免疫相关性全血细胞减少症的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 (1)了解免疫相关性全血细胞减少症(IRP)患者骨髓造血细胞结合的自身抗体的类型、分布、数量及临床意义
     (2)考察骨髓单个核细胞直接抗人球蛋白试验(BMMNC-Coombs)的敏感性。
     方法 对临床疑诊32例IRP患者同时进行BMMNC-Coombs试验和流式细胞术(Facs)双标法检测骨髓造血干祖细胞、有核红细胞、粒细胞结合的自身抗体的种类及结合率。并观察其与临床特征间的联系。
     结果 (1)Facs双标法检出的骨髓造血细胞自身抗体的阳性率为90.63%,BMMNC-Coombs试验检出的阳性率为50%,前者显著高于后者(x~2=12.65,P<0.05)。
     (2)Facs检测阳性的29例患者中IgG型占6.90%,IgM型占13.8%,IgG+IgA型占3.45%,IgG+IgM型占31.0%,IgG+IgM+IgA型占44.8%;29例中含IgG型25例,占86.2%,含IgM型26例,占89.7%,含IgA型14例,占48.3%;
     (3)IgG型组血红蛋白(Hb)减少得最严重,含IgM型组的患者可有血管内溶血的实验发现,IgM和IgM+IgG+IgA型组治疗的起效时间明显短于其它两组。
     (4)在Facs检测阳性的29例患者中造血干祖细胞上有自身抗体者占91.3%,多表现为全血细胞减少;50%左右的患者红、粒系细胞上有自身抗体;13例BMMNC-Coombs试验阴性的患者中
Objectives 1 ) To explore the type, distribution, quantity, and clinical significance of auto-antibodies on bone marrow hematopoietic cells in patients with immunorelated pancytopenia (IRP); 2) To evaluate the sensitivity of bone marrow mononuclear cell (BMMNC) Coombs tests. Methods The type and the positive rate of autoantibodies on bone marrow hematopoietic stem cells, nucleated erythrocytes, granulocytes of patients with suspected IRP were investigated with BMMNC-Coombs tests and flow cytometry double immunofluorescence assay.
    Results 1 ) The positive rate of auto-antibodies on bone marrow hematopoietic cells tested with flow cytometry was 90.63% which was significantly higher than that tested with BMMNC-Coombs test (50%). 2) In 29 cases with positive results, only IgG autoantibody positive cases accounted for 6.90%, only IgM accounted for
    13.8%, IgG+IgA accounted for 3.45%, IgG+IgM accounted for 31.0%, IgG+IgM+IgA accounted for 44.8%; 25 patients with IgG autoantibody accounted for 86.2%, 26 patients with IgM accounted for 89.7%, 14 patients with IgA accounted for 48.3%. 3) The patients only with IgG autoantibody had the most severe hemoglobin decrease, the patients with IgM autoantibody had the positive hemolytic findings, the response time of patients with IgM and IgG+IgM+IgA is shorter than that of the other patients. 4) 91.3% of the patients had auto-antibodies on bone marrow hematopoietic stem cells and presented with pancytopenia; 50% of the patients had auto-antibodies on nucleated erythrocytes and granulocytes, 11 of 13 pattients with negative BMMNC-Coombs tests had
引文
1 和虹,邵宗鸿,刘鸿等.与异常免疫相关的全血细胞减少症.中华血液学杂志,2001,22:79-82.
    2 和虹,邵宗鸿,曹增等.骨髓单个核细胞抗人球蛋白分型试验.中华血液学杂志,2000,21:550-551.
    3 Branch DR, Shulman IA, Hian ALSS, et al. Two distinct categories of warm autoantibody reactivity with age-fraction red cells. Blood, 1984, 63: 177-180.
    4 Herron R, Clark M, Smith S. An antibody with activity dependent on red cell age in the serum of a patient with autoimmune hemolytic anemia and a negative direct antiglobulin test. Vax Sang, 2987, 52: 71-74.
    5 Liesveld JL, Rowe JM, Lichtman M. Variability of the erythropoietic response in autoimmune hemolytic anemia: analysis of 109 cases. Blood, 1987, 69: 820-826.
    6 Engelfriet CP, Overkeeke MAM, von AE. Autoimmune hemolytic anemia. Semin Hematol, 1992, 29: 3-12.1 He H, Shao ZH, Liu H, et al. Immune-related pancytopenia. Chin J Hematol, 2001, 22: 79-82.
    
    2 Corrales JJ, Orfao A, lopez A, et al. Cd5+b cells in Graves'disease: correlation with disease activity. Horm Metab Res, 1996, 28: 280-285.
    
    3 Afeltra A, Ferri GM, Amoroso A, et al. CD5 B cells in autoimmune and non immune-mediated thyroid dysfunctions. Endocr Res, 1997, 23:81-94.
    
    4 Munoz A, Gallat T, Vinas O, et al. Increased CD5-positive B lymphocytes in type 1 diabetus. Clin Exp Immunol, 1991, 83:304-308.
    
    5 Loza E, Tinture T, Sanchez-Ibarrola A. CD5 and CD23 expression on B cells in peripheral blood and synovial fluid of rheumatoid arthritis patients: relationship with interleukin-4, soluble CD23 and tumor necrosis factor alpha levels. Rheumatology, 1999, 38: 325-328.
    
    6 Liu ST, Wang CR, Liu MF, et al. The study of circulating CD5 positive B lymphocytes in Chinese patients with rheumatoid arthritis.Clin Rheumatol, 1996, 15: 250-253.
    
    7 Huck S, Jamin C, Youinou P, et al. High density expression of CD95 on B cells and underrepresentation of the B-1 cell subset in human lupus. J Autoimmunity, 1998, 11: 449-455.
    
    8 Dauphinee M, Tovar Z, Talal N, et al. B cells expression CD5 are increased in Sjogren's Syndrome. Arthritis and Rheumatism, 1988, 31:642-647. Micheal Dauphinee, et al. Arthritis and Rheumatism, 1998,31:642.
    
    9 Lee KW, Lee SH, Kim HJ, et al. Experimental autoimmune myasthenia gravis and CD5+ B-lymphocyte expression. J Korean Med Sci, 1999, 14: 75-79.
    10 Araga S, Kishimoto M, Adachi A, et al. The CD5+ b cells and myasthenia gravis. Autoimmunity, 1995, 20: 129-134.
    
    11 Yu JR, Qiu ZX, Yang H. CD5+B cells and autoimmune disease. Chung Hua Nei Ko Tsa, 1994, 33: 590-592.
    
    12 izutani , Furubayashi T, Kashiwagi H, et al. B cell expression CD5 antigen are remarkedly increased in peripheral blood and spleen lymphocytes from patients with immune thrombocytopenic purpura. Br J Haematol, 1991,78:474.
    
    13 Ekerfelt C, Ernerudn J, Solders G, et al. Cd5 expression on B cells may be an activation marker for secretion of anti-myelin antibodies in patients with polyneuropathy associated with monoclonal gammopathy. Clin Exp Immunol, 1995, 101: 346-350.
    
    14 Mosmann TR, Cherwinski H, Bond MF, et al. Two types of imurine heiper T cells clones. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol, 1986, 136: 2348-2357.
    
    15 Csiszar A, Nagy GY, Gergely P, et al. Increased interferon-gammar,IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus.Clin Exp Immunol, 2000, 122:464-470.
    
    16 Viallard JF, Pellegrin JL, Ranchin V, et al. Thi(IL-2, interferon-gammar) and Th2(IL-10,11-4) cytokines production by peripheral blood mononuclear cells from patients with SLE. Clin Exp Immunol, 1999,115: 189-195.
    
    17 Hagiwara ERI, Gourley MF, Lee S, et al. Disease severity in patients with SLE correlates with an increased ratio of IL-10:interferon-gammar-secreting cells in the peripheral blood. ARTHRTIS& RHEUMATISM, 1996, 39: 379-385.
    
    18 Horwitz DA, Dixongray J, Behrensen SC, et al. Decreased production of IL-12 and other Th1-type cytokines in patients with recent-onset??SLE. ARTHRTIS & RHEUMATISM, 1998, 41: 838-844.
    19 Ye YL, Suen JL, Chen YY, et al. Phenotypic and functional analysis of activated B cells of Autoimmune NZB×NZWF1 Mice. Scand. J. Immunol, 1998, 47: 122-126.
    20 张之南,主编.血液病诊断及疗效标准.第2版.北京:科学出版社,1998.
    21 Kanai N, Vreeke TM, Parker CG, et al. PNH: Analysis of the effects of mutant PIG-A on gene expression. Am J Hematol, 1999, 61: 221-231.
    22 Naoko K, Shinichi W. Gangliosides GDlb, Gt1b, and GQ1b enhance IL-2 and IFN-γ production and suppres IL-4 and IL-5 production in Phytohemagglutinin-stimilated human T cells. J Immunol, 2001, 166: 72-80.
    23 Ochi H, Takeshita H, Suda T, et al. Regulation of B-1 cell activation and its autoantibody production by Lyn kinase-regulated signallings. Immunology, 1999, 98: 595-603.
    24 Hayakawa K, Hardy RR, Herzenberg LA. Progenitors for ly-1 B cells are distinct from progenitors for other B cells. J Exp Med, 1985, 161: 1554-1568.
    25 Marcos MA, Huetz F, Pereira P, Andreu JL, et al. Further evidence for coelomic-associated B lymphocytes. Eur J Immunol, 1989, 19: 2031-2035.
    26 Hardy RR. Variable gene usuage, physiology and development of ly-1~+ (CD5+)B cells. Curt opin Immunol, 1992, 4: 181-185.
    27 J acqueline H, Audrey L, Joel A, et al. Regulation of differentiation of Peritoneal B-1 a(CD5+) B cell. J Immunol, 1995, 154: 5630-5636.
    28 Neri A, Barriga G, Inghiramai DM, et al. Epstein-Barr virus infection proceeds clonal expansion in Burikitts' and acquired immunodeficiency syndrome-associated lymphoma. Blood, 1991, 77: 1092-1095.29 Asahara H, Haumuna T, Kobata T, et al. Exprssion of Fas ligation in the rheumatoid synovial. Clin Immunol Immunopathol, 1996, 81:27-34.
    
    30 Zhou J, Edwards CKR, Yang P, et al. Greatly accelerated lymphadenopathy and autoimmune disease in Ipr mice lacking tumor necrosis factor receptor I . J Immunol, 1996, 56: 2661-2665.
    
    31 Krammer PH, Dhein J, Walczak H, et al. The role of APO-1 -mediated apoptosis in the immune system. Immunol Rev, 1994, 142: 175-191.
    
    32 Lynch DH, Ramsdell F, Alderson MR. Fas and FasL in the hemeostasis regulation of immune response. Immunol Today, 1995, 16:569-574.
    
    33 Yagita H, Harabuchi S, Asana Y, et al. Fas-mediated cytotoxicity- a new immune regulatory and pathigenic function of Th1 CD4+ T cells.Immunol Rev, 1995, 146: 223-239.
    
    34 Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-incuced apoptosis as a mechanism of immune prevelege. Science, 1995, 270:1189-1192.
    
    35 Bellgrau D, Gold D, Selawry H, et al. A role of CD95 ligand in preventing graft rejection. Nature, 1995, 377: 630-632.
    
    36 Mapara MY, Bargou R, Zuek C, et al. APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol, 1993, 23: 702-708.
    
    37 Pushkarewa M. An endogenous regulator of apoptosis and growth suppression. Immunology Today, 1995, 16: 294-302.
    
    38 Romgnani S. Human Thl and Th2 subsets: doubt no more. Immunology Today, 1991,12: 256-257.
    
    39 siszar A, Nagy GY, Gergely P, et al. Increased IFN-Y, IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cell(PBMC) from patients with SLE. Clin Exp Immunol, 2000,122:??464-470.
    
    40 Lappin MB, Campbell JDM. The Thl-Th2 classification of cellular immune response: concepts, current thinking and applications in hematological malignancy. Blood Review, 2000, 14: 228-239.
    
    41 Barcellini W, Clerci G, Montesano R, et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune hemolytic anemia: effect of mitogen and cytokine stimulation. Br J Haematology, 2000, 111: 452-460.
    
    42 Romagani S. Thl/Th2 cell. Inflamm Bowel Dis, 1999, 5: 285-294.
    
    43 Stein SH, Hart TE, Hoffman WH, et al. Interleukin-10 promotes anti-collagen antibody production in type 1 diabetic peripheral B lymphocytes. J Periodontal Res, 1997, 32: 189-195.
    
    44 illasenor-Bustamante S, Alvarado-De La Barrera C, Richaud-Patin Y, et al. Possible role of interleukin-10 in autoantibody production and in the fate of human cord blood CD5+ B lymphocyte. Scand J Immunol,1999,49:629-632.
    1 Boyse EA, Miyazawa M, Aoki T, et al. Ly-A and Ly-B: Two system of lymphocyte isoantigens in the mouse. Proc R Soc Lond B Biol Sci, 1968,17o: 175-193.
    
    2 Wang Gy, Good RA, Ammirato P, et al. Identification of a p69/71 complex expressed on human T cells sharing determinants with B-type chronic lymphocytic leukemia cells. J Exp Med, 1980, 151:1539-1544.
    
    3 Hayakawa K, Hardy RR, Honda M, et al. Ly-1 B: Functionally distinct lymphocytes that secret IgM autoantibodies. Proc Natl Acad Sci USA,1984, 81:2494-2498.
    
    4 Burastero SE, Casali P, Wilder RL, et al. Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rhematoid arthritis. J Exp Med,1988, 168: 1979-1992.
    
    5 Scher I, Sharrow SO, Paul WE. X-linked B-lymphocyte defect in CBA/N mice. Ⅲ . Abnormal development of B-lymphocyte populations defined by their density of surface immunoglobulin. J Exp Med, 1976, 144: 507-518.
    
    6 Wortis HH, Burkly L, Hughes D, et al. Lack of mature B cell in nude mice with X-linked immune deficiency. J Exp Med, 1982, 155:903-913.
    
    7 Mond JJ, Scher I, Cossmans J, et al. Role of the thymus in directing the development of a subpopulation of B lymphocytes J Exp Med,1982, 155: 924-936.
    
    8 Hardy RR, Hayakawa K, Parks DR, et al. Demonstration of B-cell maturation in X-linked immunodeficient mice by simultaneous three-colour immunofluorescence. Nature, 1983, 306: 270-272.
    
    9 Hayakawa K , Hardy RR , Herzenberg LA . Progenitors for ly-1 B cells are distinct from progenitors for other B cells. J Exp Med, 1985,161:1554-1568.
    
    10 Marcos MA , Huetz F , Pereira P , Andreu JL , et al. Further evidence for coelomic-associated B lymphocytes. Eur J Immunol, 1989, 19:2031-2035.
    
    11 Hardy RR . Variable gene usuage , physiology and development of ly-1~+ (CD5+)B cells. Curr opin Immunol, 1992, 4:181-185.
    12 J acqueline H, Audrey L, Joel A, et al. Regulation of differentiation of Peritoneal B-la(CD5+)B cell. J Immunol, 1995, 154: 5630-5636.
    
    13 Neri A, Barriga G, Inghiramai DM, et al. Epstein-Barr virus infection proceeds clonal expansion in Burikitts' and acquired immunodeficiency syndrome-associated lymphoma. Blood, 1991, 77:1092-1095.
    
    14 Forster I, Gi H, Muller W, et al. CD5 B cells in the mouse. Curr Top Microbiol Immunol, 1991,173: 247-251.
    
    15 Murphy TP, Kolber DL, Rothstein TL. Elevated expression of Pgp-1 by murine peritoneal B Lymphocytes. Eru J Immunol, 1990, 20:1137-1142.
    
    16 Hitosh Y. Distribution of IL-5 receptor on Ly-1(CD5+) B cells. J immunol, 1990, 144: 4218-4225.
    
    17 Herzenberg LA , Stall Am , Lalor PA , Sidman C , et al. The ly-1 B cell lineage. Immunol Rev, 1986, 93: 81-102.
    
    18 Kantor AB , Herzengerg LA . Origin of murine B cell lineages. Annu Rev Immunol, 1993, 11: 501-538.
    
    19 Karras JG , Wang Z , Huo L , et al. Signal transducer and activator of transcription-3(STAT3) is constitutively activated in normal,self-renewing B-1 cells but only inducibly expressed in conventional B lymphocytes. J Exp Med, 1997, 185: 1035-1042.
    
    20 Hardy RR, Hayakawa K. Developmental origins specificities and immunoglobulin gene biases of murine Ly-1 B cell. Int Rev Immunol,1992,8:189-207.
    
    21 Hardy RR, Hayakawa K. CD5 B cells, a fetal B cell lineage. Adv Immunol, 1994, 55: 297-339.
    
    22 Kantor AB, Stall AM, Aclam S, et al. De novo development and self-replenishment of B cell. Int Immunol, 1995, 7: 55-68.
    
    23 Pennell CA, Mercolino TJ, Grdina TA, et al. Biased immunoglobulin variable region gene expression by ly-1 B cells due to clonal selection.EurJ Immunol, 1989, 19: 1289-1295.
    
    24 Clarke SH, Arnold LW. B-l cell development: evidence for an uncommitted immunoglobulin(Ig). J Exp Med. 1998, 187: 1325-1334.
    
    25 Cong YZ, Rabin E, Wortis HH. Treatment of murine CD5-B cells with anti-Ig, but not LPS, induces surface CD5: two B-cell activation pathway. Int Immunol, 1991, 3: 467-476.
    
    26 Lam KP, Rajewsky K. B cell antigen receptor specificity and surfacedensity together determine B-1 versus B-2 cell development. J Exp Med, 1999, 190: 471-477.
    
    27 Arnold Lm, Pennell CA, McCray SK, et al. Development of B-1 cell:segregation of phosphatidylcholine-specific B cells to the B-1 population occurs after Immunoglobuline gene expression. J Exp Med, 1994, 179: 1585-1595.
    
    28 Clarke SH, Arnold LW. B-1 cell development, evidence for an uncommitted IgM+ B cell precursor in B-l cell differentiation. J Exp Med, 1998, 187: 1325-1334.
    
    29 Huang CA, Henry C, Lacomini, et al. Adult bone marrow contains precursors for CD5+ B cell. Eur J Immunol, 1996, 26: 2537-2540.
    
    30 Berland R, Wortis HH. An NFAT_ dependent enhancer is necessary for anti-IgM-mediated induction of murine CD5 expression in primary splenic B cell. J Immunol, 1998, 161: 277-285.
    
    31 Lam KP, Rajewsky K. B cell antigen receptor specificity and surface density together determine B-l versus B-2 cell development. J Exp Med, 1999, 190: 471-477.
    
    32 Watanabe N, Nisitani S, Ikuta K, et al. Expression levels of B cell surface Ig regulate efficiency of allelic exclusion and size of autoreactive B-1 cell compartment. J Exp Med, 1999, 190: 461-469.
    
    33 Tarakhovsky. BarMitzvah for B-1 cell: how will they grow up? J Exp Med, 1997, 185:981-984.
    
    34 Hayakawa K, Hardy PR, Herzenber LA. Peritoneal Ly-1 B cells:genetic control, autuantibody production, increased Lambda light chain expression. Eur J Immunol, 1986, 16: 450-456.
    
    35 Braun J. Spontaneous in vitro occurrence and long-term culture of murine B lymphoblastoid cell lines. J Immunol, 1983, 130:2113-2116.
    
    36 Davidson WF, Fredrickson TN, Rudikoff EK, et al. A unique series of lymphomas related to the Ly-1+ lineage of B lymphocyte differentiation. J Immunol, 1984, 133: 744-753.
    
    37 Corrales JJ, Orfao A, lopez A, et al. Cd5+b cells in Graves' disease:correlation with disease activity. Horm Metab Res, 1996, 28: 280-285.
    
    38 Afeltra A, Ferri GM, Amoroso A, et al. CD5 B cells in autoimmune and non immune-mediated thyroid dysfunctions. Endocr Res, 1997, 23:81-94.
    
    39 Munoz A, Gallat T, Vinas O, et al. Increased CD5-positive B lymphocytes in type 1 diabetus. Clin Exp Immunol, 1991, 83:304-308.
    
    40 Loza E, Tinture T, Sanchez-Ibarrola A. CD5 and CD23 expression on B cells in peripheral blood and synovial fluid of rheumatoid arthritis patients: relationship with interleukin-4, soluble CD23 and tumor necrosis factor alpha levels. Rheumatology, 1999, 38: 325-328.
    
    41 Liu ST, Wang CR, Liu MF, et al. The study of circulating CD5 positive B lymphocytes in Chinese patients with rheumatoid arthritis.Clin Rheumatol, 1996, 15: 250-253.
    
    42 Huck S, Jamin C, Youinou P, et al. High density expression of CD95 on B cells and underrepresentation of the B-l cell subset in human lupus. J Autoimmunity, 1998, 11:449-455.
    
    43 Dauphinee M, Tovar Z, Talal N, et al. B cells expression CD5 are increased in Sjogren's Syndrome. Arthritis and Rheumatism, 1988, 31:642-647. Micheal Dauphinee, et al. Arthritis and Rheumatism, 1998,31:642.
    
    44 Lee KW, Lee SH, Kim HJ, et al. Experimental autoimmune myasthenia gravis and CD5+ B-lymphocyte expression. J Korean Med Sci, 1999, 14:75-79.
    
    45 Araga S, Kishimoto M, Adachi A, et al. The CD5+ b cells and myasthenia gravis. Autoimmunity, 1995, 20: 129-134.
    
    46 Yu JR, Qiu ZX, Yang H. CD5+B cells and autoimmune disease. Chung Hua Nei Ko Tsa, 1994, 33: 590-592.
    
    47 Mizutani, Furubayashi T, Kashiwagi H, et al. B cell expression CD5 antigen are remarkedly increased in peripheral blood and spleen lymphocytes from patients with immune thrombocytopenic purpura.Br J Haematol, 1991,78:474.
    
    48 Ekerfelt C, Ernerudn J, Solders G, et al. Cd5 expression on B cells may be an activation marker for secretion of anti-myelin antibodies in patients with polyneuropathy associated with monoclonal gammopathy. Clin Exp Immunol, 1995, 101: 346-350.
    
    49 Murakami M, Tsubata T, Okamoto M, et al. Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice. Nature, 1992, 357: 77-80.
    
    50 Watanabe N, Nisitani S, Ikuta K, et al. Expression levels of B cell surface immunoglobulin regulate efficiency of allelic exclusion and size of autoreactive B-l cell compartment. J Exp Med, 1999, 190:461-469.
    51 Csiszar A, Nagy GY, Gergely P, et al. Increased IFN- γ , IL-10 and decreased EL-4 mRNA expression in peripheral blood mononuclear cell(PBMC) from patients with SLE. Clin Exp Immunol, 2000,122:464-470.
    
    52 Lappin MB, Campbell JDM. The Thl-Th2 classification of cellular immune response: concepts, current thinking and applications in hematological malignancy. Blood Review, 2000, 14: 228-239.
    
    53 Barcellini W, Clerci G, Montesano R, et al. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune hemolytic anemia: effect of mitogen and cytokine stimulation. Br J Haematology, 2000, 111: 452-460.
    
    54 Romagani S. Thl/Th2 cell. Inflamm Bowel Dis, 1999, 5: 285-294.
    
    55 O'Garra A, Steinman L, Gijbels K. CD4 T cell subsets in autoimmunity. Curr Opin Immunol, 1997, 9: 872-883.
    
    56 Chace JH, Abed NS, Adel GL, et al. Gegulation of CD5+ and conventional B cells. Sensitivity to Lps-induced differentiation and IFN- Y -mediated inhibition of differentiation. Clin Immunol Immuno Pathol, 1993, 68: 327-324.
    
    57 Abed NS, Chace JH, Cowdery JS. T cell independent and T cell-dependent B cell activation increases IFN- y R expression and renders B cells sensitive to IFN- y -mediated inhibition. J Immunol,1994, 153:3369-3377.
    
    58 Chace JH, Fleming AL, Gordon JA, et al. Regulation of differentiation of peritoneal B-la(CD%+) B cells. J Immunology,1995, 154: 5630-5636.
    
    59 Brown DM, Warner GJ, Ales-Martinez JE, et al. Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes.Clin Immunol Immunopathol, 1992, 63: 221-230.
    
    60 Trinchieri G. Interleukin-12 and its role in the generation of TH1 cell. Immunol Today, 1993, 14: 335-338.
    
    61 Jelinek DF, Braeten JK Role of IL-12 in human B-lymphocyte proliferation and differentiation. J Immunol, 1995, 154: 1606-1613.
    
    62 Jones BM. Effect of 12 neutralizing anti-cytokine antibodies on In Vitro activation of B- cells. Scand J Immunol, 1996, 43: 64-72.
    
    63 Stein SH, Hart TE, Hoffman WH, et al. Interleukin-10 promotes anti-collagen antibody production in type 1 diabetic peripheral B lymphocytes. J Periodontal Res, 1997, 32: 189-195.
    64 Bhat NM, Kantor AB, Bieber MM, et al. The ontogeny and functional characteristics of human B-1(CD5+B) cells. Int Immunol, 1992, 4: 243-252.
    
    65 Nisitani S, Tsubata T, Murakami M, et al. Administration of interleukin-5 or -10 activates peritoneal B-1 cells and anti-erythrocyte autoantibody-transgenic mice. Eur J Immunol, 1995, 25: 3047-3052.
    
    66 Nishizumi H, Taniuchi I, Yamanashi Y, et al. Impaired proliferation of peritoneal B cells and indication of autoimmune disease in Lyn-deficient mice. Immunity,1995,3: 549-560.
    
    67 Chan VW, Meng F, Soriano P, et al. Charaterization of the B lymphocyte population of Lyn-deficient mice and the role of lyn in signal initiation and down-regulation. Immunity, 1997, 7: 69-81.
    
    68 Wang J, Koizumi T, Watanabe T. Altered antigen receptor signaling and impaired Fas-mediatd apoptosis of B cells in Lyn-deficient mice.J Exp Med, 1996, 184: 831.
    
    69 Maeda A, Kurosaki M, Ono M, et al. Requirement of Sh2-containing protein tyrosine phosphatase SHP-1 and SHP-2 for paired immunoglobulin-like receptor B(pre-B)-mediated inhibitory signal. J Exp Med, 1998, 187: 1335-1360.
    
    70 Ochi H Takeshita H, Suda T, et al. Regulation of B-l cell activation and its autoantibody production by lyn kinase-regulated signaling.Immunology, 1999, 98: 595-603.
    
    71 Oldstone MBA. Molecular mimicy and autoimmune diseases. Cell,1997, 50: 819-820.
    
    72 Murakami M, Nakajima K, Yaazakik, et al. Effects of breeding environments on generation and activation of autoreactive B-1l cells anti-red blood cell autoantibody transgenic mice. J Exp Med, 1997,185: 791-794.
    
    73 Ito K, Van Kaer L, Bonneville M, et al. Recognition of the product of a novel MHC γ σ T cell receptor. Cell, 1990, 62: 549-561.
    
    74 Bonneville M. Self tolerance to transgenic γ σ T cells by intrathymic inactivation. Nature, 1990, 344: 163-165
    
    75 Spaner D. γ σ T cells differentiation into a functional but nonproliferative state during a normal immune response. Proc Natl Acad Sci USA, 1993, 90: 8415-8419.
    
    76 Okamoto M. A transgenic model of autoimmune hemolytic anemia. JExp Med, 1992, 175:71-79.
    
    77 Fagarasan S, Watanabe N, Honjo T. Generation, expansion,migration and activation of mouse B1 cells. Immunol Rev, 2000, 176:205-215.
    
    78 Asahara H, Haumuna T, Kobata T, et al. Exprssion of Fas ligation in the rheumatoid synovial. Clin Immunol Immunopathol, 1996, 81:27-34.
    
    79 Zhou J, Edwards CKR, Yang P, et al. Greatly accelerated lymphadenopathy and autoimmune disease in Ipr mice lacking tumor necrosis factor receptor I . J Immunol, 1996, 56: 2661-2665.
    
    80 Krammer PH, Dhein J, Walczak H, et al. The role of APO-1 -mediated apoptosis in the immune system. Immunol Rev, 1994, 142: 175-191.
    
    81 Lynch DH, Ramsdell F, Alderson MR. Fas and FasL in the hemeostasis regulation of immune response. Immunol Today, 1995, 16:569-574.
    
    82 Yagita H, Harabuchi S, Asana Y, et al. Fas-mediated cytotoxicity- a new immune regulatory and pathigenic function of Th1 CD4+ T cells.Immunol Rev, 1995, 146: 223-239.
    
    83 Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-incuced apoptosis as a mechanism of immune prevelege. Science, 1995, 270:1189-1192.
    
    84 Bellgrau D, Gold D, Selawry H, et al. A role of CD95 ligand in preventing graft rejection. Nature, 1995, 377: 630-632.
    
    85 Suttles J, Evans M, Miller RW, et al. T cell rescue of monocytes from apoptosis: role of the CD40-CD40L interaction and requirement for Cd40-mediated induction of protein tysoine kinase activity. J Leak Bio,1996,60:651-658.
    
    86 Garrone P, Neidhardt EM, Garcia E, et al. Fas ligation induces apoptosis of CD40-activated human B lymphocyte. J Exp Med, 1995,182: 1265-1273.
    
    87 Schattner EJ, Elkon KB, Yoo DH, et al. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/ Fas pathway. J Exp Med, 1995, 182:1557-1565.
    
    88 Cheng J, Zhou J, Ciu C, et al. Protection of Fas -mediated apoptosis by a solution of form of the fas molecule. Science, 1994, 263:1759-1762.
    89 Hasunuma T, Kayagaki N, Asahara H, et al. Accumulation of soluble Fas in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum, 1997,40:80-86.
    
    90 Sachiko H, Kwangesok Y, Masaaki ABE, et al. Precursor B cells for autoantibody production in genomically Fas-intact autoimmune disease are not subject to Fas-mediated immune elimination. Pro Natl Acad Sci USA, 1997, 94: 9291-9295.
    
    91 Sylvie H, Chritophe J, Pierre Y, et ail. High density expression of the B-1 cell subset in human lupus. J Autoimmunity, 1998, 11: 449-455.
    
    92 Yang E, Korsmeyer SJ. Molecular thanatopsis: A discourse on the bcl-2 family. Blood, 1996, 88: 386-401.
    
    93 Mapara MY, Bargou R, Zuek C, et al. APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol, 1993, 23: 702-708.
    
    94 Pushkarewa M. An endogenous regulator of apoptosis and growth suppression. Immunology Today, 1995, 16: 294-302.
    
    95 Villasenor-Bustamante S, Alvarado-De La Barrera C, Richaud-Patin Y,et al. Possible role of interleukin-10 in autoantibody production and in the fate of human cord blood CD5+ B lymphocyte. Scand J Immunol,1999,49: 629-632.
    1 Newland AC, Treleaven G. High dose intravenous IgG in adults with autoimmune thtrobocytopenia. Lancet, 1983, 84: 84-87.
    
    2 Achiron A, Barak Y, Goren M, et al. Intravenous immnoglobulin in multiple sclerosisxlinical and neuroradiological results and implications for possible mechanisms of action. Clin Exp Immunol,1996, 104(suppl 1): 67-70.
    - 3 Andersson J, Skansen-Saphir U, Sparrelid E, et al. Intravenous immune globulin affectscytokine production in T lymphocytes and monocytes/macrophages. Clin Exp Immunol , 1996, 104(suppl 1):10-20
    
    4 Aukrust P, Froland SS, Liabakk N, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immnogloulin administration in vivo. Blood, 1994, 84:2136-2143.
    
    5 Andersson UG, Bjork L, Skansen-Saphir U, et al. Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunol, 1993, 79: 211-216.
    
    6 Toungouz M, Denys C, Dupont E. Blockade of proliferation and tumor necrosis factor- a production occuring during mixed lymphocyte reaction by interferon- Y specific natural antibodies cintained in intravenous immunoglobulins. Transplantation, 1996, 62: 1292-1296
    
    7 Rigal D, Vermot-Desroches C, Heitz S, et al. Effects of intravenous immunoglobulins on peripheral blood B, NK and T cell subpopulations in women with recurrent spontaneous abortions: specific effects on LFA-1 and CD56 monecules. Clin Immunol Immunopath, 1994, 71:309-314.
    
    8 Anderson JP, Andersson UG. Human intravenous immunoglobulin modulates monokine production in vitro. Immunol, 1990, 71: 372-376.
    
    9 Skansen-Saphir U, Andersson J, Bjork L, et al. Lymphokine production induced by streptococcal pyrogennic exotoxin-A is selectively down regulated by pooled human IgG. Eur J Immunol, 1994, 24: 916-922.
    
    10 Ruis de Sousa V, Carreno M, Kaveri SV, et al. Selective induction of IL-1α and IL-8 in human monocytes by normal polyspecific IG(IVIG). Eur J Immunol, 1995,25: 1267-1273.
    
    11 Lin Z, Yeoh E, Webb BT, Farrell K, et al. Intravenous Immunoglobilin induce interferon- y and interleukin-6 in vivo. I Clin Immunol, 1993,
    13: 302-309.
    
    12 Hellstrand K, Kjellson B, Hermodsson S. Monocyte-induced down-modulation of CD15 and CD56 antigen on human natural killer cells and its regulation by histamine H2 receptors. Cell Immunol, 1991,138:44-54.
    
    13 Shimozato T, Iwata M, Kawada H, et al. Human immunoglobulin preparation for intravenous use induces elevation of cellular cyclic adenosine 3':5'-monophosphate levels, resultint in suppression of tumor necrosis factor alpha and interleukin-1 production. Immunol,1991,72:497-501.
    
    14 Basta M. Modilation of complement mediated immune damage by intravenous immunoglobulin. Clin Exp Immunol, 1996, 104:21-25.Clin Exp Immunol, 1996, 104(suppl 1): 21
    
    15 Wagner E, Platt JL, Frank MM. High dose intravenous immunoglobulin does not affect complement bacteria interactions. J Immunol, 1998, 160: 1936-1943.
    
    16 Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rate. J Clin Invest, 1972,51:2916-297.
    
    17 Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta 2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA, 1996, 93: 5512-5516.
    
    18 Yu Z, Lennon VA. Mechanism of intravenous immune globulin theapy in antibody-mediared autoimmune diseases. New Eng J Med, 1999,340: 227-288.
    
    19 Abdon MI, Wall H, Lindsley HB, et al. Network theory in autoimmunity: in vitro supression of serum anti DNA antibody binding to DNA by anti-idiotype antibidy in systemic lupus erythematous. J Clin Invest, 1981, 67: 1297-1340.
    
    20 Sultan, Maisonneuve P, Kazachkine MD, et al. Anti-idiotype suprssion of autoantibidies of factor Ⅷ by high-dose intravenous gammaglobulin. Lancet, 1984, 2: 765-768.
    
    21 Abbas AK, Lichitman AH, Pober JS> Cellular and Molecular Immunology and Edition. P322-323. w.b. Sauders Company,Philadelphia.
    
    22 Toungouz M, Denys CH, De Groote D, et al. In vitro inhibition of tumor-necrosis factor- α and interleukin-6 production by intravenousimmunoglobulin. Br J Haematol, 1995, 89: 698-703.
    
    23 Darville T, Milligan LB, Laffoon KK. Intravenous immunoglobulin inhibits ataphylococcal toxin-induced human mononucear phagocyte tumar necrosis factor alpha production. Infect Imm, 1997, 65:366-372.
    
    24 Aukrust P, Muller F, Nordoy I, et al. Modulastion of lymphocyte and monocyte activity after intravenous immunoglobulin adminitration in vivo. Clin Exp Immunol, !997, 107: 50-56.
    
    25 Mouthon L, Kaveri SV, Spalter SH, et al. Mechanisms of action of intravenous immune globulin in immune mediated diseases. Clin Exp Immunol, 1996, 104(suppl 1): 3-9.
    
    26 Prasad NK, Papoff G, Zeuner A, et al. Therapeutic preparations of normal polyspecific Ig(IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of acction of IVIg involving the Fas apoptotic pathway. Immunol, 1999. 161: 3781-3790.
    
    27 Oten A, Bossuyt PMM, Vermeulen M, et al. Intravenous immunoglobulin treatment in hematological diseases. Eur J Hematol,1998. 60: 73-85.
    
    28 Blanchete VS, Luke B, Andrew M, et al. A prospective, randomized trial of high-dose intravenous immune globulin G therapy, oral prdinisone therapy, and no therapy in childrenhood acute immune thrombocytopenic purpura. Pediar Hematol Oncol, 1993,10: 317-321.
    
    29 Ozsoylu S, Sayli TR, Ozturk G. Oral megadose methylpredinisolone versus intravenous immunoglobulin for acute childhood idiopathic thrombocytopenic purpura. Pediatr Hematol Oncol, 1993, 10: 317-321.
    
    30 Khalifa AS, Tolba KA, El-Alfy MS, et al. Idiopathic thrombocytopenic purpura in Egyptian children. Acta Haematol, 1993,90: 125-129.
    
    31 Blanchette V, Imbach P, Anderrew M, et al. Randimized trial of intravenous immunoglobulin G, intravenous anti-D, and oral prdinisone in childhood acute immune thrombocytopenic purpura. Lancet, 1994, 344: 703-707.
    
    32 Jacobs P, Wood L, Novitzky N. Intravenous gammaglobulin has no advantages over oral corticosteroids as primary therapy for adults with immune thrombocytopenia: a prospective randomized clinical trial.AM J Med, 1994,97: 55-59.
    
    33 Albayrak D, Islek I, Kalayci AG, et al. Acute immune throbocytopenicpurpura: a comparative study of very high oral doses of methylprednisolone and intravenoussly asminitrated immune globulin. J Pediatr, 1994, 125: 1004-1007.
    34 Rosthoy S, Nielsen S, Pedersen FK. Randomized trial coparing intravenous immunoglobulin with methylprednisone pulse therapy in acute idiopathic thrombovytopenic prupura. Danish ITP Study Group Acta Paediatr, 1996, 85: 910-915.
    35 Berchtoid P, Pham LC. Intravenous treatment with gammaglobulin in adults with immune thrombocytopenic purpura: review of the literature. Vox Sang, 1987, 52: 206-211.
    36 Berchtold P, McMillan R. Therapy of chronic idiopathic thrombocytopenic purpura in adults. Transfus Sci, 1998, 19: 279-288.
    37 Godeau B, Lesage S, Divine M, et al. Treatment of adult chronic autoimmune thrombocytopenic purpura with repeated high-dose intravenous immunoglobulin. Blood, 1993, 82: 1415-1421.
    38 付蓉,邵宗鸿,刘鸿等.静脉注射免疫球蛋白在治疗自身免疫性溶血性贫血中的作用.中华内科杂志,2001,40,692-693.
    39 Clauvel JP, Vainchenker W, Herrera A, et al. Successful treatment of a patients with a thymoma and pure red cell aplasia with octreotide and prednisone. N Engl J Med, 1997, 336: 263-265.
    40 Casadevall N, Lacimbe C, Varet B. Reythroblastopenia chroniques: idiopathiques a la leucemie lymphoide chroniques ou associees a la leucemie lymphoide chrinique. Interet des cultures de progenitieurs erythroblastiques et strategie therapeutique. Presse Med, 1993, 89: 152-154.
    41 Young NS. Parvovirus infection and its treatment. Clin Exp Immunol, 1996, 104: 26-30.
    42 Ilan Y, Naparstek Y. Pure red cell aplasia associated with systemic lupus erythematous: remission after a single course of intravenous immunoglobulin. Acta Haematol, 1993, 89: 152-154.
    43 Ballester OF, Saba HI, Moscinski LC, et al. Pure red cell aplasia: treatment with intravenous immunoglobulin concentrate. Semin Hematol, 1992, 29(suppl 1) : 3-9.
    44 Larroche C, Mouthon L, Casadevall N, et al. Successful treatment of thymoma-associated pure red cell aplasia with intravenous immunoglobulins. Eur J Haematol, 2000, 65: 74-76.
    45 Levy Y, Sherer Y, George J, et al. Intravenous immunoglobulin??treatment of lupus nephritis. Semin Arthritis Rheum, 2000, 29:321-327.
    
    46 O'Donnel BF, Barr RM, Black AK, et al. Intravenous immunoglobulin in autoimmune chronic urticaria. Br J Dermatol, 1998, 138: 101-106.
    
    47 Selcen D, Dabrowski ER, Michon AM, et al. High-dose intravenous immunoglobulin therapy in juvenile myasthenia gravis. Pediar Neurol, 2000,22:40-43.
    
    48 Raphael JC, Sharsar J. Guillain-Barre Syndrome: epidemiological,clinical and therapeutic insight. Ann Med Interne, 2000, 151(suppl 1):35-40.
    
    49 Anderson MR, Blumer JK. New advances in the therapy for sepsis in children. Pediar Clin Am, 1997, 44: 179-205.
    
    50 Guglielmo BJ, Wong-Beringer A, Linker CA, et al. Immunol globulin therapy in allogenic bone marrow transplant: a critical review. Bone Marrow Transplant, 1994, 13: 499-510.
    
    51 Sneller MC. Common variable immunodeficiency. AM J Med Sci,2001,321:42-48.
    
    52 Martinez Garcia MA, de Rojas MD, Nauffal Manzur MD, et al. Repiratory disorders in common variable immunodeficiency. Respir Med, 2001, 95: 191-195.
    
    53 Batista El Jr, Navaes AB Jr, Calvano LM, et al. Necrotizing ulcerative peridontitics associated with severe congenital immunodeficiency in a presubescent subjects: clinical findings and response to intravenous immunoglobulin treatment. J Clin Periodontol, 1999, 26: 499-504.
    
    54 Lambert JS, Mofenson LM, Fletcher CV, et al.Safety and pharmakinetics of hyperimmune anti-human HIV immunoglobulin administered to HIV-infected pregnant women and their newborns. J Infect Dis, 1997, 75: 283-291.
    
    55 Fletcher CV, Goodroad BK, Cummins LM, et al. Pharmacokinetics of hyperimmune anti-human immunodeficiency virus immunoglobulin in persons with AIDS. Antimicrob Agents Chemother, 1997, 41:1571-1574.
    
    56 Sherer Y, Levy Y, Lange vitz P, et al. Sdverse effects of intravenous immunoglobulin therapy in 56 patients with autoimmune diseases.Pharmacology, 2001, 62: 133-137.
    
    57 Tankersley DL> Dimer formation in immunoglobulin preparations and speculations on the mechanism of action of intravenous immuneglobulin in autoimmune disease. Immunol Rev, 1994, 139: 159-172.
    58 Alving BM, Tankersley DL, Mason Bl, et al. Contact activated factors: contanminants of immunoglobulin preparations with coagulants of vasoactive preperties. J Lab Clin Med, Med 1980, 96: 334-346.
    59 Bagdasarian A, Tonetta s, Harel W, et al. IVIg adverse reactions: potential role of cytokine and vasoactive substances. Vox Sang, 1998, 74: 78-82.
    60 和虹,邵宗鸿,刘鸿等.与异常免疫相关的全血细胞减少症.中华血液学杂志,2001,22:79-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700