochemical technique for modifying poly(acrylsulfone) ultrafiltration membranes, J. Membr. Sci., 1995, 105:237-247.
    [185] P.S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: a new look at Cassie's and Wenzel's laws, Langmuir, 1998,14: 6772-6780.
    [186] D.Chvedov and A. Arnold, Effect of surface topography of a rolled sheet on contact angle, Ind. Eng. Chem. Res., 2004,43:1451-1459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700