PP中空纤维膜材料的功能化改性及其分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)中空纤维膜具有比表面积大、组件无需支撑体、设备小型化、结构简单等优点,被广泛应用于膜蒸馏、气体分离、废水处理等领域。但由于聚丙烯为疏水性材料,在处理水基流体时能耗高且污染严重;另一方面,PP中空纤维膜的孔径通常较大,其选择分离性能相对较差。因而对PP中空纤维膜进行功能化改性,制备分离性能优越的亲水性PP中空纤维复合膜具有重要意义。
     本论文以羧甲基纤维素钠(CMCNa)为功能材料,结合静态溶液浸泡法及物理表面交联法,对PP中空纤维超滤膜进行功能化改性,获得具有特定分离性能的CMCNa/PP中空纤维复合膜。论文通过PP中空纤维膜的表面性质表征及分离性能测试,对功能化改性工艺进行优化,并研究运行条件对CMCNa/PP中空纤维复合膜分离性能的影响,最后采用浸没式过滤操作方式将其应用于染料分离试验,研究复合膜对染料的分离效果。
     FT-IR及SEM表征结果表明通过羧甲基纤维素钠与氯化铁的交联反应,成功在PP中空纤维超滤膜表面形成亲水但非水溶的致密涂层,其厚度约为0.2μm。改性后,PP中空纤维膜表面的亲水性得到改善,其水接触角从104.7°下降到81.1°左右;由于改性后膜表面残留羧基,因而在大部分的pH值范围内(pH>3.8),复合膜表面带有负电荷,为高价阴离子的截留创造条件。
     实验考察了功能化改性工艺对CMCNa/PP中空纤维复合膜分离性能的影响,发现通过改变涂覆条件及交联条件可以有效控制复合膜表层的平均孔径,从而调节复合膜的无机盐截留率。适当增加CMCNa浓度、交联剂浓度以及涂覆次数或延长涂覆时间、交联时间均可以提高复合膜表层的致密度,从而在牺牲一定渗透通量的前提下,提高复合膜对无机盐的截留率。其中,以涂覆液中CMCNa浓度的影响最大,涂覆次数次之,而交联液中FeCl3浓度、涂覆时间及交联时间的影响最小,基本可以忽略。此外,在涂覆液中添加一定的聚丙烯酸钠(PAAS)可以提高复合膜对无机盐的截留率,但效果相对较小。综合考虑复合膜的无机盐截留率及渗透通量,认为较优的功能化改性条件为:在CMCNa浓度为2.0%w/v的涂覆液中浸泡30min,取出晾干后,再在8.0%w/v的FeCl3溶液中交联反应20min。该条件下获得的CMCNa/PP中空纤维复合膜的截留分子量约为720Da,在0.3MPa、25℃及pH6.8下,对500mg/lNa2SO4溶液的截留率为87.7%,对500mg/lNaCl溶液的截留率为29.6%,纯水渗透通量为9.9l/m2hbar。
     除功能化改性工艺对CMCNa/PP中空纤维复合膜的分离性能产生影响外,运行条件同样影响复合膜的分离性能。当操作压力在0.1~0.5MPa的范围内变化时,渗透通量随压力的增加呈线性增加,无机盐截留率也随操作压力的增加而升高,但截留率的上升速度相对较慢且逐渐趋于稳定;复合膜对无机盐的截留率和渗透通量则随着盐浓度的增加逐渐下降,截留率的下降幅度相对较大;复合膜对不同无机盐的截留顺序为CaCl2(0.9%)     最后将较优工艺下改性得到的CMCNa/PP中空纤维复合膜以浸没式过滤的操作方式应用于染料分离试验研究,发现采用浸没式过滤能有效实现染料溶液中的染料分子与无机盐的分离。复合膜对染料的截留主要受尺寸效应及道南排斥效应的共同作用;复合膜对甲基蓝、刚果红染料的截留率分别高达99.7%、99.9%,而对染料中的NaCl截留率则低于10%。CMCNa/PP中空纤维复合膜对染料的分离性能受染料浓度、染料浓缩倍数及无机盐浓度的影响。实验范围内,染料浓度及浓缩倍数的增加会小幅度降低复合膜的渗透通量,而染料中无机盐浓度的增加,则会提高复合膜的渗透通量。染料浓度、染料浓缩倍数及无机盐浓度对CMCNa/PP中空纤维复合膜的截留率的影响相对较小。中性条件下,改性获得的CMCNa/PP中空纤维复合膜对阴离子染料具有较好的抗污染性能,在含50mg/l刚果红及500mg/lNaCl的染料溶液中运行10.5h后,复合膜的渗透通量仅下降10%,而复合膜的染料截留率则维持在初始值99.8%以上。染料分离试验结果表明,改性获得的CMCNa/PP中空纤维复合膜在染料工业尤其是在染料废水处理中具有潜在的应用价值。
Polypropylene (PP) microporous hollow fiber membrane has been widely used in separation processes such as membrane distillation, gas separation and wastewater treatment due to its higher membrane area per unit volume, ease of module fabrication, no requirement of feed and permeate spacers as well as less demand for pretreatment and maintenance. However, membrane fouling resulted from its hydrophobicity limits the potential application of PP membrane in the treatment of aqueous solutions.
     In this study, thin-film composite hollow fiber membrane with the support substrate of polypropylene (PP) hollow fiber membrane and the selective skin layer of sodium carboxymethyl cellulose (CMCNa) was developed through dip-coating technique followed by cross-linking. Preparation parametric studies were conducted and the obtained membranes were characterized in terms of surface and permeation properties, through which the membrane performance was optimized. Then, the separation characteristics of the desired modified PP hollow fiber membrane under different operation conditions were investigated. Finally, the tailor-fabricated membranes were selected to treat the dye aqueous solution in a submerged filtration mode under different conditions and to explore the prospects of their applications in the treatment of dyeing wastewater.
     The results of FT-IR and SEM showed that a thin skin layer with a thickness less than0.2μm had been deposited on the surface of the polypropylene (PP) hollow fiber ultrafiltration membrane through the reaction of sodium carboxymethyl cellulose (CMCNa) and FeCl3. After modification, the water contact angle of the membrane surface was reduced significantly from104.7°to81.1°indicating that the hydrophilicity of the polypropylene (PP) microporous hollow fiber membrane had been improved by coating CMCNa layer. The surface of the modified PP hollow fiber composite membrane was negatively charged at pHs higher than3.8.
     The study of the separation properties of the CMCNa/PP hollow fiber composite membrane revealed that the average pore size (molecular weight cut-off (MWCO)) and the salt rejection rate of the resultant membrane could be adjusted by varying the conditions of coating and cross-linking processes. The performance of the resultant modified membrane was largely affected by the CMCNa content of the coating solution and the repeat times of the dip-coating process. The salt rejection rate of the resultant membrane could be increased by increasing the concentration of CMCNa or FeCl3, prolonging the time of dip-coating or cross-linking, or repeating the dip-coating process with the sacrifice of pure water permeability. Furthermore, the salt rejection rate of the resultant membrane could also be enhanced through the addition of sodium polyacrylate (PAAS) to the coating solution. The optimum preparation conditions for the composite membranes were as follows:concentration of CMCNa=2.0%w/v, the coating time of CMCNa solution=30min, the content of FeCl3=8.0%w/v, and contact time with FeCl3=20min. The membrane prepared under the optimum conditions possessed an average pure water permeability of about9.91/m2h bar and exhibited the rejections of87.7%and29.6%to Na2SO4and NaCl, respectively, when tested with a feed aqueous solution containing500mg/1salt under0.3MPa,25℃and pH6.8.
     The separation characteristics of modified PP hollow fiber membranes under different operation conditions were also investigated. As the operating pressure increased from0.1to0.5MPa, the salt rejection rate increased rapidly-to-slowly, while the water permeation flux increased proportionally. Within the studied concentration range, the increase of feed concentration resulted in a severe decline in salt rejection rate and a slightly decrease in water permeate flux. The rejection of the composite membrane to different inorganic salts followed the order of CaCl2(0.9%)     Submerged filtration of dye aqueous solutions containing different dyes including Neutral red, Methylene red, Rhodamine B, Alizarine yellow R, Methyl red, Sunset yellow, Methyl blue and Congo red were also conducted by employing the optimized CMCNa/PP hollow fiber composite membranes. It was found that the tailor fabricated CMCNa/PP hollow fiber composite membrane could efficiently remove dye molecules from saline aqueous solution. The rejection rates to Congo red, Methyl blue, Sunset yellow, Methyl red, Alizarine yellow R, Rhodamine B, Methylene red and Neutral red were99.9%,99.7%,79.2%,78.1%,76.4%,60.9%,57.1%and55.5%, respectively, while the retention rate to salt NaCl was lower than10%. The influence of salt concentration, feed dye concentration or concentrating rate on dye retention was negligible, while the increase of salt NaCl concentration in aqueous solution resulted in an increase in water flux, and the increase of feed dye concentration or concentrating rate led to a decline in permeate flux. Additionally, long-term submerged filtration also revealed that the developed composite membrane possessed good performance stability and had good prospects in the application to dyeing industry, especially in the treatment of dyeing wastewater.
引文
[1]汪锰,王湛,李政雄.膜材料及其制备[M].北京:化学工业出版社,2003.
    [2]Petersen R J. Composite reverse osmosis and nanofiltration membranes[J]. J Membr Sci,1993,83:51-81.
    [3]Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane[J]. J Membr Sci,1997,134:245-253.
    [4]Bodzek M, Waniek A, Konieczny K. Pressure driven membrane techniques in the treatment of water containing THMs[J]. Desalination,2002,147:101-107.
    [5]Graham T. Liquid diffusion applied to analysis[J]. Philos T Roy Soc A,1861,151:183-224.
    [6]Xu J, Xu Z L. Poly (vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent[J]. J Membr Sci,2002,208:203-212.
    [7]Madaeni S S, Yeganeh M K. Microfiltration of emulsified oil wastewater[J]. J Porous Mat,2003,10:131-138.
    [8]Li H J, Cao Y M, Qin J J, Jie X M, Wang T H, Liu J H, Yuan Q. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation[J]. J Membr Sci,2006,279:328-335.
    [9]Mu C X, Su Y L, Sun M P, Chen W J, Jiang Z Y. Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate[J]. J Membr Sci,2010,350:293-300.
    [10]Qtaishat M, Khayet M, Matsuura T. Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation[J]. J Membr Sci,2009,341:139-148.
    [11]Mulder M. Basic priceples of membrane technology[M]. Netherlands:Kluwer Academic Publishers,1996.
    [12]Shawky H A. Performance of aromatic polyamide RO membranes synthesized by interfacial polycondensation process in a water-tetrahydrofuran system[J]. J Membr Sci,2009,339:209-214.
    [13]Shin D H, Kim N, Lee Y T. Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance [J]. J Membr Sci,2011,376:302-311.
    [14]王学松.现代膜技术及其应用指南[M].北京:化学工业出版社,2005.
    [15]Mei S, Xiao C F, Hu X Y, Shu W. Hydrolysis modification of PVC/PAN/SiO2composite hollow fiber membrane[J]. Desalination,2011,280:378-383.
    [16]Bierbrauer K, Lopez-Gonzalez M, Riande E, Mijangos C. Gas transport in fluorothiophenyl modified PVC membranes [J]. J Membr Sci,2010,362:164-171.
    [17]Gu B, Du Q G, Yang Y L. Microporous hollow fiber membranes formed from blends of isotactic and atactic polypropylene [J]. J Membr Sci,2000,164:59-65.
    [18]Zhang C H, Yang F, Wang W J, Chen B. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol)[J]. Sep Purif Technol,2008,61:276-286.
    [19]Lue S J, Tsai C L, Lee D, Mahesh K P O, Hua M Y, Hu C, Jean Y C, Lee K, Lai J. Sorption, diffusion, and perm-selectivity of toluene vapor/nitrogen mixtures through polydimethylsiloxane membranes with two cross-linker densities[J]. J Membr Sci,2010,349:321-332.
    [20]Bonyadi S, Chung T. Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach[J]. J Membr Sci,2009,331:66-74.
    [21]Zhu Y X, Xia S S, Liu G P, Jin W Q. Preparation of ceramic-supported poly (vinylalcohol)-chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures[J]. J Membr Sci,2010,349:341-348.
    [22]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998.
    [23]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社,2008.
    [24]Xie Y J, Yu H Y, Xu Z K. Surface modification of polypropylene microporous membranes by the adsorption of non-ionic surfactants[J]. Chinese J Polym Sci,2006,24:421-429.
    [25]Molisak-tolwinskaa H, Wencela A, Figaszewski Z. The effect of hydrophilization of polypropylene membranes with alcohols on their transport properties[J]. J Macromol Sci Pure,1998,35:857-865.
    [26]Basheer C, Suresh V, Renu R, Lee H K. Development and application of polymer-coated hollow fiber membrane microextraction to the determination of organochlorine pesticides in water[J]. J Chromatogr A,2004,1033:213-220.
    [27]Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling[J]. J Membr Sci,2009,342:97-104.
    [28]Yang Y F, Wan L S, Xu Z K. Surface hydrophilization for polypropyleen miroporous membrane:A facile interfacial crosslinking approach[J]. J Membr Sci,2009,326:372-381.
    [29]Yang Y F, Wan L S, Xu Z K. Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine[J]. J Membr Sci,2009,337:70-80.
    [30]Ruckenstein E, Byungip Chung D. Surface modification by a two-liquid process deposition of A-B block copolymers[J]. J Colloid Interf Sci,1988,123:170-185.
    [31]Desai N P, Hubbell J A. Surface physical interpenetrating networks of poly (ethylene terephthalate) and poly (ethylene oxide) with biomedical applications [J]. Macromolecules,1992,25:226-232.
    [32]Quirk R A, Davies M C, Tendler S J B, Shakesheff K M. Surface engineering of poly (lactic acid) by entrapment of modifying species[J]. Macromolecules,2000,33:258-260.
    [33]Quirk R A, Davies M C, Tendler S J B, Chan W C, Shakesheff K M. Controlling biological interactions with poly (lactic acid) by surface entrapment modification[J]. Langmuir,2001,17:2817-2820.
    [34]Zhang J X, Roberts C J, Shakesheff K M, Davies M C, Tendler S J B. Micro-and macrothermal analysis of a bioactive surface-engineered polymer formed by physical entrapment of poly (ethylene glycol) into Poly (lactic acid)[J]. Macromolecules,2003,36:1215-1221.
    [35]Zhu H G, Ji J, Shen J C. Surface engineering of poly (D,L-lactic acid) by entrapment of biomacromolecules[J]. Macromol Rapid Comm,2002,23:819-823.
    [36]Zhu H G, Ji J, Lin R Y, Gao C Y, Feng L X, Shen J C. Surface engineering of poly (D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis[J]. J Biomed Mater Res A,2002,62:532-539.
    [37]Guo H F, Ulbricht M. Surface modification of polypropylene microfiltration membrane via entrapment of an amphiphilic alkyl oligoethyleneglycolether[J]. J Membr Sci,2010,349:312-320.
    [38]Guo H F, Ulbricht M. The effects of (macro) molecular structure on hydrophilic surface modification of polypropylene membranes via entrapment[J]. J Colloid Interf Sci,2010,350:99-109.
    [39]Guo H F, Ulbricht M. Preparation of thermo-responsive polypropylene membranes via surface entrapment of poly (N-isopropylacrylamide)-containing macromolecules[J]. J Membr Sci,2011,372:331-339.
    [40]Decher G, Hong J. Buildup of ultrathin multilayer films by a self-assembly process: I. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromol Chem Macromol Symp,1991,46:321-327.
    [41]Ahmadiannamini P, Li X, Goyens W, Meesschaert B, Vankelecom I F J. Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation[J]. J Membr Sci,2010,360:250-258.
    [42]Li X F, Goyens W, Ahmadiannamini P, Vanderlinden W, De Feyter S, Vankelecom I. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes:Study of preparation conditions[J]. J Membr Sci,2010,358:150-157.
    [43]Ba C Y, Ladner D A, Economy J. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane[J]. J Membr Sci,2010,347:250-259.
    [44]Zhou Y, Yu S C, Gao C J, Feng X S. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J]. Sep Purif Technol,2009,66:287-294.
    [45]Mezhirov M, Yeh E B, Sale R. Hydrophilic polyethersulfone membrane and method for preparing same[P]. USA:7537718B2,2009-5-26.
    [46]刘贯一.聚丙烯中空纤维膜表面亲水改性试验[J].河北理工学院学报,2000,22:80-85.
    [47]Garg D H, Lenk W, Berwald S, Lunkwitz K, Simon F, Eichhorn K J. Hydrophilization of microporous polypropylene Celgard(?) membranes by the chemical modification technique[J]. J Appl Polym Sci,1996,60:2087-2104.
    [48]周军,刘云,张宏忠,叶长明,陈绍伟.聚偏氟乙烯膜的Fenton氧化改性研究[J].化工新型材料,2008,36:30-32,49.
    [49]Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3plasma treatment[J]. Sep Purif Technol,2005,45:8-15.
    [50]Yu H Y, Xie Y J, Hu M X, Wang J L, Wang S Y, Xu Z K. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2plasma treatment[J]. J Membr Sci,2005,254:219-227.
    [51]Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2plasma treatment[J]. Water Res,2007,41:4703-4709.
    [52]Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface Modification of poly (propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2plasma treatment[J]. Plasma Process Polym,2005,5:84-91.
    [53]Yu H Y, Tang Z Q, Huang L, Cheng G, Li W, Zhou J, Yan M G, Gu J S, Wei X W. Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment[J]. Water Res,2008,42:4341-4347.
    [54]Zhou J, Li W, Gu J S, Yu H Y. Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment[J]. Membr Water Treat,2010,1:83-92.
    [55]Yu H Y, Liu L Q, Tang Z Q, Yan M G, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment[J]. J Membr Sci,2008,311:216-224.
    [56]Carrino L, Moroni G, Polini W. Cold plasma treatment of polypropylene surface:A study on wettability and adhesion[J]. J Mater Process Tech,2002,121:373-382.
    [57]Ciszewski A, Kunicki J, Gancarz I. Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel-cadmium batteries[J]. Electrochim Acta,2007,52:5207-5212.
    [58]Zhao J, Shi Q, Luan S F, Song L J, Yang H W, Shi H C, Jin J, Li X L, Yin J H, Stagnaro P. Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer[J]. J Membr Sci,2011,369:5-12.
    [59]Wang Y, Kim J, Choo K, Lee Y, Lee C. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization [J]. J Membr Sci,2000,169:269-276.
    [60]Gu H B, Wu J N, Chan P, Turcotte G, Ye T J. Hydrophilicity modification of polypropylene microfiltration membrane by ozonation[J]. Chem Eng Res Des,2011, doi:10.1016/j.cherd.2011.07.003.
    [61]Yamagishi H, Crivello J V, Belfort G. Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes [J]. J Membr Sci,1995,105:237-247.
    [62]Shtanko N I, Kabanov V Y, Apel P Y, Yoshida M, Vilenskii A I. Preparation of permeability-controlled track membranes on the basis of 'smart' polymers [J]. J Membr Sci,2000,179:155-161.
    [63]Shim J K, Lee Y B, Lee Y M. pH-dependent permeation through polysulfone ultrafiltration membranes prepared by ultraviolet polymerization technique [J]. J Appl Polym Sci,1999,74:75-82.
    [64]Chen J H, Asano M, Yamaki T, Yoshida M. Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films [J]. J Membr Sci,2006,269:194-204.
    [65]Mazzei R, Garcia Bermudez G, Massa G, Filevich A. Grafting of polypropylene and poly (vinylidene fluoride) films implanted with Ar+ions[J]. Nucl Instrum Meth B,2007,255:314-320.
    [66]Gupta B, Mishra S, Saxena S. Preparation of thermosensitive membranes by radiation grafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric[J]. Radiat Phys Chem,2008,77:553-560.
    [67]Ramirez-Fuentes Y S, Bucio E, Burillo G. Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method[J]. Nucl Instrum Meth B,2007,265:183-186.
    [68]Ramirez-Fuentes Y S, Bucio E, Burillo G. Thermo and pH sensitive copolymer based on acrylic acid and N-isopropylacrylamide grafted onto polypropylene [J]. Polym Bull,2008,60:79-87.
    [69]Ikram S, Kumari M, Gupta B. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric[J]. Radiat Phys Chem,2011,80:50-56.
    [70]Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. J Membr Sci,2010,362:255-264.
    [71]Yu H, Xu Z, Lei H, Hu M, Yang Q. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor[J]. Sep Purif Technol,2007,53:119-125.
    [72]Kou R Q, Xu Z K, Deng H T, Liu Z M, Seta P, Xu Y Y. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allyl glucoside[J]. Langmuir,2003,19:6869-6875.
    [73]Liu Z M, Xu Z K, Wan L S, Wu J, Ulbricht M. Surface modification of polypropylene microfiltration membranes by the immobilization of poly (N-vinyl-2-pyrrolidone):A facile plasma approach[J]. J Membr Sci,2005,249:21-31.
    [74]Yu H Y, Lei H, Xu Z K. Enhancement of the flux for polypropylene hollow fiber membrane in a submerged membrane-bioreactor by surface modification[J]. J Environ Sci,2006,18:1050-1055.
    [75]Yang Q, Tian J, Xu Z K. Photo-induced graft polymerization of acrylamide on polypropylene membrane surface in the presence of dibenzyl trithiocarbonate[J]. Chinese J Polym Sci,2007,25:221-226.
    [76]Hu M X, Yang Q, Xu Z K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators[J]. J Membr Sci,2006,285:196-205.
    [77]Ma H M, Davis R H, Bowman C N. A novel sequential photoinduced living graft polymerization[J]. Macromolecules,2000,33:331-335.
    [78]Ulbricht M, Yang H. Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization[J]. Chem Mater,2005,17:2622-2631.
    [79]Yusof A H M, Ulbricht M. Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization:Optimizing separation performance by preparation conditions[J]. J Membr Sci,2008,311:294-305.
    [80]Yu H Y, Xu Z K, Yang Q, Hu M X, Wang S Y. Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid[J]. J Membr Sci,2006,281:658-665.
    [81]Yu H Y, Liu L Q, Tang Z Q, Yan M G, Gu J S, Wei X W. Mitigated membrane fouling in an SMBR by surface modification [J]. J Membr Sci,2008,310:409-417.
    [82]Yu H Y, Zhou J, Gu J S, Yang S. Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane[J]. J Membr Sci,2010,364:203-210.
    [83]Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. J Am Chem Soc,1995,117:5614-5615.
    [84]Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:Possibility of living radical polymerization[J]. Macromolecules,1995,28:1721-1723.
    [85]Lego B, Franc, ois M, Skene W G, Giasson S. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP:Control of grafting density and polymer chain length[J]. Langmuir,2009,25:5313-5321.
    [86]Zhao Y H, Wee K H, Bai R B. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method[J]. J Membr Sci,2010,362:326-333.
    [87]Wang C C, Feng R R, Yang F L. Enhancing the hydrophilic and antifouling properties of polypropylene nonwoven fabric membranes by the grafting of poly (N-vinyl-2-pyrrolidone) via the ATRP method[J]. J Colloid Interf Sci,2011,357:273-279.
    [88]Feng R R, Wang C C, Xu X C, Yang F L, Xu G J, Jiang T. Highly effective antifouling performance of N-vinyl-2-pyrrolidone modified polypropylene non-woven fabric membranes by ATRP method[J]. J Membr Sci,2011,369:233-242.
    [89]Yao F, Fu G D, Zhao J P, Kang E T, Neoh K G. Antibacterial effect of surface-functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization[J]. J Membr Sci,2008,319:149-157.
    [90]Yang Q, Tian J, Hu M X, Xu Z K. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP[J]. Langmuir,2007,23:6684-6690.
    [91]Wan L S, Yang Y F, Tian J, Hu M X, Xu Z K. Construction of comb-like poly (N-isopropylacrylamide) layers on microporous polypropylene membrane by surface-initiated atom transfer radical polymerization [J]. J Membr Sci,2009,327:174-181.
    [92]Nasef M M, Hegazy E A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films [J]. Prog Polym Sci,2004,29:499-561.
    [93]左丹英,刘富,朱宝库,徐又一.聚偏氟乙烯微孔膜一步法亲水化改性研究[J].膜科学与技术,2006,26:41-45.
    [94]Lv Y X, Yu X H, Tu S T, Yan J Y, Dahlquist E. Wetting of polypropylene hollow fiber membrane contactors [J]. J Membr Sci,2010,362:444-452.
    [95]Sdukhin S, Derjaguin B V. Surface and colloid science[M]. London: Wiley-Interscience Publication,1974.
    [96]Childress A E, Elimelech M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. J Membr Sci,1996,119:253-268.
    [97]Wu D H, Liu X S, Yu S C, Liu M H, Gao C J. Modification of aromatic polyamide thin-film composite reverse osmosis membranes by surface coating of thermo-responsive copolymers P(NIPAM-co-Am). I:Preparation and characterization [J]. J Membr Sci,2010,352:76-85.
    [98]Sabde A D, Trivedi M K, Ramachandhran V, Hanra M S, Misra B M. Casting and characterization of cellulose acetate butyrate based UF membranes[J]. Desalination,1997,114:223-232.
    [99]刘海霞,张浩勤,刘金盾,罗庆涛.分光光度法测定不同分子量聚乙二醇浓度[J].河南化工,2004,36-37.
    [100]He F, Zhao D Y, Liu J C, Roberts C B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and ground water[J]. Ind Eng Chem Res,2007,46:29-34.
    [101]Jones F, Farrow J B, van Bronswijk W. An infrared study of a polyacrylate flocculant adsorbed on hematite[J]. Langmuir,1998,14:6512-6517.
    [102]Wu N Q, Fu L, Su M, Aslam M, Wong K C, Dravid V P. Interaction of fatty acid monolayers with cobalt nanoparticles[J]. Nano Lett,2004,4:383-386.
    [103]Ren Y Z, Iimura K, Kato T J. Structure of barium stearate films at the air/water interface investigated by polarization modulation infrared spectroscopy and π-A isotherms[J]. Langmuir,2001,17:2688-2693.
    [104]Taleb M F A, El-Mohdy H L A, El-Rehim H A A. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes[J]. J Hazard Mater,2009,168:68-75.
    [105]Gorgieva S, Kokol V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear[J]. Carbohyd Polym,2011,85:664-673.
    [106]He T, Frank M, Mulder M H V, Wessling M. Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly (ether ether ketone)(SPEEK)[J]. J Membr Sci,2008,307:62-72.
    [107]罗远宏,肖凯军,楼雅青,郭祀远,蔡妙颜.聚丙烯酸钠荷负电膜的制备及分离特性研究[J].膜科学与技术,2007,27:41-44.
    [108]康芳萍.聚乙烯醇复合纳滤膜的制备[D].杭州:浙江大学,2006.
    [109]Ouyang L, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. J Membr Sci,2008,310:76-84.
    [110]Li X L, Zhu L P, Xu Y Y, Yi Z, Zhu B K. A novel positively charged nanofiltration membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization cross-linking[J]. J Membr Sci,2011,374:33-42.
    [111]Huang R H, Chen G H, Yang B C, Gao C J. Positively charged composite nanofiltration membrane from quaternized chitosan by toluene diisocyanate cross-linking[J]. Sep Purif Technol,2008,61:424-429.
    [112]Deng H Y, Xu Y Y, Zhu B K, Wei X Z, Liu F, Cui Z Y. Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I)[J]. J Membr Sci,2008,323:125-133.
    [113]Wei X Z, Zhu L P, Deng H Y, Xu Y Y, Zhu B K, Huang Z M. New type of nanofiltration membrane based on crosslinked hyperbranched polymers[J]. J Membr Sci,2008,323:278-287.
    [114]Yu S C, Ma M, Liu J Q, Tao J, Liu M H, Gao C J. Study on polyamide thin film composite nanofiltration membrane by interfacial polymerization of polyvinylamie (PVAm) and isophthaloyl chloride (IPC)[J]. J Membr Sci,2011,379:164-173.
    [115]Wang X L, Tsuru T, Nakao S, Kimura S. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes [J]. J Membr Sci,1997,135:19-32.
    [116]Ji Y L, An Q F, Zhao Q, Chen H L, Gao C J. Preparation of novel positively charged copolymer membranes for nanofiltration [J]. J Membr Sci,2011,376:254-265.
    [117]Tansel B, Sager J, Rector T, Garland J, Strayer R F, Levine L, Roberts M, Hummerick M, Bauer J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration indeed end and cross flow modes[J]. Sep Purif Technol,2006,51:40-47.
    [118]Ji Y L, An Q F, Zhao Q, Chen H L, Qian J W, Gao C J. Fabrication and performance of a new type of charged nanofiltration membrane based on polyelectrolyte complex[J]. J Membr Sci,2010,357:80-89.
    [119]Kong C L, Kanezashi M, Yamomoto T, Shintani T, Tsuru T. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination[J]. J Membr Sci,2010,362:76-80.
    [120]Li L, Zhang S B, Zhang X S. Preparation and characterization of poly (piperazineamide) composite nanofiltration membrane by interfacial polymerization of3,3',5,5'-biphenyl tetraacyl chloride and piperazine[J]. J Membr Sci,2009,335:133-139.
    [121]Gomes A C, Goncalves I C, Pinho M N D. The role of adsorption on nanofiltration of azo dyes[J]. J Membr Sci,2005,255:157-165.
    [122]Yu S C, Liu M H, Ma M, Qi M, Lii Z H, Gao C J. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes [J]. J Membr Sci,2010,350:83-91.
    [123]Han R L, Zhang S H, Xing D B, Jian X G. Desalination of dye utilizing copoly (phthalazinone biphenyl ether sulfone) ultrafiltration membrane with low molecular weight cut-off[J]. J Membr Sci,2010,358:1-6.
    [124]Akbari A, Desclaux S, Rouch J C, Remigy J C. Application of nanofiltration hollow fibre membranes, developed by photografting, to treatment of anionic dye solutions[J]. J Membr Sci,2007,297:243-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700