大孔SiO_2材料的制备及其功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究大孔材料的制备与功能化的新方法,以三维骨架聚合物为整体型模板,通过表面复制模板技术获得具有三维超薄结构的新型大孔SiO_2材料,解决了多孔材料制备中的大尺寸、大孔径、低缺陷和低成本等一系列问题。论文进一步利用大孔SiO_2材料的结构导向作用以及超强毛细管效应,开展了纳米功能材料的原位制备研究,获得了大尺寸、大孔径的TiO_2/SiO_2光催化材料和C/SiO_2复合导电材料。本文的研究工作主要有以下几个部分:
     1、利用二阶段相分离控制方法制备具有不同孔径的三维骨架结构的聚合物,通过对反应诱导相分离与离子诱导相分离两过程的控制,在1~2μm范围内调节了孔径大小。采用引入金属离子改变固体材料折射率的方法,从定性的角度获得孔径大小及分布与光学窗口波长范围之间的匹配关系,初步解释了其特有的滤光效应。
     2、以上述聚合物为模板,通过正硅酸四乙酯原位溶胶-凝胶过程并结合高温烧结的方法,获得了新型大孔SiO_2材料,该材料是以三维弯曲延伸的纳米薄层(厚度为20~30 nm)方式构成的宏观体,其孔道所构成的微环境具有无尘空间和微重力状态的特点。通过研究聚合物模板与目标产物之间的关系,优化了表面复制技术,达到批量生产的要求。
     3、以大孔SiO_2材料为载体制备光催化复合材料。通过钛酸丁酯溶液浸渍、原位水解、煅烧制备出大孔TiO_2/SiO_2材料。研究发现:TiO_2以纳米薄层方式均匀地沉积在SiO_2的三维超薄层上,形成TiO_2/SiO_2/TiO_2三层夹心结构。该复合材料具有较好的光催化活性,当焙烧温度为600℃和TiO_2的负载量为54.5 wt%时其光催化活性最大,对甲基橙溶液的降解速率常数达到1.78 h-1。
     4、以大孔SiO_2材料为载体制备新型炭复合材料。以聚丙烯腈为碳源,利用丙烯腈溶液渗透、溶剂蒸发、高温炭化处理得到大孔C/SiO_2复合材料。研究表明:炭以薄膜形式包覆在SiO_2薄层上的表面,膜的厚度与宏观的电导率呈现一定的依赖关系。在800℃炭化处理下,丙烯腈浓度为33 wt%且聚合两次后的C/SiO_2的导电性能最佳,其体积电阻约为16Ωcm,炭膜的平均厚度为16 nm,比表面积约为93 m2·g~(-1)。
We found a new method for the preparation and functionalization of macroporous materials in this paper. A large sized macroporous three-dimensional (3D) SiO_2 material has been prepared by using a 3D skeletal polymer as template through surface replica technique. We have solved low cost preparation problems of the large sized macroporous materials and used the SiO_2 as the platform for functional studies. Due to the effects of structure-direction and strong capillarity from the porous silica template, functional Nanomaterials could be in situ synthesized and shaped as a 3D continuous film covering the silica layer. Using SiO_2 as a support, we have prepared TiO_2/SiO_2 catalyst with a better activity for photo-degradation and a novel C/SiO_2 composite with a better electrical conductivity. Details of the research as follows:
     By adopting a new method which was based on a two-step phase separation to synthesize 3D skeletal polymers materials with different pore sizes and through the control of the reaction induced phase separation and ion induced phase separation, we can adjust the pore sizes in a range of 1-2μm. By changing the refractive index of solid materials through the introduction of ZnSO4 and CdSO4 in polymer matrix, we have established a qualitative relationship between the wavelength range of transmitting light and the pore size with its distribution in a 3D skeleton and presented a fundamental explanation of the new optical phenomenon.
     A large sized macroporous SiO_2 support was obtained by using a 3D skeletal polymer as template through an in situ sol-gel process of ethyl silicate and a subsequent calcination at a high temperature. This silica materials show typical 3D ultrathin structure and its thickness of silica layer was 20-30 nm, these pore network formed a special microenvironment with two virtues of microgravity and dustless space. After studying the relationship between polymers and SiO_2, We have optimized surface replica technique and reached the batch prodution of SiO_2.
     Photocatalysis composite were prepared by using the large sized macroporous SiO_2 as support. By immersing the support in a solution of tetrabutyl titanate in cyclohexane followed by in situ hydrolysis in air and a final calcination, TiO_2 was loaded on the surface of the support to provide TiO_2/SiO_2 complexes and the TiO_2 formed 3D continuous thin films sandwiching the central silica thin layer. The TiO_2/SiO_2 catalyst exhibited a better activity for photo-degradation of methyl orange and the highest rate constant of 1.78 h-1 was obtained from the catalyst containing 54.5 wt% of TiO_2 calcined at 600℃.
     New carbon materials were prepared by using the large sized macroporous SiO_2 as support. A series of large sized and macroporous C/SiO_2 3D composites could be obtained, by immersing the support in the Acrylonitrile solution undergo a sequent polymerization and a final calcination. The carbon in the composites was shaped as a 3D continuous film covering the silica layer. The thickness of the carbon film was related to the conductivity. When the concentration of acrylonitrile was 33 wt% and Coating twice, the novel C/SiO_2 composite exhibited a better electrical conductivity, which has an volume resistance of 16 ??cm, an average thickness of 16 nm of the carbon films and the BET surface area of 93 m2·g-1.
引文
[1]徐如人,庞文琴.分子筛与多孔材料化学,北京:科学出版社,2005
    [2]邬泉周,李玉光.三维有序大孔材料应用研究进展,化工进展,2008,27(3):358-363
    [3]鲁德平,管蓉,刘剑洪.微孔发泡高分子材料,高分子材料科学与工程,2002,18(4):30-33
    [4]王浩,赵大方,李效东等.有序大孔材料的研究进展,硅酸盐学报,2006,34(1):107-112
    [5]陆蓉,李世善,闫玉华.组织工程用聚合物多孔支架的制备技术,生物骨科材料与临床研究,2005,2(3):37-41
    [6] Zhao D Y,Yang P D,Bradley F,et al.Multiphase assembly of mesoporous-macroporous membranes,Chem.Mater.,1999,11:1174-1178.
    [7] Thomas, Angew J M.Design, Synthesis, and In Situ Characterization of New Solid CatalystsChem,Int.Ed.,1999,38:3588-3628
    [8] Wang Y X, Tan S H, Jiang D L.Preparation of porous carbon derived from mixtures of furfuryl resin and glycol with controlled pore size distribution,Carbon,2003,4:2065-2072
    [9] Ghobarkar H, Schaf O, Guth P U.Zeolites—from kitchen to space,Solid St.Chem.,1999,27:29-73
    [10] Kresge C T,Leonowicz M E,Roth W J,et al.Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid Crystal Template Mechanism,Nature,1992,359:710-712
    [11] Pang J B,Qiu K Y,Wei Y.Synthesis of mesoporous poly(Styrene-co-maleic anhydride)/silica hybrid materials Via a nonsurfactant-templated sol-gel process,Polym.Sci,2000,18(5):469-472
    [12] Zhou W Z,Thomas J M,Shephard D S,et al.Ordering of ruthenium cluster carbonyls in mesoporous silica,Science,1998,280:705-708
    [13] Zhu G S,Qiu S L,Gao F E,et al.Template-assisted self-assembly of macro-micro bifunctional porous materi-als,J Mater Chem,2001,11:1687-1693
    [14] Yi D K,Kim D.Novel Approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings,Nano Letters,2003,3(2):207-211
    [15]于景媛,李强,马晓红等.三维有序大孔材料的制备及应用,材料导报,2006,20(4):21-24
    [16] Stein A.Sphere templating methods for periodic porous solids,Microporous and Mesopo rous Mater,2001,44:227-231
    [17] Scott W J,Yang S M,Chabanis G,et al.Tin Dioxide Opals and Inverted Opals:Near-Ideal Microstructures for Gas Sensors,Adv.Mater.,2001,13:1468-1472
    [18] Míguez H,Meseguer F,López C,et al.Evidence of FCC Crystallization of SiO_2 Nanospheres,Langmuir,1997,13:6009-6011
    [19] Velev O D,Jede T A,Lobo R F,et al.Porous silica via colloidal crystallization,Nature,1997,389:447-448
    [20]齐凯,杨振忠,刘正平等.聚苯乙烯模板制备SiO_2三维有序孔材料,科学通报,2000,45:267-268
    [21] Holland B T,Abrams L,Stein A.Dual templating of macroporous silicates with zeolitic microporous frameworks,J Am Chem Soc,1999,121:4308-4309
    [22]王丽华,杨卫亚,沈智奇等.三维有序大孔材料的制备及在催化领域的应用,现代化工,2008,28(2):85-89
    [23] Wang Y J,Tang Y,Ni Z,et al.Synthesisof macroporous materials with zeolitic microporousframeworks by self-assembly of colloidal zeolites,Chem Lett,2000,31:510-511
    [24]王亚军,唐颐,王星东等.具有微孔-大孔双孔道体系沸石材料的合成,高等学校化学学报,2000,21(7):1013-1215
    [25] Schroden R C,Al Daous M,Sokolv S,et al.Hybrid macroporousmaterials for heavy metal ion adsorption,J.Mater.Chem.,2002,12:3261-3267
    [26] Xu X,Goodman D W.New approach to the preparation of ultrathin silicon dioxide films at low temperatures,Appl. Phys. Lett.,1992,61:774-776
    [27] Sieber H,Hoffman C,Kaindl A,et al.Bio morp hic cellular ceramics,Adv Eng Mater,2000,2:105-109
    [28] Vogli E,Mukerj I J,Hoffman C,et al.Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide,J Am Ceram Soc,2001,84:1236-1240
    [29] Velev O D,Lenhoff A M.Colloidal crystals as templates for porous materials,Curr Opin Colloid Interface Sci,2000,5:56-63
    [30] Stain A, Schroden R C.Colloidal crystal templating of three-dimensionally ordered macroporous solids,Curr Opin Solid State Mater Sci,2001,5:553-564
    [31] Ogawa M A . Simple sol-gel route for the preparation of silica-surfactart mesostructured materials,J Chem Soc Chem.Commun,1996,21:1149-1150
    [32] Caruso F,Caruso R A,Mohwald H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,Science,1998,245:507-510
    [33] Holland BT,Blanford C F,Stein A.Synthisis of macroporous minerals with highly ordered three-dimen-sional arrays of spheroidal voids,Science,1998,281:538-540
    [34] Imhof A , Pine D J . Ordered macroporous materials by emulsion templating,Nature,1997,389:948-951
    [35] Stein A.Sphere Templating Methods for Periodic Porous Solids.Microporous Mesoporous Mater,2001,44:227-239
    [36] Blanford C F,Yan H,Schroden R C,et al.Gems of Chemistry and Physics:Macroporous Metal Oxides with 3D Order,Adv Mater,2001,13:401-407
    [37]李艳华,曾冬铭,黄可龙.有序大孔材料的制备及其应用,化工进展,2008,20:245-252
    [38] Ogasawara W,Shenton W,Davis SA,et al.Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix,Chem Mater.,2000,12:2835-2837
    [39] Morris C A,Anderson M L,Stroud R M.Silica sol as a nanoglue: flexible synthesis of composite aerogles,Science,1999,284:622-624
    [40] Vos R M,Verweij H.High-selectivity, high-flux silica membranes for gas separation,Science,1998,279:1710-1711
    [41]王亚军,胡建华,唐颐等.层叠层技术组装纳米沸石-沸石涂饰纤维和沸石空心纤维,化学学报,2001,59:1084-1088
    [42] Lei Z,Li J,Ke Y.Two-step templating route to macroporous or hollow sphere oxides. J.Mater.Chem.,2001,11(12):2930-2933
    [43]尹强,廖菊芳,王崇太等.三维有序大孔H3PW12O40-SiO_2功能材料的制备表征及催化性能研究,化学学报,2007,65(8):2103-2108
    [44] Kotov N A,Liu Y,Wang S,et al.Inverted colloidal crystals as three-dimensional cell scaffolds,Langmuir,2004,20:7887-7892
    [45] Yan H,Sokoloy S,Lytle J C,et al.Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for Lithium secondary batteries,Journal of the Electrochemical Society,2003,15(8):A1102-1107
    [46] Sorensen E M,Barry S J,Jung H,et al.Three-dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties.Chem.Mater.,2006,18:482-489
    [47] Fan J,Wang T,Yu C Z,et al.Ordered, Nanostructured Tin-Based Oxides/Carbon Composite as the Negative-Electrode Material for Lithium-Ion Batteries,Adv. Mater.,2004,16(16):1432-1436
    [48] Zhao Y,Zheng M,Cao J,et al.Easy synthesis of ordered Meso/macroporous carbon monlith for use as electrode in electrochemical capacitors,Material Letters,2007,25:514-518
    [49] Szamocki R,Velichko A,Holzapfel C,et al.Macroporous ultramicroelectrodes for improved electroanalytical measurements,Anal.Chem.,2007,79:533-539
    [50] Tessier P M,Velev O D,Kalambur A T,et al.Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced raman spectroscopy,J.Am.Chem.Soc.,2000,122:9554-9555
    [51] Schroden R C,Al-Daous M,Blanford C F,et al.Optical properties of inverse opal photonic crystals,Chem.Mater.,2002,14:3305-3315
    [52] Blanco A,Chomski E,Grabtchak S,et al.Large-scale synthesis of a silicon crystal with a complete three-dimensional bandgap near 1.5 micrometers,Nature,2000,405:437-440
    [53] Wijnhoven J E,Bechger L,Vos W.Fabrication and characterization of large macroporous photonic crystals in titania,Chem.Mater.,2001,13:4486-4499
    [54] Muller M,Zentel R,Maka T,et al.Photonic crystal films with high refractive index contrast,Adv.Mater.,2000,12(20):1499-1503
    [55] Yang L,Kang J,Guan Y,et al.3D-ordered macroporous materials comprising DNA,Langmuir,2006,22:11275-11278
    [56] Krivorotov I N,Yan H,Dahlberg E D,et al.Exchange bias in macroporous Co/CoO,Journal of Magnetism and Magnetic Materials,2001,26:226-230
    [57] Chi E,Kim Y,Kim J,et al.A macroporous perovekite manganite from colloidal templates with a curie temperature of 320 K,Chem.Mater.,2003,15(10):1929-1931
    [58] Chen X B, Mao S S.Titanium Dioxide Nanomaterials:Synthesis,Modifications, and Applications,Chem. Rev.,2007,107:2891-2959
    [59]闫俊萍,张中太,唐子龙.半导体基纳米复合材料光催化研究进展,无机材料学报,2003,18(5):980-988
    [60]廖振华,陈建军,姚可夫.纳米TiO_2光催化剂负载化的研究进展,J. Inorg. Mater,2004,19(1):17-23
    [61] Machida M,Norimoto K,Watanabe T,et al.The effect of SiO_2 addition in super-hydrophilic property of TiO_2 photocatalyst,Journal of Materials Science,1999,34:2569-2574
    [62]王侃,陈英旭,叶芬霞.SiO_2负载的TiO_2光催化剂可见光催化降解染料污染物,催化学报,2004,25(12):931-936
    [63]张峰,李庆霖,杨建军等.TiO_2光催化剂的可见光敏化研究,催化学报,1999,20(3):229-234
    [64]刘正锋,刘守新,李晓辉等.吸附剂负载TiO_2光催化研究进展,化学通报,2008,10:755-763
    [65] Fernandz A,Lassaletta G,Jirnennez V M,et al.Preparation and Characteiizstion of TiO_2 Photocatalysis Supported on Various Rigid Supports (glass quartz and stainless steel), Comparative Studies of Photocatalytic Activity in Water Purification,Applied Catalysis B,1995,7(9):4963-4969
    [66]崔鹏,范益群,徐南平等.TiO_2负载膜的制备、表征及光催化性能,催化学报,2000,21(5):494-496
    [67] Machida M,Norimoto K,Fujishima A et al. Influence of hydrogen partial pressure on hydrodenitrogenation of pyridine, aniline and quinoline,Applied Catalysis A: General,1999,187:73-78
    [68]黄艳娥,刘会媛.TiO_2光催化剂固定化载体及固化方法,唐山师范学院学报,2001,23(5):31-32
    [69]胡春,王怡中.表面键联型TiO_2/SiO_2固定化催化剂的结构及催化性能,环境科学学报,2001,21(1):123-127
    [70]姚超,高国生,林西平等.硅烷偶联剂对纳米二氧化钛表面改性的研究,无机材料学报,2006,2(21):315-32
    [71]黄汉生.日本二氧化钛光催化剂环境净化技术开发动向.现代化工,1998,12(1):39-46
    [72]沈杭燕,唐新硕,管敏远等.负载型TiO_2催化剂的制备及光催化丙酮蒸汽的降解性能研究,分子催化,1999,13(6):435-441
    [73] Pei Shi Tin,Tai Shung Chung,Ye Liu,et al.Separation of CO_2/CH4 through carbon molecular sieve membranes derived from P84 polyimide,Carbon,2004,42(15):3123-3131
    [74]徐斌,彭璐,王国庆等.高功率超级电容器用介孔炭电极材料,电化学,2009,15(1):9-12
    [75] Chai G,Yoon S B,Kang S,et al.Ordered uniform porous carbons as a catalyst support in a direct methanol fuel cell,Electrochimica acta,2004,50(2):823-826
    [76] Jong S Y,Soon K K,Suk B Y,et al.Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter,J Am Chem Soc,2002,(124):9382-9383
    [77]袁爱军,查庆芳,李兆丰等.天然气储存用多孔炭的研究Ⅲ:成型多孔炭储存天然气的研究,炭素技术,2003,23(2):1-4
    [78]郑经堂,张引枝,王茂章.多孔炭材料的研究进展及前景,化学进展,1996,8(3):241-250
    [79]李娜,王先友,易四勇.模板法制备中孔碳材料,化学进展,2008(7/8):1202-1207
    [80]姚七妹,谭镇,周颖.模板法制备多孔炭材料的研究进展,炭素技术, 2005,24(4):15-20
    [81] Lee J,Sohn K,Hyeon T.Fabrication of Novel Mesocellular Carbon Foams with Uniform Ultralarge Mesopores,J.Am.Chem.Soc.,2001,123:5146-5147
    [82] Wayne W,Stucky G D.Synthesis of Mesoporous Carbon Foams Templated by Organic Colloids,Chem.Mater.,2002,14:1665-1670
    [83] Ryoo R,Joo S H,Jun S.Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation,Phys.Chem.B,1999,103:7743-7746
    [84]杜丽,刘军民,杨旭等.中孔分子筛材料的研究进展,化工进展,2007,26(6):779- 781
    [85] Choma J,Gorka J,Jaroniec M.Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms,Microporous and Mesoporous Materials,2008,112:573-579
    [86] Li H Q,Liu R L,Zhao D Y,et al.Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly,Carbon,2007,45:2628-2635
    [87] Zhang R F,Zhang L L.Preparation of 3-dimentional skeletal polymer via control of reaction-induced phase separation in epoxy/poly(ethylene glycol) blends,Polymer Bulletin,2008,61:671-677
    [88] Hoppe C E,Galante M J,Oyanguren P A,et al.Optical properties of novel thermally switched PDLC films composed of a liquid crystal distributed in a thermoplastic/thermoset polymer blend,Mater. Sci. Eng. C.,2004,24: 591-594
    [89]张瑞丰,张乐乐,龙能兵.反应诱导相分离过程的超声波在线跟踪,高分子学报,2009,(3):195-202
    [90] Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis,J.Photochem. Photobiol. C:Photochem. Rev.,2000,1:1-21
    [91] Nakaoka Y,Nosaka Y.ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO_2 powder,J. Photochem. Photobiol. A:Chem.,1997,110(3):299-305
    [92] Shinri S.Effects of surface modification with silicon oxides on the photochemical properties of powdered titania,Langmuir,1988,4(5):1156-1159
    [93] Zhang Y H, Relle A.Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum,Mater. Sci. Eng. C,2002,19:323-326
    [94] Zywitzki O,Modes T,Gloss D,et al.Effect of structure and morphology on photocatalytic properties of TiO_2,Surf. Coat. Technol.,2008,202:2488-2493
    [95] Kyotani T,Nagai T,Inoue S,et al.Formation of new type of porous carbon by carbonization in zeolite Nanochannels,Chem Mater,1997,9(2):609-615
    [96] Ryoo R,Joo S H,Kruk M,et al.Ordered mesoporous carbons,Adv Mater,2001,13(9):677-681
    [97] Lee J,Kim J,Hyeon T.A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon,Chem Commun,2003,1:1138-1139
    [98] Soo H J,Hee Y H,Sun K H,et al.Carbon nanotubes based on anodic aluminum oxide nano-template,Carbon,2004,42:2073-2080
    [99] Kim M,Yoon S B,Sohn L C,et al.Synthesis and characterization of carbon and polymer capsules with hollow macroporous core and mesoporous shell structures ,Microporous and Mesoporous Materials,2003,63:1-9
    [100]王永刚,闵振华,曹敏等.加热条件对炭泡沫材料孔结构和性能的影响,新型炭材料,2009,24(4):321-326
    [101] Aldo J G,Robert B,Maria A O.Preparation.Characterization and pyrolysis of poly(furfuryl alcohol)/porous silica glass nanocomposites:novel route to carbon template,Carbon,2002,40:2413-2422
    [102] Strano M S,Zydney A L,Barth H,et al.Ultrafiltration membrane synthesis by nanoscale templating of porous carbon,Journal of Membrane,2002,198:173-186
    [103]沈曾民.新型碳材料,北京:化学工业出版社,2003
    [104]邱英华,王同华,宋成文.聚丙烯腈基炭膜制备及结构变化的研究,化工新型材料,2004,32(8):37-40
    [105] Hueso J L,Espin s J P,Caballero A,et al.XPS invetigation of the reaction of carbon with NO, O_2, N2 and H2O plasmas,Carbon,2007,45(1):89-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700