膀胱移行细胞癌早期诊断、两类癌分类及复发的预警系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立膀胱移行细胞癌(BTCC)预警系统,为BTCC的早期诊断、两类癌分类及复发的预测提供新的方法和策略,为制定合理的临床治疗方案提供有效的指导,以期达到提高BTCC患者生存率、改善预后的目的。
     方法
     1对尿液蛋白质组双向电泳的样品制备、上样量、水化方式、水化上样液成分、IPG胶条选择及电泳程序参数等进行比较研究和条件优化;凝胶经质谱兼容的硝酸银染色后,采用PDQuest8.02-DE凝胶图像分析软件进行点检测与匹配。
     2利用二维电泳-质谱-生物信息学技术对40例BTCC患者(其中低恶性24例,高恶性16例)和16例健康志愿者的尿液进行比较蛋白质组学研究,对得到的差异蛋白进行鉴定和验证。使用受试者工作(ROC)曲线确定载脂蛋白A1对BTCC早期诊断和两类癌分类的最佳工作点(OOP),计算相应的特异度和灵敏度。
     3应用蛋白芯片技术对BTCC患者(其中低恶性12例,高恶性12例)与14例健康志愿者的尿液进行比较蛋白质组学研究,应用支持向量机(SVM)进行数据挖掘,构建BTCC早期诊断和两类癌分类的判别模型,并对差异蛋白峰进行生物信息学分析。
     4回顾性分析167例复发性BTCC患者的临床病理资料,结合病理标本中p53和FGFR3的蛋白表达水平,运用多因素二分类Logistic回归方法和Cox回归方法,寻找影响BTCC复发类型和复发时间的相关因素。
     结果
     1获得了分辨率高、重复性好的尿液双向电泳图谱;蛋白点数目为872+18个,匹配率达到76.26%。
     2鉴定了5种在BTCC患者尿液中含量增高的蛋白质:纤维蛋白原、乳酸脱氢酶B、载脂蛋白A-I、丛集蛋白和触珠蛋白。ROC曲线提示以18.22为临界点可将BTCC患者与非患者进行较好区分,灵敏度为90%,特异度为81.25%;当以29.85为临界点时可将低恶性BTCC与高恶性BTCC进行较好区分,灵敏度为87.5%,特异度为75%。
     3建立由质荷比为7267.417,2339.6423,1885.7951的差异蛋白峰组成的BTCC早期诊断判别模型可将BTCC患者与非患者进行较好区分,灵敏度为91.7%,特异度为78.6%。由质荷比为4249.1776,2676.1477,2831.5038,5499.2115的差异蛋白峰组成的BTCC两类癌分类的判别模型可将两类BTCC患者进行较好区分,特异度为75%,灵敏度为83.3%
     4Logistic回归结果提示,与BTCC复发后类型相关的因素为初发分类,年龄和FGFR3; Cox回归结果提示影响BTCC术后无复发时间的独立因素为初发分类、血管浸润、多发性肿瘤和P53。
     结论
     1建立了稳定的尿液蛋白质双向凝胶电泳技术平台;
     2初步建立BTCC早期诊断及两类癌分类的预警系统;
     3SELDI-TOF-MS结合SVM构建的判别模型为BTCC早期诊断及两类癌分类提供了一种特异性强、敏感性高的新方法;
     4初发分类为高恶性BTCC、年龄>65、FGFR3阴性的患者在复发时为高恶性BTCC的风险增大;初发分类为高恶性BTCC、血管浸润阳性、肿瘤为多发或P53阳性的患者易在短期内复发。两类癌分类方法对BTCC无复发时间和复发类型的预测有指导意义。
Objective
     To Establish an early warning system of bladder transitional cell carcinoma(BTCC) for early diagnosis, classification of two-tie grading system and recurrence prediction, which may provide a guideline for clinical diagnostic and therapeutic targets. Elevating the survival rate and improving the prognostic of BTCC patient is the final objectives.
     Methods
     1Various conditions of2-DE for urine were optimized by comparative study, including sample preparation, volume of loading sample, composition of rehydration sample buffer, selection of IPG dry strip, program and parameters of electrophoresis. The2-DE gels were stained by using sliver dye and analyzed by ChemiDOC XRS and PDQuest8.02-DE analysis software.
     2The urine proteome derived from low malignant BTCC patients, aggressive BTCC patients and healthy donors were compared by2DE-mass spectrometry-bioinfomatics technique.2-DE and ELISA were used to confirm the difference of APO-AI content in urine. The Optimal Operating Point(OOP) of APO-A1for early diagnosis and classification of two-tie grading system of BTCC was determined by using the Receiver Operating Characteristic(ROC) curve. Clinical value and discriminatory power were evaluated.
     338urine samples, including12low malignant BTCC,12aggressive BTCC and14healthy donors, were tested by H4protein chip and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS).The differentially expressed proteins peaks were analyzed by BioMarker Wizard Software, support vector machine(SVM) was applied to construct identify protein profiles which can distinguish BTCC from health,low malignant BTUC from aggressive BTCC. The differentially expressed proteins peaks were identified initially with bioinfomatics.
     4The clinical data of167patients with recurring transitional cell carcinoma of bladder were collected and analyzed retrospectively. Combined with protein expression of p53and FGFR3in their paraffin samples detected by immunohistochemistry. A multivariate analysis on recurrence type was performed by the binary logistic regression analysis and a analysis on relapse-free time-related factors was made by Cox's proportional hazard model analysis.
     Results
     1Two-dimensional electrophoregrams with higher resolution and better reproducibility were obtained,872±18protein spots were detected, the match ratio was76.26%.
     2Five proteins that increased in urine of BTCC patients were identified through the database search, including fibrinogen, lactate dehydrogenase B, apoA1, clusterin and haptoglobin. The ROC curve indicate BTCC patients will be well discriminated from the controls by using18.22as an OPP. The sensitivity was90%and the specificity was81.25%. Patients with low malignant BTCC will be well discriminated from aggressive BTCC using29.85as an OPP. The sensitivity was87.5%and the specificity was75%.
     3We have established a3-peptide profile (7267.417,2339.642,1885.7951) which can separate patients with BTCC from the controls with the sensitivity of91.7%and the specificity of78.6%. Another4-peptide profile (4249.1776,2676.1477,2831.5038,5499.2115) which can separate patients with low malignant BTCC from aggressive BTCC with the sensitivity of83.3%and the specificity of75%.
     4Logistic regression analysis indicated recurrent type of BTCC patients is correlated with primary type, age and FGFR3. Cox regression analysis showed primary type, blood vessel infiltrate, multiple tumor and P53influenced the relapse-free time.
     Conclusions
     1A stable technical platform of2-DE for urine proteome was established.
     2An early warning system of BTCC for early diagnosis, classification of two-tie grading system was established
     3The identify protein profiles which combined SELDI-TOF-MS with SVM provides a new approach with high specificity and sensitivity for early diagnosis, classification of two-tie grading of BTCC.
     4Patients with aggressive BTCC, older than65and negative expression of FGFR3might have a high risk to aggressive BTCC as recurrence; Patients with aggressive BTCC, multiple tumors, without blood vessel infiltration and P53expression trend to recur in short time. Classification of two-tie grading system provides guidance for prediction of relapse-free time and recurrence type of BTCC.
引文
1.全国肿瘤防治研究办公室,卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡(1993-1997)[M].北京:中国医药科技出版社,2002:24-34.
    2. Wang HT,Ma FL, Ma XB, Han RF, Zhang YB, Chang JW(畅继武)Differential gene expression profiling in aggressive bladder transitional cell carcinoma compared to the adjacent microscopically normal urothelium by microdissection-SMART cDNA PCR-SSH. Cancer Biol Ther.2006; 5(1):104-10.
    3. Wang HT, Chang JW(畅继武)Molecular pathology of low malignant bladder transitional cell carcinoma:a current perspective. Histol Histopathol. 2005;20(1):147-53.
    4. Knowles MA. Molecular subtypes of bladder cancer:Jekyll and Hyde or chalk and cheese? Carcinogenesis.2006;27(3):361-73
    5. Poon TC, Yip TT, Chan AT, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem,2003;49(5):752-760.
    6. Petricoin EF, Ardekani AM, Hitt BA,et al.Use of proteomic patterns in serum to identify ovarian cancer.Lancet,2002;359(9306):572-577.
    7. Vlahou A, Laronga C, Wilson L, et al. A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer,2003;4(3):203-209.
    8. Zhang LY, Ying WT, Mao YS, et al. Loss of cluster in both in serum and tissue correlates with the tumorigenesis of esophageal squamous cell carcinoma via proteomics approaches. World J Gastroenterol,2003;9(4):650-654.
    9. Petricoin EF 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst,2002;94(20):1576-1578.
    10. Sheng KH, Yao YC, Chuang SS, et al. Search for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic analysis. Proteomics,2006;6: 1058-1065.
    11. Memon AA, Chang JW, Oh BR, et al. Identification of differentially expressed proteins during human urinary bladder cancer progression. Cancer Detect Prev,2005; 29:249-255.
    12. Kocak H, Oner-Iyidogan Y, Kocak T, et al. Determination of diagnostic and prognostic values of urinary interleukin-8, tumor necrosis factor-alpha, and leukocyte arylsulfatase-A activity in patients with bladder cancer. Clin Biochem.2004;37(8): 673-678.
    13. Nakagawa T, Kanai Y, Ushijima S, et al. DNA hypermethylation on multiple CpG islands associated with increased DNA methyl transferase DNMTl protein expression during multistage urothelial carcinogenesis. J Urol.2005;173(5):1767-1771.
    14. Cells JE, Wolf H, Ostergaard M. Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresls,2000;21(11):2115-2121.
    15. Cells JE, Cells P, Palsdottir H, et al. Proteomic strategies to reveal tumor hetero geneity among urothelial papillomas. Mol Cell Proteomics,2002;1(4):269-279.
    16. Irmak S, Tilki D, Heukeshoven J, Oliveira-Ferrer L,et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer. Proteomics.2005;5(16):4296-304.
    17. Saito M, Kimoto M, Araki T, et al. Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur Urol.2005;48(5):865-71.
    18. Kageyama S, Isono T, Iwaki H,et al. Identification byproteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic a ccuracy of its detection in urine. Clin Chem.2004; 50(5),857-866
    19. Iwaki H, Kageyama S, Isono T,et al. Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci.2004;95(12),955-961
    20.Sheng KH, Yao YC, Chuang SS, et al. Search for the tomor-related proteins of transition cell carcinoma in Taiwan by proteomics analysis[J]. Proteomics,2006; 6(3), 1058-1065.
    21.Saito S, Hata M, Fukuyama R, et al. Screening of H-ras gene point mutations in 50 cases of bladder carcinoma[J]. Int J Urol,1997; 4(2):178-185.
    22.Knowles MA, Williamson M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing[J]. Cancer Res. 1993;53(1):133-139.
    23.Xu HJ, Cairns P, Hu SX, et al. Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression[J]. Int J Cancer,1993;53(5):781-784.
    24.Presti JC Jr, Reuter VE, Galan T, et al. Molecular genetic alterations in superficial and locally advanced human bladder cancer[J]. Cancer Res,1991;51(19):5405-5409.
    25. Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am JPathol,2001;158(4):1491-1502.
    26. Mueller J, von Eggeling F, Driesch D, et al. ProteinChip technology reveals distinctive protein expression profiles in the urine of bladder cancer patients. Eur Urol. 2005;47(6),885-893.
    27. Liu W, Guan M, Wu D,et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur Urol.2005;47(4):456-462.
    28. Lee Y, Lee CK. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics.2003;19(9):1132-1139.
    29. Peng S, Xu Q, Ling XB, et al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines.FEBS Lett.2003;555(2):358-362
    30.Meyer TH, Bohler J, Frahm AW. Determination of Cremophor EL in plasma after sample preparation with solid-phase extraction and plasma protein precipitation. J. Pharm Biomed Anal,2001;24 (3):495-506.
    31.Samanidou VF, Demetriou CE. Papadoyannis IN. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in Pharmaceuticals and blood serum by HPLC. Anal Bioanal Chem,2003; 375 (5):623-629.
    32. Issaq HJ, Xiao Z, Veenstra TD. Serum and plasma proteomics. Chem Rev 2007;107(8):3601-3620.
    33. Sybille M. N. Hunt, Mervyn R. Thomas, Lucille T. Sebastian,et al. Optimal Replication and the Importance of Experimental Design for Gel-Based Quantitative Proteomics[J]. Journal of Proteome Research 2005;4(3):809-819
    34. Gorg A,Obermaier C,Boguth G,et al.The current state of two dimensional electrophoresis with immobilized pH gradient[J].Electrophoresis,2000;21 (6):1037-1053.
    35. Venter JC, Adams MD, Myers EW, et al.The sequence of the human genome. Science,2001; 291(5507):1304-1351.
    36. Fields S. Proteomics. Proteomics in genomeland. Science,2001;291(5507): 1221-24.
    37. Reynolds T. For proteomics research, a new race has begun. J Natl Cancer Inst,2002;94(8):552-554
    38.Pandey A, Mann M. Proteomics to study genes and genomes.Nature,2000;405(6788):837-846
    39. Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,2002;415(6868):141-147
    40. Ho Y, Gruhler A, Bader GD, et al. Systematic identifyication of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,2002;415(6868):180-183
    41. O'Farrell PH. High-resolution two-dimensional electrophoresis of proteins. J Biol Chem,1975; 250 (10):4007-4021.
    42. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues A novel approach to testing for induced point mutations in mammals. Humangenetik,1975;26 (3):231-243.
    43. Bonventre JV, MassachusettsB. The kidney proteome:A hint of things to come. Kidney Int,2002; 62(4):1314-1321
    44. Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins foltowing concentration by dye precipitation. Electrophoresis,1996; 17 (7): 1265-1272.
    45. Spahr CS, Davis MT, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 2001;1(1):93-107.
    46. Matthew B. Gretzer, Alan W. Partin, Daniel W. Chan, et al. Modern Tumor Marker Discoveryin Urology:Surface Enhanced Laser Desorption and Ionization (SELDI). Rev Urol.2003;5(2):81-89
    47. Tyan YC, Guo HR, Liu CY, et al. Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrosprayionization tandem mass spectrometry. Anal Chim Acta,2006;579(2):158-176.
    48. Oh J, Pyo JH, Jo EH, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics,2004;4 (11):3485-3497.
    49. Schaub S, Wilkins J, Weiler T, et al. Urine protein profilingwith surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int,2004; 65(1):323-332.
    50. ThongboonkerdV, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparationmethods for gel-based human urinary proteomics:quantity, quality, and variability. J Proteome Res,2006; 5 (1):183-191.
    51. KhanA, PackerNH. Simple urinary sample preparation for proteomic analysis. J Proteome Res,2006; 5 (10):2824-2838.
    52. Zhou H, Yuen PS, Pisitkun T, Gonzales PA, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int,2006; 69 (8):1471-1476.
    53. Lafitte D, Dussol B, Andersen S, et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin Biochem,2002; 35 (8):581-589.
    54. Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int,2004; 65(1):323-332.
    55. Marshall T, Williams KM. Electrophoresis indicates protein loss on centrifugation of urine. Clin Chenr,1986; 32(11):2105-2106.
    56. Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics:quantity, quality, and variability. J Proteome Res,2006; 5 (1):183-191.
    57. Meyer TH, Bohler J, Frahm AW. Determination of Cremophor EL in plasma after sample preparation with solid-phase extraction and plasma protein precipitation. J. Pharm. Biomed. Anal,2001;24 (3):495-506.
    58. Samanidou VF, Demetriou CE. Papadoyannis IN. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC. Anal. Bioanal.Chem,2003; 375 (5):623-629.
    59. Smith G, Barratt D, Rowlinson R, et a.l Development of a high-throughput method forpreparing human urine for two-dimensional e-lectrophoresis. Proteomics, 2005;5(9):2315-2318
    60. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004;4(12):3665-3685.
    61. Lafitte D, Dussol B, Andersen S, et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin Biochem,2002; 35 (8):581-589.
    62. Verdier JM, Dussol B, Dupuy P, et al. Preliminary treatment of urinary proteins improves electrophoretic analysis and immunodetection. Clin Chem,1992, 38 (6):860-863.
    63. Oh J, Pyo JH, Jo EH, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics,2004; 4(11):3485-3497.
    64. Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics,2004;4 (4):1159-1174.
    65. Herber B. Advances in protein solubilition for two-dimensional electrophoresis [J]. Electrophoresis,1999;20(4-5):660-663.
    66. Gorg A, Obermaier C,Boguth G. The current state of two-dimension electrophoresiswith immobilized pH gradients:lectrophoresis,2000;21(5):1037-1053
    67. Rabilloud T. Silver staining of 2-D electrophoresis gels. Methods Mol Bio,1999;112:297-305
    68. Lopez MF, Berggren K, Chernokalskaya E. A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling.Electrophoresis, 2000;21(17):3673-3683
    69. Link AJ. Autoradiography of 2-D gels. Methods Mol Bio,1999;112:285-290
    70. Lopez MF, Kristal BS, Chernokalskaya E. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis,2000;21(16):3427-3440
    71.全国肿瘤防治研究办公室,卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡(1993-1997)[M].北京:中国医药科技出版社,2002:24-34.
    72.Zieger K, Wolf H, Olsen PR, et al. Long-term follow-up of noninvasive bladder tumours (stage Ta):recurrence and progression[J]. BJU Int,2000;85(7):824-828.
    73.Cheng L, Neumann RM, Bostwick DG Papillary urothelial neoplasms of low malignant potential. Clinical and biologic implications[J]. Cancer,1999;86(10): 2102-2108.
    74.Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3(4):243-252.
    75.O'Riordan E, Addabbo F, Goligorsky MS. Urine proteomics--prospects for future diagnostics [J]. Acta Physiol Hung.2007; 94(1-2):133-141.
    76.Sanchez-Carbayo, M.; Cordon-Cardo, C. Molecular alterations associated with bladder cancer progression. Semin Oncol,2007;34 (2):75-84.
    77. Sarosdy MF, deVere White RW, Soloway MS, et al. Results of a multicenter trial using the BTA test to monitor for and diagnose recurrent bladder cancer. J Urol 1995; 154(2 Pt 1):379-384.
    78. Soloway MS, Briggman V, Carpinito GA, et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinarytractfollowingsurgical treatment. J Urol1996; 156(2Pt1):363-367.
    79. Katayama M, Hino F, Kamihagi K, et at:Urinary fibroriectin fragments(a potential tumor marker) measured by immunoenzymometric assay with domain-specific monoclonal antibodies.Clin Chem 1991;37(3):466-71.
    80. Sanchez-Carbayo M, Urrutia M, Gonzalez de Buitrago JM, Navajo JA.Evaluation of two new urinary tumor markers:bladder tumor fibronectin and cytokeratin 18 for the diagnosis of bladder cancer. Clin Cancer Res 2000;6(9):3585-94.
    81.Schmetter BS, Habicht KK, Lamm DL, Morales A, Bander NH,Grossman HB, et al. A multicenter trial evaluation of the fibrin/fibrinogen degradation products test for detection and monitoringof bladder cancer. J Urol 1997;158(3 Pt l):801-5.
    82. Hunt SM, Thomas MR, Sebastian LT, et al. Optimal Replication and the Importance of Experimental Design for Gel-Based Quantitative Proteomics.J Proteome Research 2005; 4(3),809-819 809
    83.Duga S, Asselta R, Santagostino E, et al. Missense mutations in the human beta fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood,2000;95(4):1336-1341.
    84. Voland C, Serre CM, Delmas P, et al.Platelet-osteosarcoma cell interaction is mediated through a specific fibrinogen-binding sequence located within the N-terminal domain of thrombospondin 1. J Bone Miner Res.2000;15(2):361-8.
    85.吴莉春,李勇,傅健,等.恶性肿瘤患者血浆纤维蛋白原水平的检测与分析.临床输血与检验,2008;10(3):265-266.
    86. Palumbo J S, Potter JM, Kaplan LS et al. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res,2002;62(23):6966-6972.
    87. Palumbo J S,Kombrinck KW,Drew AF,et al.Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood, 2000;96(10):3302-3309.
    88. Donati MB. Cancer and thrombosis:from Phlegmasia alba dolens to transgenic mice. Thromb Haemost.1995;74(1):278-81
    89. Koukourakis MI, Giatromanolaki A, Sivridis E,et al. Lactate dehydrogenase isoenzymes 1 and 5:diferential expression by neoplastic and stromal cells in non-small cell lung cancer and other epithelial malignant tumors. Tumor Biol, 2003;24(4):199-202.
    90. Koukourakis MI, Kontomanolis E, Giatromanolaki A,et al.Serum and Tissue LDH Levels in Patients with Breast/Gynaecological Cancer and Benign Diseases.Gynecol Obstet Invest.2008;67(3):162-168.
    91. Kolev Y, Uetake H, Takagi Y, et al.Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer:association with hypoxia-inducible factor (HIF-1 alpha) pathway, angiogenic factors production and poor prognosis.Ann Surg Oncol. 2008;15(8):2336-2344..
    92. Giatromanolaki A, Sivridis E, Gatter KC,et al.Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis.Gynecol Oncol.2006;103(3):912-918.
    93. Chen Y, Zhang H, Xu A,et al.Elevation of serum 1-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer.2006;54(1):95-102.
    94. Chow SN, Lin JK, Li SS,et al.Identification of LDH-ras p21 protein complex and expression of these genes in human ovarian cancer.Gynecol Oncol. 1997;64(1):114-20.
    95. Golabek W. Studies on the total activity of lactate dehydrogenase (LDH) and its isoenzymes in laryngeal cancer.Otolaryngol Pol.1980;34(1):120-124.
    96. Talageri VR.Evaluation of plasma lactate dehydrogenase (LDH) isozymes in cancer patients. II:qualitative and quantitative assessment in patients with oral cancers and osteosarcoma.Indian J Cancer.1977;14(1):50-57.
    97. Talageri VR, Nadkarni JS, Gollerkeri MP.Evaluation of plasma lactate dehydrogenase (LDH) isoenzymes in cancer patients. I:qualitative and quantitative assessment in patients with chronic myeloid leukaemia and acute lymphatic leukemia.Indian J Cancer.1977;14(1):42-49.
    98. Elhilali MM, Oliver JA, Belitsky P,et al.Variations of LDH isoenzymes in prostatic cancer.Union Med Can.1971;100(4):709-715.
    99. Ishibe T, Nihira H. Enzymological study of bladder tumor. II. Lactic dehydrogenase, alkaline phosphatase activity and LDH isoenzymes in the tissue of bladder cancer:the relations with stage and histological grade.Hinyokika Kiyo. 1970;16(2):68-72.
    100.朱世能,陆世伦,主编.肿瘤基础理论[M].上海:上海医科大学出版社,2000:228。
    101. Astrom M, Bodin L, Nilsson I,et al. Treatment, long-term outcome and prognostic variables in 214 unselected AML patients in Sweden. Br J Cancer. 2000;82(8):1387-92.
    102. Koukourakis M I, Giatromanolaki A, Simopoulos C, et al. Lactate dehydrogenase5(LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer[J].Clinical & Experimental Metastasis,2005;22(1):25-30.。
    103.李克.尿液乳酸脱氢酶与泌尿系统疾病关系的探讨.中国冶金工业医学杂志2006;23(2):265-266.
    104.王克勤.脂蛋白与动脉粥样硬化.北京:人民出版社,1995:52-58
    105. Grundy SM and Vega GL. Role of Apolipoprotein Levels in Clinical Practice.Arch Int Med.1990; 150(8):1579-1582.
    106. Fielding CJ, Shore VG, Fielding PE. A protein cofactor oflecithin:cholesterol acyltransferase. Biochem Biophys ResCommun 1972;46:1493-8.
    107. Biesbroeck R, Oram JF, Albers JJ,et al. Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells,J Clin Invest 1983;71(3):525-539
    108. Wade DP. Lipoprotein (a). Curr Opin Lipidology 1993;4(3):244-249.
    109. Maeda S, Abe A, Seishima M,et al. Transient changes of serum lipoprotein (a) as an acute phase protein. Atherosclerosis 1989;78(2-3):145-150.
    110. Wright LC,Sulivan DR,Muller M,et al. Elevated apolipoprotein(a) levels in cancer patients[J]Int J Cancer,1989;43(5):241.
    111. Basili S, Andreozzi P, Vieri M,et al. Lipoprotein (a) serum levels in patients with hepatocarcinoma. Clin Chim Acta.1997;262(1-2):53-60.
    112. Tachibana M, Ohkura Y, Kobayashi Y, et al. Expression of apolipoprotein A1 in colonic adenocarcinoma. Anticancer Res.2003;23(5b):4161-7.
    113. Giusti L, Iacconi P, Ciregia F,et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J Proteome Res. 2008;7(9):4079-88.
    114. Dessi S,Batetta B,PuliSci D,et al.Cholesterol content in tumor tissue is inversely associated with high-density lipoprotein Cholesterol in serum in patient with gastrointestinal cancer,Cancer,1994,73(2):253-258.
    115. Zhang Z, Bast RC, Jr., Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004;64(16):5882-90.
    116. Lee E. Moore, Eric T. Fung, Marielena McGuire, et al. Evaluation of Apolipoprotein Al and Posttranslationally Modified Forms of Transthyretin as Biomarkers for Ovarian Cancer Detection in an Independent Study Population. Cancer Epidemiol Biomarkers Prev 2006;15(9):1641-1646.
    117. Goncalves A, Esterni B, Bertucci F, Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene.2006;25(7):981-9.
    118. Henriksson P,Angelin B,Berglund L.Hormonal Regulation of serum Lp(a) levels.Opposite effects after estrogen trentment and orchidectomy in males with Prostatic carcinoma,J Clin Invest,1992;89(4):1166-1171.
    119. Blaschuk O, Burdzy K, Fritz IB.Purification and characterization of a cell-aggregating factor(CLU),the major glycoprotein in ram rate testis fluid[J].Biol Chem,1983;258(12):7714-7720.
    120. Trougakos IP, Gonos Es.Clusterin/apolipoproteinj in human ageing and cancer[J]. Int J Biochem Cell Biol,2002;34(11):1430-1448.
    121. Trougakso IP, So A, Jansen B, et al. Silencing expression of the Clusterin/ apolipoprotein J gene in human cancer cells using small interfering RNA induces spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative stress[J]Cancer Res,2004;64(5):1834-1842.
    122. Jenne DE, Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma:identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci U S A, 1989;86(18):7123-7127.
    123. Jenne DE,Tschopp J.CLUrthe intriguing guises of a widely expressed glycoprotein[J].Trends Biochem Sci,1992; 17(4):154-159.
    124. Jones SE,Jomary C.CLU[J].Int J Biochem Cell Biol;2002;34(5):427-431.
    125. Pucci S,Bonanno E,Pichiorri F,et al.Modulation of different CLU isoforms in human colon tumorigenesis [J].Oncogene,2004;23(13):2298-2304.
    126. Pins MR, Fiadjoe JE, Korley F, et al. Clusterin as a possible predictor for biochemical recurrence of prostate cancer following radical prostatectomy with intermediate Gleason scores:a preliminary report. Prostate Cancer Prostatic Dis, 2004;7(3):243-248.
    127. Stejskal D, Fiala RR. Evaluation of serum and urine clusterin as a potential tumor marker for urinary bladder cancer. Neoplasma,2006;53(4):343-346.
    128. Miyake H, Gleave ME, Arakawa S, et al. Introducing the clusterin gene into human renal cell carcinoma cells enhances their metastatic potential. J Urol,2002;167(5):2203-2208.
    129. July LV,Beraldi E,So A,et al.Nucleotide-based therapies targeting CLU chemosensitized human lung adenocarcinoma cells both in vitro and in vivo[J].Mol Cancer Ther,2004;3(3):223-232
    130. Rodriguez-Pineiro AM, de la Cadena MP, Lopez-Saco A,et al. Differential expression of serum clusterin isoforms in colorectal cancer. Mol Cell Proteomics,2006;5(9):1647-1657.
    131. Miyake H, Gleave M, Kamidono S,et al. Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence [J].Urology,2002;59(1):150-154
    132. Redondo M, Villar E, Torres-Munoz J, et al. Overexpression of clusterin in human breast carcinoma. Am J Pathol,2000;157(2):393-399.
    133. Kruger S, Ola V, Fischer D,et al. Prognostic significance of cluster in immunoreactivity in breast cancer. Neoplasma,2007;54(1):46-50.
    134. Chen X,Halberg RB,Ehrhardt WM,et al.CLU as a biomarker in murine and human intestinal neoplasia. Proc Natl Acad Sci U S A.2003;100(16):9530-5.
    135. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans[J].Clin Chem,1996;42(10):1589-1600.
    136. Saeed SA, Mahmood F, Shah BH. The inhibition of prostaglandin biosynthesis by human haptoglobin and its relationship with haemoglobin binding[J].Biochem SocTrans,1997; 25(4):S618.
    137. deKleijn DP, SmeetsMB, Kemmeren PP, et al. Acute-phase protein haptoglobin is a cellmigration factor involved in arterial restructuring[J].FASEB J,2002; 16(9):1123-1125.
    138. Sadrzadeh SM, Bozorgmehr J. Haptoglobin phenotypes in health and disorders[J].Am J Clin Pathol,2004;121(Suppl):S97-104.
    139. Diamandis EP.Analysis of serum proteomic paterns for early cancer diagnosis: drawing atention to potential problems.J Natl Cancer Inst,2004;96(5): 353-356.
    140. Oh SK, Very DL, Walker J,et al. An analogy between fetal haptoglobin and a potent immunosuppressant in cancer.C ancerR esl 987;47(19):5120-5126.
    141. Oh SK, Kim SH, Walker JE. Interference with immune response at the level of generating effector cells by tumor-associated haptoglobin. J Natl Cancer Inst 1990;82(11):934-940
    142. Armitage P, Colton T. Encyclopedia of biostatistics[M], New York:John Wiley,1988:3738-3744.
    143. Lusted,LB. Signal detestability and medical decision-making.Science,1971; 17 1(977):1217-1219
    144. Gregory Mark. Receiver-operating characteristi(ROC) plots,Fundamental Eva luation Tool in Clinical Medicine.Clin.Chem.,1993;39 (4):561-567.
    145. NCCLs Document. GP10-A:Assessment of the clinical accuracy of Laboratory Tests Using Receiver Operating Characteristic ROC) Plots:Approved Guideline(1995).
    146.余松林主编《医学统计学》北京:人民卫生出版社,2002;3:164-178
    147.王骏,吴红桥,宋兆棋.受试者作业特征曲线(ROC)及其在影像学中的应用.放射学实践,2000;15(3):201-202
    148. Hanley JA and McNeil BJ. The meaning and use of the area under a receiver operating characteristic(ROC) curve.Radiology,1982;143(1):29-36.
    149. McClish DK.Comparing the area under more than two in dependent ROC curves.Medical Decision Making,1987;7(3):149-155.
    150. Swets, JA. Measuring the accuracy of diagnostic systems.Science,198-8;240(4857):1285-1293
    151. Halpen EJ,Albert M,Krieger AM,et al. Comparison of receiver operating characteristic curves on the basis of optimal operating points.Acad Radiol,1996;3(3): 245-253.
    152. Robert JG.Determination and in terpretation of the Optimal Operating Point for ROC Curves derived through generalized linear models.Understanding Statistics.2003;2(4):219-242.
    153. Riddle DL, Stratford PW.Interpreting validity indexed for diagnostic tests:An illustration using Berg Balance Test.Phys Ther,1999;79(10):939-948
    154. Moscova M,Marsh DJ,Baxter RC.Protein chip discovery of secreted proteins regulated by the phosphatidylinositol 3-kinase pathway in ovarian cancer cell lines[J].Cancer Res,2006;66(3):1376-1383.
    155. Wright G L, Cazares L H,Leung S M, et al.SELDI mass spectrometry:a novel protein biochip technology for dectection of biomarker in complex protein mixtures[J].Prostate Cancer and Prostatic Disease,1999;2(5):264-276.
    156.Vlahou A,Schellhammer P F,Mendrincs S,et al.Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine[J].Am J Pathol,2001; 158(4):1491-1502.
    157. Thomas A, Sellersln, John R,et al. Review of Proteomics With applications to Genetic Epidemiology[J]. Genetic Epidemiology,2003;24(2):83-98.
    158. Nilsson J. Introduction to Machine Learning. Stanford University,1996.
    159. Vapnik V N. Statistical Learning Theory. Wiley,New York,1998
    160. Joachims T.Transductive inference for text classification using support vector machines.Proceedings of the 16th international conference on machine leaming(ICML),1999:200-206.
    161. Chang RF,Wu WJ,Moon Wk,et al. Support vector machines for diagnosis of breast tumors on US images.Academic radiology,2003;10(2):189-197.
    162. Shafran L,Riley M,Mohri M.Vioce signatures. Proceedings of Automatic Speech Recognition and Understanding Workshop (ASRU),2003:31-36.
    163. Anguita D,Boni A,Tagliafico L.SVM performance assessment for the control of injection moulding processes and plasticating extrusion.Int J Syst,2002;33(9):723-735.
    164. Shieh GS,Jiang YC,Shih YS. Comparison of support vector machines to other classifiers using gene expression data.Communications in Statistics-Simulation and Computation,2006;35(1):241-256.
    165.Adam B L, Vlahou A, Semmes O J, et al. Proteomic approaches to biomarker discovery in prostate and bladder cancers [J]. Proteomics,2001;1(10):1264-1270.
    166. Vlahou A, Schellhammer PF, Mendrinos S, et al.Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol,2001;158(4):1491-1502.
    167. Liu W,Guan M,Wu D,et al.Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients[J].Eur Urol,2005,47(4):456-462.
    168.吴登龙,张元方,关明,等.蛋白质芯片技术筛选膀胱癌尿液标记物的研究.中华泌尿外科杂志,2004;25(7):453-455.
    169. Stehr R, Knuechel R, Hartmann A. Molecular diagnosis of bladder cancer. Histopathology 2002 (suppl.2):403-423
    170. Borden LS Jr, Clark PE, Hall MC. Bladder cancer [J]. Curr Opin Oncol, 2005;17(3):275-280.
    171. Soloway MS, Sofer M, Vaidya A. Contemporary management of Stage Tl transitional cell carcinoma of the bladder [J]. J Urol,2002;167(4):1573-1583.
    172. Holmang MS, Hedelin H, Anderstrom C, et al. The importance of the depth of invasion in Stage T1 bladder carcinoma:a retrospective cohort study [J]. J Urol,1997; 157:800-804.
    173. Smith JA, Labasky RF, Cockett ATK, et al. Bladder cancer clinical guidelines panel summary report on the management of nonmuscle invasive bladder cabcer(Stages Ta, T1 and Tis) [J]. J Urol,1999; 162(5):1697-1701.
    174. Spruck CH, Ohneseit PF, Gonzalez ZM, et al.Two molecular pathways to transitional cell carcinoma of the bladder [J]. Cancer Res.1994; 54(3):784-788.
    175. Van Rhijin G, van der Kwast TH, Vis AN, et al. FGFR3 and p53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma [J]. Cancer Res.2004; 64(6):1911-1914.
    176.畅继武,马腾骧,张淑敏,等.膀胱移行上皮癌发生发展的分子病理学研究,中华泌尿外科杂志.1994;6:405-408.
    177. Jitkak K, Michael U and Vaclav M. Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder:comparison with tumor grade, proliferative activity and p53 immunoreactivity of tumor cells. APMIS, 2007;115(11):1194-1205
    178. Tomlinson D, Baldo O, Knowles MA.FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer.J Pathol 2007;213(1):91-98.
    179. Cordon-Cardo C, Sheinfeld J.Molecular and immunopathology studies of oncogenes and tumor-suppressor genes in bladder cancer. World J Urol,1997,15(2):112-119.
    180. Orntoft TF, Wolf H. Molecular alteration in bladder cancer. Urol Res,1998;26(4):223-233.
    181. Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disoulers:the achondroplasia family of skeletal dysplasias, Muenke craniosyn-ostosis, and Crouzon syndrome with acanthosis nigricans[J].Endocr Rev,2000;21(1):23-39.
    182. BakkarAA, WallerandH, Radvanyi F, et al.FGFR3 and TP53 genemutations define two distinct pathways in urothelial cell carcinoma of the bladder [J].Cancer Res,2003;63(23):8108-8112.
    183.Takahiro kimura, Hideaki Suzuki, Toya ohashi, et al.The incidence of thanatophoric Dysplasia mutations in FGFR3 gene is higher in low-grade or superfial bladder carcinomas [J].Cancer,2001;92(10):2555-2561.
    184. Van Rhijn BW,Lurkin I,Radvanyi F,et al.The fibroblast growth factor receptor 3(FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate [J].Cancer Res,2001;61(4):1265-1268.
    185. Vet JA, Bringuier PP, Schaafsma HE,et al. Comparision of p53 overexpression with p53 mutation in bladder cancer:clinical and biologic aspects.Lab Invest,1995;73(6):837-843.
    186. Wang X, Jones TD, Maclennan GT, et al. P53 expression in small cell carcinoma of the urinary bladder: biological and prognostic implications [J].Anticancer Res,2005;25(3B):2001-2004.
    187. Lorenzo-Romero JG, Salinas-Sanchez AS, Gimenez-Bachs JM, et al. Prognostic implications of p53 gene mutations in bladder tumors [J]. J Urol 2003; 169(2):492-499.
    [1]Abbott A. And now for the proteome.Nature,2001;409(6822):747.
    [2]Fields S. Proteomics in genomeland.Science,2001;291(5507):1221-1224
    [3]Reynolds T. For proteomics research, a new race has begun. J Natl Cancer Inst,2002;94(8):552-554
    [4]Pandey A, Mann M. Proteomics to study genes and genomes.Nature,2000;405(6788):837-846
    [5]Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,2002;415(6868):141-147.
    [6]Ho Y, Gruhler A, Bader GD, et al. Systematic identifyication of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,2002;415(6868):180-183
    [7]Herbert BR, Molloy MP, Gooley AA, et al Improved proteinsolubility in two-dimensional electrophoresis using tributylphos-phine as reducing agent. Electrophoresis,1998; 19(5):845-851.
    [8]BIO-RAD双向电泳中文手册
    [9]Kennedy, Sandy. Proteomic profiling from human samples:thebody fluid alternative. Toxicol Lett,2001;120 (13):379-384
    [10]Rabilloud T. Two-dimensional gel electrophoresis in proteo-mics:old, old fashioned, but is still climbs up the moun-tains[J].Proteomics,2002;2(1):3-10.
    [11]Georgiou HM, Rice GE, BakerMS. Proteomic analysis of human plasma:failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins[J].Proteomics,2001; 1 (12):1503-1506.
    [12]Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veen-stra TD. Characterization of the low molecular weight human serum proteome[J].Mol Cell Proteomics,2003;2(10):1096-1103
    [13]Herbert B, Righetti PG. Aturning point in proteome analysis:sample prefractionationviamulticompartment electrolyz-ers with isoelectric membranes.Electrophoresis,2000;21(17):3639-3648
    [14]Sabounchi-Schutt F, Astom J, Olsson I, Eklund A,Grunewald J, Bjellqvist B. An immobiline DryStrip applica-tion method enabling high capacity two-dimensional gel electrophoresis. Electrophoresis,2000;21(17):3649-3656
    [15]Westerbrook JA, Yan JX, Wait R, Welson SY, Dunn MJ.Zooming-in on the proteome:very narrow-range immobilized pH gradients reveal more protein species and isoforms.Electrophoresis,2001;22(14):2865-2871.
    [16]Laoudj-Chenivesse D, Marin P, Bennes R, Tronel-Peyroz E, Leterrier F. High performance two-dimensional gel elec-trophoresis using a wetting agent Tergitol NP7.Pro-teomics,2002;2(5):481-485.
    [17]Kennedy, Sandy. Proteomic profiling from human samples:thebody fluid alternative. Toxicol Lett,2001;120 (13):379-384
    [18]Steel LF, Trotter MG, Nakajima PB, MattuTS, Gonye G, BlockT.Efficient and specific removal of albumin from human serum samples [J].Mol Cell Proteomics, 2003;2(4):262-270
    [19]Pieper R, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS.et al. The human serum proteome:display of nearly 3700 chro-matographically separated protein spots on two-dimensional elec-trophoresis gels and identification of 325 distinct proteins. Proteomics,2003;3(7):1345-1364.
    [20]Bonventre JV, MassachusettsB. The kidney proteome:A hint of things to come. Kidney Int,2002;62(4):1470-147
    [21]Marshall T, William KM. High resolution two-dimensional electrophoresis of human urinary proteins.Anal Chim Acta,1998;372:147-160.
    [22]Smith G, Barratt D, Rowlinson R, et a.l Development of a high-throughputmethod forpreparing human urine for two-dimensional e-lectrophoresis. Proteomics,2005;5(9):2315-2318
    [23]Yuan XY, Russell T, Wood G, Desiderio DM. Analysis of the human lumbar cerebrospinal fluid proteome.Elec-trophoresis,2002;23(7-8):1185-1196.
    [24]Davidsson P, Paulson L, Hesse C, Blennow K, Nilsson CL.Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresisapproach prior to mass spectrometry.Proteomics,2001; 1(3):444-452.
    [25]Watt SA, Patschkowski T, Kalinowski J,et al. Qualitative and quantitative proteomics by two-dimensional gel electrophoresis, peptide mass fingerprint and a chemically-coded affinity tag (CCAT).J Biotechnol,2003;106(2-3):287-300.
    [26]Barry RC,Alsaker BL,Robison-Cox JF,et al. Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis.Electrophoresis,2003;24(23-24):3390-3404.
    [27]Vitolins MZ,Anthony M,Burke GL.Soy protein isoflavones,lipids and arterial disease.Curr Opin Lipidol,2001,12(4):433-437.
    [28]Candianol QBruschi1 M,Musantel L, et al. Blue silver:A very sensi-tive colloidalCoomassieG-250 staining for proteome analysis. Elec-trophoresis, 2004;25(9):1327-133
    [29]Garcia-Campana AM, Gamiz-Gracia L, Baeyens WR,et al.Derivati-zation of biomolecules for chemiluminescent detection in capillary electrophoresis.J Chromatogr B Analyt Technol Biomed Life Sci,2003;793(1):49-74.
    [30]FieldsS. Proteomics. Proteomics in genomeland.Science,2001;291(5507):1221-1224.
    [31]Mann M, Hendrickson RC, Pandey A.. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem.2001;70:437-737.
    [32]Patton WF.Detection technologies in proteome analysis.JChromatogr B Analyt Technol Biomed Life Sci,2002;71(1-2):3.
    [33]Kolch W,Mischak H,Pitt AR.The molecular make-up of a tu-mour:proteomics in cancer research.Clin Sci (Lond),2005;108(5):369.
    [34]Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem.2001;70:437-737.
    [35]Wu W,Hu W,Kavanagh J.Proteomics in cancer research.Int J Gynecol Cancer,2002;12(5):409.
    [36]钱小红,盛龙生.生物质谱技术与方法.北京:科学出版社,2003:17
    [37]Beranove-Giorgiann,i Sarka. Proteome analysisby two-dimension-algel electrophoresis andmass spectrometry:slrengths and limita-tions. Trends in Analytical Chemistry,2003;22 (5):273-281.
    [38]Patton WF.Detection technologies in proteome analysis.JChromatogr B Analyt Technol Biomed Life Sci,2002;71(1-2):3.
    [39]O'Donovan, C; Apweiler, R; Bairoch, A. The human proteomics initiative (HPI). Trends In Biotechnology,2001;19(5):178-181
    [40]M agrane, M; Apweiler, R. M usm usculus in the SW ISS-PROT database:Its relevance to developm ental research.Genesis,2000;26(1):1-4
    [41]Barker, W C; Garavell,i JS; Huang, HZ; et a.l The Protein Information Resource (PIR). Nucleic Acids Res,2000;28(1):41-44
    [42]McGarvey, PB et al. Bioinformatics.2000;16(3):290-291.
    [43]Hulo N, Sigrist CJ, Le Saux V, et a.l Recent improvements to the PROSITE database. Nucleic Acids Res.2004;32(Database issue):D 134-7.
    [44]Henikoff JG, Greene EA, Pietrokovski S, et al. Increased coverage of protein families with the blocks database servers. Nucleic Acids Res,2000;28(1):228-230
    [45]Attwood TK, Bradley P, Flower DR, et al. PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Researh,2003;31(1):400-402
    [46]Lo Conte L, Ailey B, Hubbard TJ,et al. SCOP:a Structural Classification of Proteins database. Nucleic Acids Researh,2000;28(1):257-259
    [47]周海涛,朱红,贾少微,等.蛋白质组学技术新进展.肿瘤防治研究,2006;33(12):920-922
    [48]Lueking A, Cahill DJ, Mullner S. Protein biochips:A new and versatile platform technology for molecular medicine.Drug Discov Today,2005;10(11):789-794.
    [49]Moscova M,Marsh DJ,Baxter RC. Protein chip discovery of secreted proteins regulated by the phosphatidylinositol 3-kinase pathway in ovarian cancer cell lines.Cancer Res,2006;66(3):1376-1383.
    [50]De Ceuninck F, Marcheteau E, Berger S, et al. Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech,2005;16(3):256-265.
    [51]Lin YW, Lin CY, Lai HC, et al. Plasma proteomic pattern as biomarkers for ovarian cancer. Int J Gynecol Cancer,2006,16(Suppl1):139-146
    [52]Moscova M,Marsh DJ, Baxter RC Protein chip discovery of secreted proteins regulated by the phosphatidylinositol3-ki-nase pathway in ovarian cancer cell lines. Cancer Res,2006,66(3):1376-1383
    [53]Brivio M, Verboom W, Reinhoudt DN. Miniaturized continu-ous flow reaction vessels:influence on chemical reactions.Lab Chip,2006,6(3):329-344.
    [54]Dittrich PS, Manz A. Lab-on-a-chip:microfluidics in drug dis-covery. Nat Rev Drug Discov,2006;5(3):210-218.
    [55]Stoeckli M, Chaurand P, Hallahan DE, et al. Imaging mass spectrometry:a new technology for the analysis of protein ex-pression in mammalian tissues. Nat Med,2001;7(4):493-496.
    [56]Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev,2005;126(1):177-185.
    [57]Chaurand P, Fouchecourt S, DaGue BB, et al. Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics,2003;3(11):2221-2239.
    [58]Crossman L, McHugh NA, Hsieh Y, et al. Investigation of the profiling depth in matrix-assisted laser desorption/ioniza-tion imaging mass spectrometry. Rapid Commun Mass Spectrom,2006;20(2):284-290.
    [59]Cooks RG, Ouyang Z, Takats Z, et al. Detection Technolo-gies. Ambient mass spectrometry. Science,2006;311 (5767):1566-1570.
    [60]Binz PA, Miiller M, Hoogland C,et al.The molecular scanner:concept and developments. Curr Opin Biotechnol,2004;15(1):17-23.
    [61]Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev,2005; 126(1):177-185
    [62]Wang H, Hanash S. Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci,2003;787(1):11-18
    [63]Skold K, svensson M, Kaplan A, et al. A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics,2002;2(4):447-454
    [64]Tyan YC, Wu HY, Lai WW, et al. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res,2005;4(4):1274-1286
    [65]Gygi SP, Rist B, Gerber SA, et al Quantitative analysis of comptex protein mixtures using isotope-coded affinity tags.Nat Biotechnol,1999;17(10):994-999
    [66]Zhou H, Ranish JA, Watts JD, et al. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry Nat Biotechnol,2002;20(5):512-515.
    [67]Pawlik TM, Hawke DH, Liu Y, et al. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer,2006; 6:68
    [68]Goshe MB, Veenstra TD, Panisko EA, et al. Phosphoprotein isotope-coded affinity tags:application to the enrichment and identification of low-abundance phosphoproteins. Anal Chem,2002;74(3):607-616
    [69]Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture,isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol,2003;21 (6):667-672.
    [70]Thompson A, Schafer J, Kuhn K, et al. Tandem mass tags:a novel quantification strategy for comparative analysis of com-plex protein mixtures by MS/MS. Anal Chem,2003;75(8):1895-1904
    [71]Sloane AJ, Duff JL, Wilson NL, et al. High throughput pep-tide mass fingerprinting and protein microarray analysis using chemical printing strategies. Mol Cell Proteomics,2002; 1 (7):490-499
    [72]Ou K, Seow TK, LiangRC, eta.l Proteome analysis of a human heptocellular carcinoma cell line, HCCM:An update. Electrophoresis,2001; 22(13):2804-2811.
    [73]Celis JE, OstergaardM, RasmussenHH, et al A comprehensive protein resource for the study ofbladder cancer. Electrophoresis,1999;20(2):300-309.
    [74]Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancerdetection. Lancet Oncol,2001;2(11):698-704.,
    [75]Simpson RJ, Dorow DS. Cancer proteomics:from signaling networks to tumor markers. Trends Biotechnol,2001;19 (10Suppl):S40-48.
    [76]李守军,李欣,吕丽春,等.鼻咽癌细胞株HNE-1蛋白质二维电泳图谱的建立.第一军医大学学报,2003;23(12):1310-1313.
    [77]Lee WC,Lee KH. Applications of affinity chromatography in profeomics.Anal Biochem,2004;324(1):1-10.
    [78]Comunale MA,Lowman M,Long RE,et al.Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma.J Proteome Res,2006;5(2):308-315.
    [79]Gabriele L,Moretti F,Pierotti MA,et al.The use of microaray technologies in clinical oncology.J Transl Med,2006;4:8-15.
    [80]He QY, Chen J, Kung HF, et al Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics.Proteomics,2004;4(1):271-278.
    [81]An J, Sun JY, Yuan Q, et al.Proteomics analysis of differentially expressed metastasis associated proteins in adenoid cystic carcinoma cell lines of human salivary gland.Oral Oncol,2004;40(4):400-408.
    [82]夏书华,胡海,胡莉萍,等.食管鳞状上皮癌中表达失调蛋白的研究.癌症,2002;21(1):11-15
    [83]Zhang LY,Ying WT,Mao YS,et al. Loss of clusterin both in serum and tissue correlates with the tumorigenesis of esophageal squamous cell carcinoma via proteomics approaches. World J Gastroenterol,2003,9(4):650-654
    [84]Ryu JW,Kim HJ,Lee YS,et al.The proteomics approach to find biomarkers in gastric cancer.J Korean Med Sci,2003;18(4):505-509.
    [85]Ha GH,Lee SU,Kang DG, et al.Proteome analysis of human stomach tissue: separation of soluble proteins by two-dimensional polyacrylamide gel electrophoresis and identification by mass spectrometry.Electrophoresis,2002;23(15):2513-2524.
    [86]He QY,Cheung YH,Leung SY,et al. Diverse proteomic alterations in gastric adenocarcinoma.Proteomics,2004;4(10):3276-3287.
    [87]Petricoin EF,Liotta LA.SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol,2004;15(1):24-30.
    [88]Stulik J,Hernychova L,Porkertova S,et al.Proteome study of colorectal carcinogenesis. Electrophoresis,2001;22 (14):3019-3025.
    [89]Krieg RC,Fogt F,Braunschweig T,et al.ProteinChip Array analysis of microdissected colorectal carcinoma and associated tumor stroma shows specific protein bands in the 3.4 to 3.6 kDa range. Anticancer Res,2004;24 (3a):1791-1796.
    [90]Seow TK, Liang RC, Leow CK,et al.Hepatocellular carcinoma:from Bedside to proteomics-Proteomics,2001;1(10):1249
    [91]俞利荣,王楠,吴高德,等.人肝癌细胞系BEL27404和正常肝细胞系L202表达的蛋白质组双向凝胶电泳分析.科学通报,2002;45(2):170-178
    [92]Seow TK, Ong SE, Liang RC,et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line,HCC2M, and identification of the separated proteins by mass spectrometry. Electrophoresis,2000;21(9):1787-813.
    [93]Shekouh AR,Thompson CC,Prime W,et al. Application of lascapture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreat ductal adeno carcinoma. Proteomics,2003;3(10):1988-2001.
    [94]Gronborg M,Bunkenborg J,Kristiansen TZ,et al.Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res,2004;3(5):1042-1055.
    [95]Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using sulface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res,2004; 10(3):860-868.
    [96]Lichtenfels R,Kellner R,Atkins D,et al.Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses.Biochim Biophys Acta,2003;1646(1-2):21-31.
    [97]RogersMA,Clarke P,Noble J, et al. Proteomic profiling of urinary proteins in renal cancerby surface enhanced laserdesorption ionization and neural-network analysis:identification of key issues affecting potential clinicalutility.Cancer Res,2003;1563(20):6971-6983.
    [98]Konety BR,Getzenberg RH.Urine based markers of urological malignancy.J Urol,2001;165(2):600-611.
    [99]Nakagawa T, Kanai Y, Ushijima S, et al. DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J Urol.2005; 173(5): 1767-1771.
    [100]Celis JE, Celis P, Palsdottir H, et al. Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas.Mol Cell Proteomics,2002,l(4):269-279.
    [101]Irmak S, Tilki D, Heukeshoven J, et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer. Proteomics. 2005;5(16):4296-4304.
    [102]Saito M, Kimoto M, Araki T,et al. Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur Urol.2005;48(5):865-71.
    [103]Vlahou A, Schellhammer PF, Mendrinos S,et a 1.Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine.Am J Pathol,2001;158(4):1491-1502.
    [104]Mueller J, von Eggeling F, Driesch D,et al. ProteinChip technology reveals distinctive protein expressionprofiles in the urine of bladder cancer patients. Eur Urol.2005;47(6),885-894.
    [105]Kageyama S, Isono T, Iwaki H,et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem,2004;50(5):857-866.
    [106]Iwaki H, Kageyama S, Isono T,et al. Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci,2004; 95(12):955-961
    [107]Liu W, Guan M, Wu D,et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur Urol.2005;47(4):456-62.
    [108]Qu Y,Adam BL,Yasui Y,et al.Boosted decision tree analysis of surface enhanced laser desorption ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem,2002;48(10):1835-1843.
    [109]Adam BL, Qu Y, Davis JW,et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men.CancerR.es,2002; 62(13):3609-3614
    [110]Petricoin EF,Ardekani AM,Hitt BA,et al.Use of proteomic patterns in serumto identify ovarian cancer.Lancet,2002;359(9306):572-577.
    [111]Ahmed N, Barker G, Oliva KT, et al. Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. Br J Cancer,2004;91(1):129-140
    [112]Moshkovskii SA, Serebryakova MV, Kuteykin-Teplyakov KB, et al. Ovarian cancer marker of 11.7kDa detected by proteomics is a serum amyloid A1. Proteomics,2005;5(14):3790-3797
    [113]Yu JK, Zheng S,TangY, et al. An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer. J ZhejiangUniv SciB,2005;6(4):227-231
    [114]Li J,Zhang Z,Rosenzweig J,et al.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.Clin Chem,2002;48(8):1296-1304.
    [115]Paweletz CP,Trock B,Pennanen M,et al.Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for newbiomarkers to aid in the diagnosis of breast cancer.Dis Markers,2001;17(4):301-307.
    [116]Wonga YF,Cheunga TH,Loa KWK,et al.Protein profiling of cervical cancer by protein-biochips:proteomic scoring to dis-criminate cervical cancer from normal cervix.Cancer Letters 2004;211(2):227-234.
    [117]Prasad ML,Pellegata NS,Kloos RT,et al.CITED1 protein expression suggests Papillary Thyroid Carcinoma in high through-put tissue microarray-based study.Thyroid,2004; 14(3):169.
    [118]Cho WC,Yip TT,Yip C,et al. Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling.Clin Cancer Res,2004;10(Pt1):43-52.
    [119]Xiao X,Zhao X,Liu J,et al.Discovery of laryngeal carcinoma by serum proteomic pattern analysis.Sci China C Life Sci,2004;47(3):219-223.
    [120]Chen G, Gharib TG, Thomas DG, et al.Proteomic analysis of eIF-5A in lung adenocarcinomas. Proteomics,2003;3 (4):496-504.
    [121]YangSY, XiaoXY, ZhangWG, eta.1 Application ofserum surface-enhanced laser desorption/ionization proteomic patterns in distinguishing lung cancer patients from healthy prople.Chin Med J (Engl),2005;118(12):1036-1039.
    [122]Schwartz SA, Weil RJ, Johnson MD, et al. Protein profiling in brain tumors usingmass spectrometry:feasibility of a new technique for the analysis ofprotein expression. Clin Cancer Res,2004;10(3):981-987.
    [123]Ding SJ,Li Y,Tan YX,et al.From proteomic analysis to clinical significance over expression of cytokeratin 19 correlateswith hepatocellular carcinoma metastasis.Mol Cell Proteomics,2004;3(1):73-81.
    [124]Peyrl A, Krapfenbauer K, Slavc I, et al.Protein profiles of medulloblastoma cell linesDAOY and D283:identification of tumor-related proteins and principles. Proteomics,2003; 3(9):1781-1800.
    [125]Moller A, Malerczyk C, Volker U, et al. Monitoring daunorubicin-induced alterations in protein expression in pancinoma cells by two-dimensional gel electrophoresis. Proteomics,2002; 2 (6):697-705
    [126]Cecconi D, Scarpa A, Donadelli M, et al. Proteomic profiling of pancreatic ductal carcinoma cell lines treated with trichostatin-A. Electrophoresis,2003; 24(11): 1871-1878.
    [127]Annalisa C,Paolo A,Hubert A,et al.A proteomic approach to cisplatin resistance in the cervix squamouscell carcinoma cell line A431.Proteomics,2004;4(10):3246-3267
    [128]Imamura T,Kanai F,Kawakami T,et al.Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression.Biochem Biophys Res Commun,2004;318(1):289-296.
    [129]Stierum R,Gaspari M,Dommels Y,et al.Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2.Biochim Biophys Acta,2003;1650(1-2):73-91.
    [130]Desiderio DM, Zhan X. The human pituitary proteome:the characterization of differentially expressed proteins in an adenoma compared to a control. Cell Mol Biol (Noisy-le-grand),2003; 49(5):689-712.
    [131]Eggeling F,Junker K,Fiedle W,et al.Mass spectrometry meets chip technology:a new proteomic tool in cancer research [J].Electrophoresis,2001;22(14):2898-2902.
    [132]Tachibana M, Ohkura Y, Kobayashi Y, et al.Expression of apolipoprotein Al in colonic adenocarcinoma. Anticancer Res,2003; 23(5b):4161.
    [133]Iwadate Y, Sakaida T, Hiwasa T, et al. Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res,2004;64(7): 2496-2501.
    [134]Su D,Xu SH,Gu LH.Comparative proteomics analysis of differentially expressed metastasis-associated proteins in human ovarian cancer cell lines.Zhonghua Fu Chan Ke Za Zhi,2005;40(9):619.
    [135]Pandey A, Podtelejnikov AV, Blagoev B, et al. Analysis of receptor signaling pathways by mass spectrometry:identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA, 2000; 97(1):179-184.
    [136]Lewis TS, Hunt JB, Aveline LD, et al. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 2000; 6(6):1343-1354.
    [137]Boguski MS, Mcintosh MW. Biomedical informatics for proteomics.Nature, 2003; 422(6928):233-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700