功能性抗体库技术分离鉴定肺癌功能性基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Screening and Identification of Lung Cancer Functional Genes by Functional Monoclonal Antibody Library
  • 作者:陈立钊
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:2008
  • 导师:杨治华
  • 学科代码:100102
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-05-01
摘要
肺癌是严重威胁人类生命与健康的恶性肿瘤,发病率、死亡率均位居第一位。目前治疗肺癌的三大手段仍未能显著降低肺癌的死亡率。分子靶向治疗在临床肿瘤治疗中显示出良好的应用前景,也是目前肿瘤研究的热点。实现分子靶向治疗的前提和关键是获得肿瘤特异表达的功能性靶分子、靶基因。为此,本文采用大容量功能性抗体库技术筛选肺癌功能性单抗,再通过功能性抗体分离鉴定肺癌功能性基因。并探讨功能性基因在肺癌发生发展中所起的作用功能及其分子作用机理。从而为肺癌的靶向治疗提供有价值的分子靶标。
     第一部分功能性单抗库技术筛选分离、鉴定肺癌功能性抗原基因
     采用新鲜肺癌组织分离的有核细胞免疫BALB/c小鼠,融合制备库容为1440个克隆的肺癌功能性单克隆抗体库。免疫细胞化学筛选获得377株稳定分泌抗人肺癌细胞单抗的杂交瘤,通过肺正常组织的免疫组化实验,排除271株与正常肺组织阳性反应的单克隆抗体,获得106株识别肺癌组织中抗原的表达高于正常肺组织表达水平的功能性单抗。肺癌及其正常肺组织的配对组织芯片检测证实67株单抗与肺癌组织呈强阳性反应,而与正常肺组织不反应或弱反应。这些单抗识别的抗原有表达于细胞膜的,也有表达于胞浆和/或胞核的。MTT法测定106株肺癌单抗对肺癌细胞增殖生长的影响,发现抑制肺癌细胞增殖生长的单抗57株,其中,抑制率大于20%的单抗有24株,抑制率在15-20%的单抗22株。RT-CES~(TM)系统实时观察106株单抗对肺癌细胞生长的影响,结果显示49株单抗能够显著抑制肺癌细胞的生长,其中16株单抗抑制率在20%以上,20株单抗抑制率在15-20%,其余单抗抑制率在10-15%。106株单抗的亚类分析证明既有不同的重链类和亚类(IgM,IgA,IgG1,IgG2a及IgG2b),也有不同的轻链型(κ,λ),表明本研究制备的功能性单抗库有很好的多样性。挑选27株功能单抗进行了裸鼠体内移植瘤抑制实验,结果证实23株单抗在裸鼠体内能显著抑制肺癌的生长和瘤重,其中6株单抗体内抑瘤率在70%以上,8株单抗抑瘤率在50-70%,另外6株单抗抑瘤率在30-50%,其余3株抑瘤率在30%以下,这些结果也提示功能性单抗所识别的抗原基因是功能性基因,具有促进肺癌细胞增殖生长功能。选取其中的5株功能性单抗分离鉴定其功能性抗原蛋白,运用免疫亲和层析和MALDI-TOP-PMF质谱技术鉴定获得了3个肺癌功能基因。单抗1E2识别的抗原基因为氨甲酰磷酸合成酶Ⅰ(CPS1),5B8抗体识别的抗原基因为理阿诺碱受体1(RyR1),13H3抗体所识别的抗原基因为凝集素半乳糖苷结合可溶3结合蛋白基因(LGALS3BP或者Mac-2BP)。
     第二部分肺癌抗原Mac-2BP基因功能的研究
     文献报道Mac-2BP在大部分肿瘤组织高表达,但是关于Mac-2BP在肿瘤发生发展中所起的功能作用却很少有研究报道。因此,以Mac-2BP为研究对象,进行多种功能实验研究,揭示Mac-2BP基因在肺癌发生发展中的功能作用及其在临床疾病研究方面的应用价值。采用基因敲降及免疫共沉淀技术验证质谱鉴定结果,证明肺癌功能单抗13H3识别的抗原基因确实为Mac-2BP。应用细胞免疫荧光和免疫细胞化学实验证实Mac-2BP在多种肺癌细胞有较高水平的表达。免疫组化分析105例肺癌病人癌组织及其配对正常肺组织Mac-2BP基因的表达,发现Mac-2BP在肺癌组织的表达显著高于正常肺组织,同时还发现Mac-2BP的表达水平与肺癌患者的癌组织分化程度具有显著相关性,这些结果提示Mac-2BP可作为一种新的肺癌分子标志物,具有临床诊断及预测病人预后状况价值。应用抗体13H3检测分析Mac-2BP基因体外对肺癌细胞增殖、粘附及侵袭迁移功能的影响,未观察到阳性结果,其原因可能是Mac-2BP在所检肺癌细胞体外培养分泌表达蛋白水平及含量太低所致。应用纯化后抗体再次进行体内抑瘤实验,评估抗体对肺癌生长的影响,13H3单抗能显著抑制肺癌移植瘤生长,且具有剂量依赖关系。结果发现其高、中、低剂量的抑制率分别为60.14%、54.86%和43.84%,进一步证明13H3是功能性肺癌单抗,Mac-2BP基因是肺癌功能性基因,它能促进肺癌的增殖生长。为了从基因水平进一步证明Mac-2BP表达在肺癌细胞生长的促进作用,采用RNAi干扰技术敲降肺癌细胞Mac-2BP基因的表达,检测基因敲降前后肺癌细胞增殖、粘附及迁移侵袭的变化。结果证明Mac-2BP基因敲降后肺癌细胞的增殖能力降低38.5%,肺癌细胞与胞外基质collagenⅠ的粘附降低40%,与matrigel粘附降低50%,与FN粘附水平减少35%以上,肺癌细胞体外迁移和侵袭能力分别下降27%和29%。应用稳转shRNA敲降Mac-2BP基因表达的体外功能实验研究也获得了相似的结果。同时,体内抑瘤实验研究结果也表明Mac-2BP基因敲降后,肺癌细胞在裸鼠体内的增殖生长能力显著降低,其对瘤重的抑制率高达80%。基因敲降的体内外功能实验研究再次证明Mac-2BP是一个具有促进肺癌细胞生长增殖、促进与胞外基质粘附和迁移侵袭功能的功能性基因。为了探讨Mac-2BP促进肺癌生长增殖的作用机制,我们测定了Mac-2BP基因敲降后对肺癌细胞细胞周期变化的影响。研究结果发现该基因敲降后,肺癌细胞发生G1期阻滞,致使增殖减慢,进一步研究发现Mac-2BP基因敲降后,抑癌基因p27诱导上调表达。这表明Mac-2BP基因通过调节P27蛋白水平,影响细胞周期进程,从而促进肺癌细胞在体内外的快速增殖和生长。因此该基因具有作为肺癌靶向治疗的一个新的功能性分子靶标的潜力。
Lung cancer is one of the most common malignancies worldwide with highest incidence and mortality rate.However,the traditional curative methods have only limited effect on reducing the mortality of lung cancer.Presently molecular target therapy shows great promise in clinical treatment of cancer and became one of the hot research fields of cancer. To develop a effective targeting therapy,the initial and key step is to identify the tumor specially expressed molecules.To this end,a novel high-capacity functional monoclonal antibody library screening technique was employed,and then the functional genes was isolated by the functional antibodies.We then studied the functional relevance of these genes in the development of lung cancer and the underlying molecular mechanism.
     Part1.Screening and identification of lung cancer related functional genes by functional monoclonal antibody library
     BALB/c mice were immunized with cancerous cells isolated from fresh human lung cancer tissue.The spleen cells were fused with SP2/0 cells to establish a lung cancer functional monoclonal antibody library containing 1440 mAbs.By ICC 377 clones were identified which stably secrete mAbs against human lung tumor cells,271 of these clones were abandoned because of immunohistochemical reacting with normal lung epithelium. Then the remaining 106 clones were further assayed by tissue arrays and 67 of these clones showed predominantly tumor tissues reactivity.106 clones were screened by MTT method and 57 clones displayed ability of proliferation suppression to cancer cells,including inhibitory rate of 24 clones over 20%and 22 clones over 15%.RT-CES~(TM) system was also employed to estimate effects on cancer cells growth,the results showed that 49 clones can significantly inhibit cell growth of lung cancer,including inhibitory rate of 24 clones over 20%,20clones clones over 15%,The rest clones showed inhibitory rate by about 10-15%. Subclass of 106 clones identified,including IgM,IgA,IgG1,IgG2a and IgG2b and light/heavy chain includingκ,λ.Those result demonstrated that monoclonal antibodies of this library were diverse.27 mAbs were chosen from the antibody library for further estimating the inhibitory effect on carcinoma xenograft in nude mice.23 clones could significantly inhibit tumor growth and tumor weight.Among them,the inhibitory rates of six clones were above 70%,and eight were about 50-70%,6 of these clones were 30-50%,3 clones were under 30%.The result indicated that the antigens recognized by these mAbs might contribute to growth of lung cancer.5 mAbs were finally produced for antigen identification by immuno-affinity and MALDI-TOP-PMF.At last we acquired 3 functional genes including(CPS1) identified by1E2,RyR1 by 5B8,LGALS3BP by 13H3.
     Part2.Studies on the gene functions of Mac2-BP
     Several studies have reported that Mac2-BP was overexpressed in carcinoma tissues, however,so far few studies focus on the functional role of Mac2-BP in cancer progression. Therefore,we designed functional studies as follows to reveal the role of Mac2-BP in lung cancer progression as well as its potential application in clinic.We firstly applied RNA interference and immunoprecipitation to confirm the results of mass spectrometry.Then,cell immunofluorescence and cell immunocytochemisry showed that Mac2-BP was high expressed in most lung cancer cell lines.Immunohistochemistry assay on 105 case of lung cancers paired with normal lung tissues revealed that Mac2-BP was significantly overexpressed in cancer tissue,and the overexpression of Mac2-BP was correlated with lung cancer differentiation.13H3 mAb had no effects tumor cell growth,adhesion,migration and invasion in vitro,which might due to Mac2-BP was barely secreted by lung tumor cells in vitro.However,when purified 13H3 mAb was to used to treat lung cancer xenograft in vivo a significant tumor growth inhibition was observed by a dose-dependent manner,with the inhibition rates of 60.14%,54.86%and 43.84%for the high,middle and low dosage of 13H3 respectively.These results showed that 13H3 was a functional mAb and Mac2-BP was a lung cancer associated gene that involved in tumor growth.We then applied RNAi to further revealed the role of Mac-2BP in lung cancer development.Transient RNAi,revealed that downregulating Mac-2BP could suppress cell proliferation,cell adhesion with Matrix of CollagenⅠ,Matrigel or FN,cell migration and invasion by about 38.5%,40%,50%,35%, 27%and 29%respectively.Stable RNAi transfection also certified these result in vitro.We also applied ex vivo to study the role of Mac2-BP on xenograte tumor growth.Mac2-BP knockdown could inhibit 80%xenograft tumor burden.The Mac2-BP knockdown study once again showed that Mac2-BP was a functional gene associated with lung cancer cell proliferation,matrix adhesion,migration and invasion.To further study the mechanism of Mac2-BP on lung cancer cell proliferation,we assayed the cell cycle after RNAi and revealed that Mac2-BP knockdown lead to G1 arrest.Further studies revealed that downregulation of Mac2-BP was correlated with P27 upexpression.These results indicated that Mac2-BP promotes lung cancer cell proliferation in vitro and in vivo through down-regulation P27 to regulate cell cycle.Together,these results demonstrated that Mac2-BP gene was a novel potential functional target for lung cancer therapy.
引文
1. Garcia M, Global Cancer Facts & Figures 2007. American Cancer Society, 2007.
    
    2. Travis WD, Lubin J, Ries L, et al. United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer. 1996,77(12): 2464-70.
    
    3. Wingo PA, Ries LA, Giovino GA, et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J NatI Cancer Inst. 1999,91(8):675-90.
    
    4. Elias AD. Small cell lung cancer: state-of-the-art therapy in 1996.Chest. 1997, 112(Suppl 4):251S-58S.
    
    5. Liang P, Pardeen AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257(5072):967-71
    
    6. Liang P, Lidia Averboukh, et al. Differential Display and Cloning of Messenger RNAs from Human Breast Cancer versus Mammary Epithelial Cells. Cancer Res. 1992 52:6966-68.
    
    7. Hakvoort TB, Leegwater AC, et al. Identification of enriched sequences from a cDNA subtraction-hybridization procedure. Nucleic Acids Res, 1994, 22:878-79.
    
    8. Ralph D, McClelland M, Welsh J. RNA fingerprinting using arbitrarily primed PCR identifies differentially regulated RNAs in mink lung (My l Lu) cells growth arrested by transforming growth factor betal. Proc Natl Acad Sci USA, 1993, 90:10710-14.
    
    9. Mou L, Miller H, Li J, et al. Improvements to the differential display method for gene analysis. Biochem Biophys Res Comm, 1994, 199:564-69.
    
    10. Miele G, MacRea L, Mebride D, et al. Elimination of false positive generated through PCR re-amplification of differential displayer cDNA. Biotechniques, 1998, 25(1): 138-44
    
    11. Bae CD, Sung YS, et al. Up-regulation of cytoskeletal-associated protein 2 in primary human gastric adenocarcinomas. J Cancer Res, 2003, 129(11):621-30.
    
    12. Ebert MP, Gunther T, et al. Expression of metallothionein II in intestinal metaphases, dysplasia, and gastric cancer. Cancer Res, 2000, 60(7): 1995-01.
    
    13. Maeng HY, Choi DK, et al. Appearance of osteonectin-expressing fibroblastic cells in early rat stomach carcinogenesis and stomach tumors induced with N-Methyl-N'- NITRO-N-nitrosoguanidine. Jpn J Cancer Res, 2002, 93(9):960-67.
    
    14. Zhang WJ, Liu WT, Xu Y, et al. Study of genes related to gastric cancer and its premalignant lesions with fluorescent differential display. Chinese Journal of Cancer, 2004, 23(3):264-68.
    
    15. Yousef GM, Borgono CA, Popalis C, et al. In-silico analysis of kallikrein gene expression in pancreatic and colon cancers. Anticancer Res, 2004, 24( 1 ):43-51.
    
    16. Traicoff JL, De Marchis L, et al. Characterization of the human polymeric immunoglobulin receptor (PIGR) 3'UTR and differential expression of PIGR mRNA during colon tumor genesis. J Biomed Sci, 2003,10(6):792-04.
    17. Guan RJ, Ford HL, FuYineng, et al. Drg-1 as a differentiation related, putative metastatic suppressor gene in human colon cancer. Cancer Res, 2001, 60:749-55.
    
    18. Tortola S, Marcuello E, Risques RA, et al. Overall deregulation in gene expression as a novel indicator of tumor aggressiveness in colorectal cancer. Oncogene, 1999, 18(30):4383-7.
    
    19. Fischer H, Stenling R, Rubio C, et al. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2.Carcinogenesis, 2001, 22(6):875-8.
    
    20. Yokozaki H, Yasui W, Tahara E.Genetic and epigenetic changes in gastric cancer. Int Rev Cytol, 2001,20(4):49-55.
    
    21.于建华,陈诗书.荧光差异显示PCR克隆参与胃腺癌转移的基冈well.中国生物化学与分子生物学报,2002,18(2):134-38.
    
    22. Williams SJ.Gotley DC, Antalis TM. Human trypsinogen in colorectal cancer. Int J 2001, 93(1):67-73.
    
    23. Yu B, Li SY, AN P, et al. Differential display of mRNA for hepatic metastasis associated genes of large intestine carcinoma. Chinese Journal of Cancer, 2000, 19(9):883-90.
    
    24. Cyama T, Miyoshi Y, Koyama K, et al. Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer, 2000,29(1):9-15.
    
    25. Shi Y, Zhai H, Wang X, et al. Ribosomal proteins S13 and L23 promote multi-drug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res, 2004, 296(2):337-46.
    
    26. Violetts S, Festor E, et al. Reg IV, a new member of the regenerating gene family, is over-expressed in colorectal carcinomas. Int J Cancer, 2003,103(2): 185-93.
    
    27. Zhang Z, DuBois RN. Par-4, a pro-apoptotic gene, is regulated by NSAIDs in human colon carcinoma cells. Gastroenterology, 2000, 18(6): 1012-7.
    
    28. Akashi H, Han HJ, Iizaka M, et al. Growth-suppressive effect of non-steroid drugs on 11 colon cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulfides. Int J Cancer, 2000, 88 (6):873-80.
    
    29. Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA.1996,93(12):6025-30.
    
    30. De Nigris F, Visconti R, et al. Overexpression of the HIP gene coding for a heparin/heparan sulfate-binding protein in human thyroid carcinomas. Cancer Res, 1998, 58(20):4745-51.
    
    31. Calitano D,Monaco C, Santelli G, el al. Thymosin beta-10 gene overexpression correlated with the highly malignant neoplastic phenotype of transformed thyroid cells in vivoandin vitro.Cancer Res, 1998,58(4),823-28.
    
    32. Kuang WW, Thompson DA, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor positive breast carcinoma cell line.Nucleic Acids Res, 1998, 26(4): 1116-23.
    
    33. Villalva C, Trempat P, Zenou RC, et al. Gene expression profiling in lymphomas by suppression subtractive hybridization. Bull Cancer, 2001, 88(3):315-19.
    
    34. Pitzer C, Stassar M, Zoller M. Identification of renal-cell-car-cinoma-related cDNA clones by suppression subtractive hybridization. J Cancer Res Cli Oncol, 1999, 125(8):487-92.
    
    35. Uekawa N, Terauchi K., Nishikimi A, et al. Expression of TARSH gene in MEFs senescence and its potential implication in human lung cancer. Biochem Biophys Res Commun, 2005, 329(3): 1031-38.
    
    36. An Q, Pacyna-Gengelbach M, Schluns K, et al.Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model forin vitrostudy of lung carcinogenesis. Int J Cancer, 2003, 103(2): 194-204.
    
    37. Devoogdt N, Zhang J, et al.Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells. Proc Natl Acad Sci USA, 2003, 100(10):5778-82.
    
    38. Smith G P. Filamentous fusion phage novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-17.
    
    39. Parmley SF, Smith GP. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 1988, 73:305-18.
    
    40. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990, 348:552-54.
    
    41. Scott JK. Searching for peptide ligands with an epitope library. Science, 1990, 249:386-90.
    
    42. Devlin J J,Panganiban L C,Devlin P E.Random peptide libraries: a source of specific protein binding molecules. Science, 1990,249:404-406.
    
    43. Cwirla S E, Peters E A, Ronald W B, et al. Peptide on phage: a vast library of peptide for identifying ligands.Proc Natl Acad sci,1990,87(16):6378-82.
    
    44.张忠东.噬菌体展示技术的原理及应用.世界华人消化杂志.2003,2(4):459-61..
    
    45. Romanov V I, Durand D B. Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate, 2001, 47(4):239-51.
    
    46. Zhang Y, et al. Panning and Identification of a Colon Tumor Binding Peptide from a Phage Display Peptide Library. J Biomol Screen, 2007, 12(3):429-35.
    
    47. Kelly KA, Tsourkas A, Tsourkas A. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res, 2005, 96:327-36.
    
    48. Hetian L, Shumei S. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem, 2002, 277(45):43137-42.
    
    49. Burg MA, Arap W, Arap W. NG2 proteoglycan-binding peptides target tumor neovasculature Cancer Res. 1999,59(12):2869-74.
    
    50. Xu L, Jin B Q, Fan D M. Selection and identification of mimic epitopes for gastric cancer associated antigen MG7-Ag.Cancer Ther, 2003,2(3):301-06.
    
    51. Velculescu VE, Zhang L, Vogelstein B,et al.Serial analysis of gene expression. Science, 1995, 270 (5235): 368-71.
    
    52. Velculescu VE, Zhang L, Vogelstein B,et al.Serial analysis of gene expression. Science, 1995, 270(5235):484-87.
    
    53. WU Zhige, ZOU Fangdong, Powerful Technology of Serial Analysis of Gene Expression. Sichuan Journal of Zoology. 2006, 25(3):653-57
    
    54. ZHANG L, ZHOUW, VELCULESCUV E, et al. Gene Expression Profiles in Normal and Cancer Cells. Science, 1997, 276(5316): 1268-72.
    
    55. SAURABH SAHA, ALBERTO BARDELLI, et al. A Phosphatase Associated with Metastasis of Colorectal Cancer. Science, 2001, 294(5545): 1343-46.
    
    56. ZENG Q, DONG JM, GUO K, PRL-3 and PRL-1 Promote Cell Migration, Invasion, and Metastasis.Cancer Res, 2003, 63(11):2716-22.
    
    57. HIBIK, LIUQ, BEAUDRY G A, Serial Analysis of Gene Expression in Non-small Cell Lung Cancer. Cancer Res, 1998, 58(24):5690-94.
    
    58. BRICHORY F, BEER D, et al. Proteomics based Identification of Protein Gene Product9.5 as a Tumor Antigen that Induces a Humoral Immune Response in Lung Cancer. Cancer Res, 2001, 61(21):7908-12.
    
    59. El-Rifai W, Moskaluk CA,et al. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res, 2002, 62(23):6823-26.
    
    60. Ryu B, Jones JB,et al.Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res, 2002, 62:819-26.
    
    61. Zhou W, Sokoll L, Bruzek DJ,et al. Identifying markers for pancreatic cancerby gene expression analysis.Cancer Epidemiol. Biomark.& Prev, 1998, 7(2):109-12.
    
    62. Sahin F, Qiu W, WilentzRE,etal.RPL38, FOSL1, andUPP1 are predominantly expressed in the pancreatic ductal epithelium. Pancreas, 2005, 30(2): 158-67.
    
    63. Van Baal JW,Milano F,RygielAM,etal.A comparative analysis by SAGE ofgene expression profiles of Barrett's esophagus, normal squamous esophagus and gastric cardia. Gastroenterology, 2005, 129(4):274-81.
    
    64. Heller M J. DNA microarray technology: device, systems, and applications. Annu Rev Biomed Eng, 2002,4:129-53.
    
    65. Kurella M,Hsiao L L,Yoshida T,et al. DNA microarray analysis of complex biologic processes. J Am Soc Nephrol,2001, 12(5): 1072-78.
    
    66.涂智杰,周建光等,DNA微阵列技术及其在肿瘤生物学中的应用.生物技术通讯,2006,17(3):451-54
    
    67. Tanwar MK, Holland EC, Holland EC, Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 2002, 62(15):4364-68.
    
    68. Dhanasekaran SM, Barrette R, et al. Delineation of prognostic biomarkers in prostate cancer. Nature, 2001.412(6849):822-26.
    
    69. Mok SC, Skates S, Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst, 2001, 93 (19):1458-64.
    
    70. Clark EA, Golub TR, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 2000,406(6795):532-35.
    
    71. Heighway J. Knapp T, et al. Expression profiling of primary non-small cell lung cancer for target identification. Oncogene, 2002, 21(50):7749-63.
    
    72. Sakakura C. Hagiwara A. Nakanishi M. Differential gene expression Profiles of gastric cancer cells established from primary tumor and malignant ascites. Br J Cancer, 2002, 87(10): 1153-61.
    
    73. Hasegawa S. FurukawaY, et al. Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23,040 genes.Cancer Res, 2002, 62(23):7012-17.
    
    74. Suganuma K. Kubota T, et al. Possible chemoresistanace-related genes for gastric cancer detected by cDNA microarray. Cancer Sci, 2003, 94(4):355-59.
    
    75. Yang GP, et al. Combining SSH and CDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res, 1999, 27(6): 1517-23
    
    76. Jiangchun Xu, John A, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray.Cancer Res. 2000, 60(5): 1677-85.
    
    77.何志巍,谢鹭等.一个与人鼻咽癌相关新基因的克隆.科学通报,2000,45(11):1168-72.
    
    78. Blackstock WP, Weir MR Proteomics: quantitative and physical mapping of cellular proteins.Trends Biotechnol, 1999, 17(3):121-26
    
    79. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250(10): 4007-21.
    
    80. Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis, 1995,16:1034-59.
    
    81. Leimgruber RM, Malone JP. Development of improved cell lysis, solubilization and imagingapproaches for proteomic analyses. Proteomics, 2002, 2:135-44.
    
    82. Jonsson AP. Mass spectrometry for protein and peptide characterization. Cell Mol Life Sci 2001, 58:868-84.
    
    83. Hutchens TW, Yip TT. New desoprtion strategies for the mass-spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 1993, 7:576-80.
    
    84. Issaq HJ, Veenstra TD, et al. The SELDI-TOF-MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 2002, 292(3): 587-92.
    
    85. Wright GL, Cazares LH, et al. Proteinchip surface enhanced laser desorption/ ionisation (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer and Prostatic Diseases, 1999,2(5/6): 264-76.
    
    86. Jinong Li, Zhen Zhang, et al. Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer . Clinical Chemistry 2002,48(8): 1296-304.
    
    87. Petricoin EF, Ardekani AM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002, 359(9306): 572-77.
    
    88. LIM SO, PARK SJ, et al. Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun, 2002, 291(4): 1031-37.
    
    89. LE NAOUR F, et al. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res, 2001,7(11 ):3328-35.
    
    90. VLAHOU A, SCHELLHAMMER P F. Development of a novel proteomic approach for the bladder in urine. Am J Pathol, 2001, 158(4): 1491-502.
    
    91. Bryumor W, Robert S, Shannon B, et al. Detection of early-stage cancer by serum protein analysis.Am Lab, 2001, 33(9):32-6.
    
    92. Luftner D, Possinger K. Nuclear matrix proteins as biomarkers for breast cancer. Expert Rev Mol Diagn, 2002, 2(1):23-31.
    
    93. Muller S, Zirkel D, et al. Retention of imprinting of the human apoptosis related gene TSSC3 in human brain tumors. Hum Mol Genet, 2000, 22(5):757-63.
    
    94. ROSTY C. Identification of hepatocarcinoma intestine pancreas/pancreatitis associated protein 1 as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res, 2002, 62(6): 1868-75.
    
    95. WU W, TANG X, et al. Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis, 2002, 19(4):319-26.
    
    96. Cui JF,Liu YK, et al.Differential proteomic analysis of human hepatocellular carcinoma cell line metastasis-associated proteins.J Cancer Res Clin Oncol, 2004, 130(10):615-22.
    
    97. Ding SJ, Li Y, et al.Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics, 2004,4(4):982-94.
    
    98. Xie L, et al. Proteomics-based identification of Maspin differential expression in bronchial epithelial immortalized cells and malignant transformation cells. Ai Zheng, 2003, 22(5):463-66.
    
    99. Tachibana M, Ohkura Y, et al.Expression of apolipoprotein Al in colonic adenocarcinoma. Anticancer Res, 2003, 23(5b):4161-67.
    
    100. Gisela B,Robert E,et al.Nuclear matrix protein alterations associated with colon cancer metastasis to the liver.Clin Cancer Res,2002,8(10):3039-45.
    
    101. Bai X, Li SY, et al.Proteome study of colorectal cancer genesis and hepatic metastasis. Zhonghua Yi Xue Za Zhi, 2005,85(30):2128-31.
    
    
    102. Alfonso P, et al.Proteomic expression analysis of colorectal cancer by two dimensional differential gel electrophoresis. Proteomics, 2005,5( 10):2602-11.
    
    103. Su D,Xu SH. Comparative proteomics analysis of differentially expressed metastasis associated proteins in human ovarian cancer cell lines. Zhonghua Fu Chan Ke Za Zhi, 2005, 40(9):619-23.
    
    
    104. Eustace BK, Sakurai T, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness.Nat Cell Biol, 2004, 6(6):507-14.
    
    105. Vander Bruggen P. Traversari C. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991,254:1643-55.
    
    106. Boon T, Van der Bruggen P. Human tumor antigens recognized by cytolytic T lymphocytes. J Exp Med. 1996,183:725-33
    
    107. Pascal Chaux, Rosalie Luiten, et al. Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by In Vitro Stimulation with Dendritic Cells Transduced with MAGE-A1. J Immunol, 1999, 163(5):2928-36.
    
    108. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today, 1997, 18:175-82.
    
    109. Wang R-F. Wang X. et al. Development of a retrovirus-based complementary DNA expression system for the cloning of tumor antigens. Caner Res. 1998, 58:3519-27
    
    110. Sahin U, Tureci, Schmitt H, et al.Human neoplasms elicit multiple specific immune responses in the autologous hos.Proc Natl Acad Sci USA, 1995, 92(25): 11810-13.
    
    111. Chen YT,Gure AO,Tsang S,et al.Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library.Proc Natl Acad Sci USA, 1998, 95(12):6919-25.
    
    112.舒峻,SEREX 在肿瘤抗原分析中的研究进展.国外医学生理病理科学与临床分册,2002,22(6):577—79
    
    
    113. Gure AO, Tureci O, et al. A multiple family with several members transcribed in normal testis and human cancer. Int J Cancer, 1997, 72(6):965-71.
    
    114. 87. Chen YT, Scanlan MJ, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci, 1997, 94(5): 1914-18.
    
    115. Scanlan MJ, Chen YT, Williamson B, et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer, 1998, 76(5):652-58.
    
    116. Jager D, Stockert E, et al. Cancer/testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: Characteritation of tissue-specific ING1 transcripts and a homology gene. Cancer Res, 1999, 59(24):6197-204.
    
    117. Scanlan MJ, Gordan JD, et al. Antigens recognized by autologous antibody in patients with renal cell carcinoma. Int J Cancer, 1999, 83(4):456-64.
    
    118. Jager D, Stockert E, et al. Serological cloning of a melanoma rab guanosine 5'-triphonsphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Cancer Res, 2000, 60(13):3584-91.
    
    119. Toshiro O, Shuichiro S, et al. Serological analysis of Balb/c methylcholanthrene sarcoma METH A by SEREX: Identification of a cancer/testis antigen. Int J Cancer, 2000, 88(1 ):845-51.
    
    120. Greiner J, Kinghoffer M, et al. Simultaneou expression of different immunogenic in acute myeloid leukemia. Exp Hematol, 2000, 28(12): 1413-22.
    
    121. Honami N, Yang YQ, et al. A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells. Proc Natl Acad Sci, 2001, 98(7):4060-465.
    
    122. Natkatsura T, Senju S, et al. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun, 2001, 281(4):936-44.
    
    123. Jager D, Stockert E,et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res, 2001, 61(5):2055-61.
    124.Kohler G,Milstein C.Continuous cultures of fused cells secreting antibody of predefined specificity.Nature,1975,256(5517):495-97.
    125.司徒镇强,吴军正主编.《细胞培养》.2004,315-17.
    126.Koprowski H.et al.Colorectal carcinoma antigens detected by hybridoma antibodies.Somatic Cell Genet,1979,5(6):957-71.
    127.Liao SK,et al.Common neuroectodermal antigens on human melanoma,neuroblastoma,retinoblastoma,glioblastoma and fetal brain revealed by hybridoma antibodies raised against melanoma cells.Eur J Immunol,1981.11(6):450-54.
    128.Taniyama T,Watanabe T,Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumoricidal macrophages.J Exp Med,1982.156(4):1286-91.
    129.Bhattacharya M,Chatterjee SK,Identification of a human cancer-associated antigen defined with monoclonal antibody.Cancer Res,1984.44(10):4528-34.
    130.Parks WM,et al.Identification and characterization of an endothelial,cell specific antigen with a monoclonal antibody.Blood,1985,66(4):816-23.
    131.Yan X,Lin Y,et al.A novel anti-CD146 monoclonal antibody,AA98,inhiblts angiogenesis and tumor growth.Blood,2003,102(1):184-91.
    132.Taniguchi K,et al.Molecular cloning and characterization of antigens expressed on rat tumor vascular endothelial cells.Int J Cancer.2000,86(6):799-05.
    133.Gougos A,Letarte M.Biochemical characterization of the 44G4 antigen from the HOON pre-B leukemic cell line.J Immunol.1988,141(6):1934-40.
    134.Lindvall ML,T Brodin.A rat monoclonal antibody 4D7 produced by a hybridoma established from a yolk-sac tumor-bearing rat binds selectively to the stage-specific embryonic antigen SSEA-1.Int J Cancer,1987.40(1):94-8.
    135.Tsai CC,et al.Monoclonal antibody to human osteosarcoma:a novel Mr 26,000 protein recognized by murine hybridoma TMMR-2.Cancer Res,1990,50(1):152-58.
    136.Tomita Y,et al.Molecular identification of a human carcinoma-associated glycoprotein antigen recognized by mouse monoclonal antibody FU-MK-1.Jpn J Cancer Res,2000,91(2):231-38.
    137.Wang S,et al.,Identification of prostate specific membrane antigen(PSMA) as the target of monoclonal antibody 107-1A4 by proteinchip army,surface enhanced laser desorption/ionization (SELDI) technology.Int J Cancer,2001,92(6):871-76.
    138.Lee CH,et al.Identification of the heterogeneous nuclear ribonucleoprotein A2/B1 as the antigen for the gastrointestinal cancer specific monoclonal antibody MG7.Proteomics,2005.5(4):1160-66
    139.Eustace BK,Sakurai T,Stewart JK et al.Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness.Nature cell biology 2004;6(6):507-14.
    140.胡海,冉宁靓等.靶向肿瘤血管内皮细胞抑制人肝癌移植瘤生长的功能性抗体的研制.癌症,2007,26(5):453-7.
    141.遇珑,潘健等.抑制食管癌与肺血管内皮黏附的功能性抗体的制备.中国肿瘤生物治疗杂志,2006,13(5):332-6.
    142.冉宁靓,胡海等.肺癌抑制性抗体及其抗原的鉴定.中国肿瘤生物治疗杂志.2007,14(2):110-4
    143.Zhang Y,Ran Y.Monoclonal antibody to human esophageal cancer endothelium inhibits angiogenesis and tumor growth.Anticancer Res.2006,26(4B):2963-70.
    144.Yang X,Nakao Y,et al.Identification of two novel cellular genes associated with multistage carcinogenesis of human endocervical cells by mRNA differential display.Carcinogenesis,1996,17(3):563-67.
    145.Yu Y,Xu F,et al.NOEY2(ARHI),an imprinted putative tumor suppressor gene in ovarian and breast carcinomas.Proc Natl Acad Sci,1999,96(1):214-19.
    146.POLYAK K,XIA Y,et al.A Model for p53-induced Apoptosis.Nature,1997,389(6648):300-05.
    147.Zhang Huizhen,Ba Yue,et al.Screening and identification of lung cancer associated proteins.J Fouth Mil Med Univ,2007,28(1):6-8.
    148.Canter JA,Summar ML,et al.Genetic variation in the mitochondrial enzyme carbamyl phosphate synthetase I predisposes children to increased pulmonary artery pressure following surgical repair of congenital heart defects:a validated genetic association study.Mitochondrion,2007,7(3):204-10.
    149.Old IJ.Immunotherapy for cancer.Sci Am,1996,275(3):136-43.
    150.Nishiyama K,Berstein G,et al.Cloning and nueleotide sequence of cDNA encoding human liver serine-pyruvateamin aminotrnasferase.Eur J Biochem,1990,194(1):9-18.
    151.Huo R,Zhu H,et al.Molecular cloning,identification and characteristics of a novel isoform of carbamyl phosphate synthetase I in human testis.J Biochem Mol Biol,2005,38(1):28-33.
    152.Liu TH,Li DC,et al.Carbamyl phosphate synthetase I,A novel marker of gastric careinoma.Chin Med J(Engl),1989,102(8):630-38.
    153.Kinoshita M,Miyata M.Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci.Hepatoloyg,2002,36(2):433-38.
    154.Butler SL,Dong H,et al.The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1.Lab Invest,2008,88(1):78-88.
    155.吴士文,马维娅.中央轴空病的研究进展.中华神经科杂志,2006,39(6):418-20.
    1 56.徐东,闫志慧.血清Ryanodine受体抗体检测对胸腺瘤并重症肌无力的诊断价值.2005,45(24):17-18.
    157.Mariot P,et al.,Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells.Prostate,2000,43(3):205-14.
    158.Padar S,et al.,Differential regulation of calcium homeostasis in adenocarcinoma cell line A549 and its Taxol-resistant subclone.Br J Pharmacol,2004,142(2):305-16.
    159.Iacobelli S,et al.Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer.Cancer Res,1986,46(6):3005-10.
    160.Foekens JA,et al.Expression of tumor associated 90K antigen in human breast cancer:no correlation with prognosis and response to first-line therapy with tamoxifen,Int J Cancer,1995, 64(2): 130-4.
    
    161. Natoli C. et al.Elevated serum levels of a 90 000 daltons tumor associated antigen in cancer and in infection by human immunodefieieneyvirus(HIV). Anticancer Res. 1994, 14(38): 1457-60.
    
    162. Iaeobelli S, et al.Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer, 1994, 69(1):172-76.
    
    163. Zeimet AG,et al. Circulating immunostimulatory protein 90K and soluble interleukin-2 receptor in human ovarian cancer. Int J Cancer, 1996, 68(1):34-8.
    
    164. Calabrese G, et al. The gene (LGALS3BP) encoding the serum protein 90K, associated with cancer and infection by the human immunodeficiency virus, maps at 17q25. Cytogenet Cell Genet, 1995, 69(3-4):223-5.
    
    165. Koths K, et al. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem, 1993, 268(19): 14245-9.
    
    166. Tinari N, et al. Identification of the tumor antigen 90K domains recognized by monoclonal antibodies SP2 and L3 and preparation and characterization of novel anti-90K monoclonal antibodies. Biochem Biophys Res Commun, 1997, 232(2):367-72.
    
    167. Sasaki T, et al. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta 1 integrins, collagens and fibronectin. Embo J, 1998, 17(6):1606-13.
    
    168. Muller SA, et al. Domain organization of Mac-2 binding protein and its oligomerization to linear and ring-like structures. J Mol Biol, 1999, 291(4):801-13.
    
    169. Hellstern S, et al. Functional studies on recombinant domains of Mac-2-binding protein. J Biol Chem, 2002, 277(18): 15690-6.
    
    170. Iacobelli S, et al. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer. Cancer Res, 1986, 46(6): 3005-10.
    
    171. Scambia G, et al. Measurement of a monoclonal-antibody-defined antigen (90K) in the sera of patients with ovarian cancer. Anticancer Res, 1988, 8(4):761-4.
    
    172. Gentiloni N, et al. Pancreatic juice 90K and serum CA 19-9 combined determination can discriminate between pancreatic cancer and chronic pancreatitis. Am J Gastroenterol, 1995, 90(7): 1069-72.
    
    173.Correale M, et al. Serum 90K/MAC-2BP glycoprotein levels in hepatocellular carcinoma and cirrhosis. Anticancer Res, 1999, 19(4C): 3469-72.
    
    174. Kittl EM, et al. Serum protein 90K/Mac-2BP is an independent predictor of disease severity during hepatitis C virus infection. Clin Chem Lab Med, 2000, 38(3):205-8.
    
    175. Iacovazzi PA, et al. Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: a comparison with alpha-fetoprotein. Clin Chem Lab Med, 2001, 39(10): 961-5.
    
    176. Iacovazzi PA, et al. Are 90K/MAC-2BP serum levels correlated with poor prognosis in HCC patients? Preliminary results. Int J Biol Markers, 2003, 18(3):222-6.
    177. Koopmann J, et al. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer, 2004, 101(7): 1609-15.
    
    178. Foekens JA, et al. Expression of tumor-associated 90K-antigen in human breast cancer: no correlation with prognosis and response to first-line therapy with tamoxifen. Int J Cancer, 1995, 64(2): 130-4.
    
    179. Kunzli BM, et al. Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma. Cancer, 2002, 94(1):228-39.
    
    180. Stearman RS, et al. Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol. 2005, 167(6): 1763-75.
    
    181. Beer DG, Kardia SL, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002, 8(8):816-24.
    
    182. Bhattacharjee A, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci. 2001, 98(24): 13790-5.
    
    183. Hendrix ND, Wu R, Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res. 2006, 66(3): 1354-62.
    
    184. Sun L, Hui AM, Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 2006, 9(4):287-300.
    
    185. Andersson A, Ritz C, et al. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia. 2007, 21(6): 1198-203.
    
    186. Talantov D, Mazumder A, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005, 11(20):7234-42.
    
    187. Iacobuzio CA, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol. 2003, 162(4): 1151-62.
    
    188. Sanchez-Carbayo M, et al. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 2006, 24(5):778-89.
    
    189. Marchetti A, et al. Expression of 90K (Mac-2 BP) correlates with distant metastasis and predicts survival in stage I non-small cell lung cancer patients. Cancer Res, 2002, 62(9):2535-9.
    
    190. Ozaki Y, et al. Involvement of 90K/Mac-2 binding protein in cancer metastases by increased cellular adhesiveness in lung cancer. Oncol Rep, 2004, 12(5): 1071-7.
    
    191. Rosenberg I, et al. Mac-2-binding glycoproteins, putative ligands for a cytosolic β-galactoside lectin. J BiolChem, 1991, 266(28): 18731-6.
    
    192. Yu B and SD Wright, LPS-dependent interaction of Mac-2-binding protein with immobilized CD 14. J Inflamm, 1995, 45(2): 115-25.
    
    193. Inohara H and A Raz, Identification of human melanoma cellular and secreted ligands for galectin-3. Biochem Biophys Res Commun, 1994, 201(3): 1366-75.
    
    194.Ochwat D, D Hoja-Lukowicz and A Litynska, N-glycoproteins bearing beta 1-6 branched oligosaccharides from the A375 human melanoma cell line analysed by tandem mass spectrometry. Melanoma Res, 2004, 14(6):479-85.
    
    195. Ulmer TA, et al. Tumor-associated antigen 90K7Mac-2-binding protein: possible role in colon cancer. J Cell Biochem, 2006,98(5): 1351-66.
    
    196. Inohara H, et al. Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res, 1996, 56(19):4530-4.
    
    197. Park YP, et al. Up-regulation of Mac-2 binding protein by hTERT in gastric cancer. Int J Cancer, 2007, 120(4):813-20.
    
    198. Laferte S, et al. Monoclonal antibodies specific for human tumor-associated antigen 90K/Mac-2 binding protein:tools to examine protein conformation and function. J Cell Biochem.2000, 77(4): 540-59.
    
    199. Polyka K, Kato JK, et al . P27kipl ,a cyclin -CDK inhibitor , links transforming growth factor - beta and contact inhibition to cell cycle arrest. Genes Dev ,1994 ,8(1) :9-22.
    
    200. Pietenpol JA, Bohlander SK, et al. Assignment of the human P27kipl gene to 12p13 and its analysis in leukemias. Cancer Res , 1995, 55(6): 1206-10.
    
    201. Kwon TK, Nagel JE, et al. Characterization of the murine cyclin-dependent kinase inhibitor gene p27kip1 .Gene, 1996,180( 1): 113-120.
    
    202. Slingerland J, Pagano M. Regulation of the CDKinhibitor P27 and its deregulation in cancer. J Cell Physiol, 2000, 183(1):10-17.
    
    203. Lloyd RV, Erickson LA, et al. P27: a multifunctional cyclin dependent kinase ibhibitor with prognostic significance in human cancers. AmJ Pathol, 1999, 154(2):313-23.
    
    204. Yang HY, Shao R , Huang MC, et al. P27kipl inhibits HER2/neu mediated cell growth and tumorigenesis. Oncogene, 2001, 20(28):3695-702.
    
    205. Lenferink AE, Flanagan WM, Yakes FM, et al. Erb2/ neu kinase modulates cellular P27 and cyclin D1 through multiple signaling pathways. Cancer Res, 2001, 61 (17):6583-91.
    
    206. NAGY N, LEGENDRE H, et al. Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer, 2003, 97(8): 1849-58.
    
    207. O'DRISCOLL L, LINEHAN R, et al. Lack of prognostic significance of surviving, survivin-5Ex3, surviving-2B, galectin-3, bag-1, bax-alpha and MRP-1 mRNAs in breast cancer. Cancer Lett, 2003, 201(2):225-36.
    
    208. ELLERHORST J A, STEPHENS L C, et al. Effects of galectin-3 expression on growth and tumorigenicity of the prostate cancer cell line LNCaP. Prostate, 2002, 50(1):64-70.
    
    209. MOLLENHAUER J, DEICHMANN M, et al. Frequent downregulation of DMBT1 and galectin-3 in epithelial skin cancer. Int J Cancer, 2003, 105(2): 149-57.
    
    210. YOSHII T, FUKUMORI T, et al. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem, 2002, 277(9):6852- 57.
    
    211.Barondes SH, Cooper DN, Gitt MA,et al. Galectins. Structure and function of a large family of animal lectins. J Biol Chem, 1994;269(33):20807-10.
    212. Wang JL, et al. Nucleocytoplasmic lectins. Biochim Biophys Acta, 2004, 1673(1-2): 75-93.
    
    213. Yang RY, Liu FT. Galectins in cell and apoptosis. Cell Mol Life Sei, 2003, 60(2):267-76.
    
    214. Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta, 2002, 1572(2-3):263-73.
    
    215.Ochieng J, V Furtak, and P Lukyanov, Extracellular functions of galectin-3. Glycoconj J, 2004. 19(7-9):527-35.
    
    216. Paron I, et al. Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem Biophys Res Commun, 2003. 302(3):545-53.
    
    217. Tatsuo S, Yukinori T, et al. Galectin-3, a Novel Binding Partner of b-Catenin. Cancer Res. 2004, 64:6363-67.
    
    218. Lin HM, et al. Galectin-3 enhances cyclin D(1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene, 2002, 21(52):8001-10.
    
    219. Dagher SF, Wang JL, and Patterson RJ, Identification of galectin-3 as a factor in pre-mRNA splicing. Proc NatI Acad Sci U S A, 1995. 92(4): 1213-7.
    
    220. Califice S, et al. Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene, 2004, 23(45):7527-36.
    
    221. Puglisi F, et al. Galectin-3 expression in non-small cell lung carcinoma. Cancer Lett, 2004. 212(2):233-9.
    
    222. Mathieu A, et al. Nuclear galectin-3 expression is an independent predictive factor of recurrence for adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol, 2005, 18(9): 1264-71.
    
    223. Shibata T, et al. Impact of nuclear galectin-3 expression on histological differentiation and vascular invasion in patients with esophageal squamous cell carcinoma. Oncol Rep, 2005. 13(2):235-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700