大挠性航天桁架结构动力学建模及其主动模糊控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大挠性航天桁架结构的振动控制是航天器动力学与控制领域的挑战性课题。大挠性航天桁架结构是由杆、梁、铰链及其有效载荷等结构单元根据特定的航天任务需求而组成的大型离散结构,并因其具有集散简单、可靠性强、对任务的适应度大等特点而在航天结构中得到广泛应用;但是作为一种极具代表性的大型离散结构,其结构动力学特性也很复杂,基于经典控制理论和现代控制理论的控制方法已经难以适应这一复杂系统的控制要求;而模糊控制理论不需要精确的数学模型,适用于对复杂大系统的控制,本文正是在这样的背景下,展开大挠性航天桁架结构动力学研究,提出针对大挠性航天桁架结构的主动模糊控制的理论和方法,并进行深入的探讨和研究。
     本文主要包含两个方面的工作:大挠性航天桁架结构动力学建模、特性分析和计算;基于模糊控制方法对大挠性航天桁架结构的振动展开主动控制研究。概括地说,围绕上述两个方面开展的具体研究内容包括:
     1.针对大挠性航天桁架结构这一代表性的离散结构,明确了研究对象的背景和特点,并对其进行分类(桁架式空间站、空间外伸承载桁架结构、抛物面桁架天线、环形张紧桁架可展开天线、四面体桁架天线以及变几何桁架结构),综述了国内外大挠性航天桁架结构动力学及主动控制研究、模糊控制研究以及结构振动的主动模糊控制研究的进展。
     2.深入系统地对大挠性航天桁架结构动力学展开研究。
     (1)结合航天器在轨运行时大挠性航天桁架结构的振动为控制带来的问题和挑战,针对几种常见的材料,分析了在地面实验室建立与在轨航天器具有相同或相似动力学特性的缩尺模型的可行性。
     (2)分别对抛物面桁架天线、环形张紧桁架可展开天线、四面体桁架天线以及变几何桁架结构等几种常见的大挠性航天桁架结构进行动力学特性分析。
     (3)对桁架式空间站和空间外伸承载桁架结构进行有限元建模与计算,主要包括基于缩尺建模方法的大型分布挠性航天结构(桁架式空间站)、带有大挠性桁架结构的挠性航天器、智能航天桁架结构(空间外伸承载桁架结构)及其主动杆;由于主动杆优化配置是一个离散问题,本文设计了基于整数编码的遗传算法来优化主动杆位置。
     3.结合国内外模糊控制理论的研究现状,将模糊控制理论和经典控制理论、现代控制理论、智能控制理论相结合,设计几种较先进的模糊控制器。
     (1)在简明地阐述模糊控制系统基本原理的基础上,着重研究了现实可行的四种模糊控制方法:结合PID控制原理,采用模糊推理实现PID参数的在线自整定;为改善控制系统的动态性能,在输入变量模糊化的过程中,引入了变论域的概念;创造性地使用基于整数编码的遗传算法优化模糊控制规则库,从根本上改善模糊控制系统的控制律;为了减小稳态误差,设计了一种引入智能积分环节的模糊控制器。
     (2)迄今为止,模糊控制尚未形成完善和系统的理论,尤其是模糊控制系统的稳定性和鲁棒性,一直是研究的难题。针对航天器控制宜采用自适应模糊控制的特点,基于输入和输出隶属度函数的中心值,结合Lyapunov稳定性理论,解决了自适应变论域模糊控制系统的稳定性和鲁棒性问题。
     4.在结构动力学计算的基础上,使用设计的模糊控制方法(模糊PID控制方法、自适应变论域模糊控制方法、引入智能积分环节的模糊控制方法以及基于整数编码遗传算法优化规则库的模糊控制方法)对大挠性航天桁架结构振动模糊控制进行仿真研究;在仿真中,针对模糊推理的原理,选取一种较优的模糊推理方法;在构造规则库的过程中,采用了基于物理经验和知识的方法与基于遗传算法优化相结合的办法,设计了一种比较适合大挠性航天桁架结构振动控制的规则库;在解模糊过程中,对比各种解模糊方法的优缺点,选取较优的解模糊方法;并与经典PID控制、最优控制以及H∞输出反馈控制相比较,分析结果表明设计的模糊控制方法对大挠性航天桁架结构这一复杂大系统的主动控制具有较好的适应性和明显的优越性。
Active control of Large Flexible Space Truss (LFST) is a challenging subject in the domain of the dynamics and control of spacecrafts. LFST is a kind of large discrete structures made of structural elements, such as bars, beams, joints, its payloads and so on, according to given specific needs of space missions. LFST is widely used in space structures for its excellence of easily loading and unloading, high reliability, good suitability to missions. However, as a typical kind of large discrete structures, LFST is of complex dynamic characteristics, and the control methods based on custom and modern control theories are difficult to suit the control problem of this large complex system. However, fuzzy control theory doesn’t depend on the accurate mathematical model and it is suitable to the control of the large complex system. From this point of view, this dissertation researches the dynamics of LFST and brings forward the research topic of active fuzzy control for LFST, which are deeply studied and discussed in this dissertation.
     This dissertation mainly covers two aspects of works. One is the topic of the dynamic modeling, characteristics analysis and computation of LFST, and the other is the topic of active control of LFST based on fuzzy control methods. In a word, based on the two aspects, this dissertation includes:
     1. Aiming at LFST, a typical kind of discrete structures, this dissertation nails down the background and characteristics of the researched object, and LFST is classified as several kinds of structures, such as truss type of space station, stretched-out support truss, paraboloid truss antennas, ring-tension truss deployable antennas, tetrahedral truss antennas and variable geometry truss. This dissertation reviews three aspects of the research topics: (1) dynamics and active control of LFST; (2) fuzzy control; (3) active fuzzy control of structures.
     2. The dynamics of LFST is researched thoroughly and entirely.
     (1)Considering the problem and challenge brought by the vibration when spacecrafts with LFST in orbit, and aiming at several general materials, this dissertation analyses the feasibility to building a scaled model of LFST in lab, which is of the same or near dynamic characteristics as the LFST in orbit.
     (2)The dynamic characteristics based on modal analysis of some general types of space truss structures, such as paraboloid truss antennas, ring-tension truss deployable antennas, tetrahedral truss antennas and variable geometry truss, are researched.
     (3)Truss type of space station and stretched-out support truss structures are modeled and computed by finite element method, which mainly includes large distributed type of flexible structures for truss type of space station, flexible spacecraft with LFST, intelligent space truss model for stretched-out support truss and its active members. Because the optimal location of active members is a discrete problem, this dissertation designs Integer Coded Genetic Algorithms (ICGA) for the discrete problem.
     3. According to the research actuality of fuzzy control theory domestic and overseas, and combining fuzzy control theory with the custom control theory, modern control theory and intelligent control theory, this dissertation designs some advanced fuzzy controllers.
     (1)Based on the explanation of fuzzy control concisely, this dissertation emphasizes four kinds of advanced fuzzy controllers. Combining to the PID control principle, this dissertation adopts fuzzy inference mechanism to tune PID parameters. To improve the dynamic capability, the conception of Scaling Universes of Discourse (SUD) is inducted during the fuzzification of input parameters. Based on ICGA to the optimization of the fuzzy rules base, the control law of the fuzzy controller could be improved radically. To reduce the stable error, this dissertation designs a kind of fuzzy controller with intelligent integral introduced.
     (2)Now days, fuzzy control theory has not get the perfect and systemic theory, especially in the aspects of stableness and robustness. This dissertation aims at the characteristics that the control of spacecrafts gets better to adopt the self-adaptive control, and basing on the center values of input and output membership functions, adopting the analysis method of Lyapunov function, designs the stableness and robustness of self-adaptive fuzzy control system based on SUD.
     4. Based on the dynamic computation of LFST, several advanced fuzzy controllers (fuzzy PID controller, fuzzy controller with intelligent integral introduced, self-adaptive fuzzy controller based on SUD, fuzzy control based on ICGA to the optimization of the fuzzy rules base) are simulated for the active control of LFST. This dissertation chooses a kind of fuzzy inference mechanism according to the principle of fuzzy inference during simulation, adopts the method that combines the rules got from experience and knowledge with the rules got from ICGA for the optimization of fuzzy control of LFST, and finally chooses a kind of defuzzification method by comparison during the simulation. Furthermore, fuzzy controllers are compared with the custom PID controller, optimal controller and H∞output feedback controller for the active control of LFST, respectively. The simulation results show that the fuzzy control methods designed in the dissertation are much more suitable and superior than custom and modern control methods for the LFST.
引文
[1] Letchworth R, Mcgowan P E, Gronet M J. Space Station: a Focus for the Development of Structural Dynamics Scale Model Technology for Large Flexible Space Structures, 29th Structures, Structural Dynamics, and Materials Conference, Williamsburg, VA, April, 1988.
    [2] Massood Mehrinfar. A Cost Saving Berthing Verification of ISS Truss Segment-to-Segment Attach System. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia,2003:1-9.
    [3] 徐建国.复杂挠性结构系统动力学、稳定性与控制:函数空间方法研究.郑州:黄河水利出版社, 2002.
    [4] Bravo Rafael. Vibration Control of Flexible Structures Using Smart Materials [Phd Thesis]. Mcmaster University, Hamilton, Ontario, 2000.
    [5] 毛剑琴,庆忠,张杰,范国滨.结构振动控制的新进展.控制理论与应用, 2001, 18(5): 643-649.
    [6] 王其政,刘斌.宇航爆脱冲击事故与环境问题.强度与环境, 1993(3): 23-28.
    [7] Kazuhide Ando, Jin Mistsugi, Yumi Senbokuya. Analyses of Cable Membrane Structure Combined with Deployable Truss. Computers & Structures , 2000,74(1):21-39.
    [8] 陈务军,关富玲等.空间可展开桁架结构展开过程分析的理论与方法.浙江大学学报(工学版),2000,34(4):382-387.
    [9] D Stewart. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers, 1965,180(15):371-386.
    [10] Burton I Edelson, Joseph N Pelton, Neil R Helm. Review Assessment of Satellite Communications Technologies. Available From the Web Site,http://www.wtec.org/ loyola/satcom/c2_s1a.htm, 1993.
    [11] J Hinkle, L Peterson, etc. Structural Performance of an Elastically Stowable Tubular Truss Column. 43rd Structures, Structural Dynamics and Materials Conference, Colorado,AIAA-2002-1555,2002:1-8.
    [12] Lisa M Hardaway, Lee D Peterson. Microdynamics of a Precision Deployable Optical Truss. Part of the SPIE Conference on Adavanced on Adavanced Tekescope Design Fabrication, and Control, Colorado,1999:2-13.
    [13] Michael A Brown, etc. Elongated Truss Boom Structures for Space Applications, Patent Application(D467910),2001.
    [14] John T Dorsey. Vibration Characteristics of a Deployable Controllable Geometry Truss Boom. NASA Technical Paper, TP-2160, 1983.
    [15] Winfred S Kenner, Noman F Knight. Soft Lattice Truss Static PolynomialResponse Using Energy Methods. AIAA Journal,1998,36(6) :1100-1104.
    [16] AEC-Able Engineering Company. SRTM ADAM Mast. http://www.aecable.com/ corporate/srtm.htm, Updated Mar. 2002.
    [17] Miller Richard K, Thomson Mark. Concepts, Analysis and Development for Precision Deployable Space Structures, NASA CR-187622, July 1991.
    [18] Patrick J Mcginley. Design of Large Space Structures Derived From Line Geometry Principles [MASTER THESIS]. University of Florida, 2002.
    [19] Mahoney M J, Ibbott A C. A Large Deployable Reflector Assembly Scenario, a Space Station Utilization Study, NASA JPL D-5942, November 1988.
    [20] Campbell T G, Lawrence R W, Schroeder L C, Kendall B M, Harrington R F. Development of Microwave Radiometer Sensor Technology for Geostationary Earth Science Platforms, Inst. of Electrical and Electronics Engineers, IEEE Catalog No. 91CH2971-0, June 1991.
    [21] Miura K, Furaya H. Variable Geometry Truss and Its Applications to Deployable Truss and Space Crane Arm. Acta Astronautica,1988,12(7): 599-607.
    [22] Hughes P, Sincarsin P, Carroll K. Trussarm-A Variable-Geometry-Trusses. Intelligent Material Systems and Structures, 1991,1(2) : 148-160.
    [23] Robertshaw H, Reinholtz C. Varaible Geometry Trusses. Smart Materials, Structures, and Mathematical Issues,1988,105-120.
    [24] Chen G S, Wada B K. On an Adaptive Truss Manipulator Space Crane Concept. 1st Joint US/Japan Conference on Adaptive Structures, Maui, Hawaii, 1990,726-742.
    [25] John T Dorsey, Thomas R Sutter, K Chauncey Wu. Structurally Adaptive Space Crane Concept for Assembling Space Systems on Orbit. Report Number: NASA TP-3307,1992.
    [26] Marvin D Rhodes, Ralph W Will, Coung Quach. Baseline Tests of an Autonomous Telerobotic System for Assembly of Space Truss Structures. Report Number:NASA TP-3448,1994.
    [27] Wynn Robert H. The Control of Flexible Structure Vibrations Using a Cantilevered Adaptive Truss[PHD]. Virginia Polytechnic Institute and State University,1991.
    [28] Kei Senda, Yosisada Murotsu, Akira Mitsuya, etc. A Study on Control of Planar Variable Geometry Truss Used for Autonomous Docking System. AIAA-97-1308:1449-1465.
    [29] Brain T Reisenauer, Mark J Balas. ROM/RMF Control of the Flexible, Articulated Truss Space Crane.AIAA-92-2463-CP:2127-2134.
    [30] Modi V J. Attitude Dynamics of Satellites with Flexible Appendages-a Brief Review. Journal of Spacecraft and Rockets, 1974,11: 743-751.
    [31] Nurre G S, etc. Dynamics and Control of Large Space Structures. Journal ofGuidance, Control and Dynamics, 1984, 7(5): 514-526.
    [32] 黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展.力学进展, 1997, 27(1): 5-18.
    [33] Bruno R J. Identification of Nonlinear Joints in a Truss Structure. AIAA ASME Adaptive Structures Forum,Hilton Head, Apr.21-22,1994,USA(1994):402-410.
    [34] 缪炳祺,曲广吉,程道生.柔性航天器的动力学建模问题.中国空间科学技术, 1999(5): 35-40.
    [35] 杨辉.刚-柔耦合动力学系统的建模理论与实验研究[博士论文].上海交通大学, 2002.
    [36] 王 毅 , 吴 德 隆 . 航 天 柔 性 多 体 动 力 学 及 其 发 展 . 导 弹 与 航 天 运 载 技术,1995(7):7-18.
    [37] 洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学.力学进展,2000,30(1):15-20.
    [38] Mackerle Jaroslav. Smart Materials and Structures-a Finite-Element Approach: a Bibliography (1986–1997). Modelling and Simulation in Materials Science and Engineering, 1998,6(3): 293–334.
    [39] Ulrich Gabbert, Heinz Koppe, etc. Overall Design of Actively Controlled Smart Structures by the Finite Element Menthod. Signal Proceeding, and Control in Smart Structures, Proceeding of SPIE Modeling,2001,4326:113-121.
    [40] Chen J C, Fanson J L. System Identification Test Using Active Members. Proc of the 30th AIAA SDM Conference 1154~1164,AIAA Paper 8921290.1989.
    [41] Chen J C, Fanson J L. On-orbit Vibration Testing for Space Structures. ACTA Astronautica,1990,21(6/7):45-466.
    [42] Kuo C P, Chen G S,etc. On Orbit System Identification Using Active Members. Proc of the 31st AIAA/SDM Conference,2306-2316.AIAA paper9021129.1990.
    [43] Wada B K, Garba J A. Summary of Adaptive Structures at Jet Propulsion Laboratory. Proceedings of the. International Symposium on Aerospace and Fluid Science, Sendai, Japan, Nov. 14-16, 1993.
    [44] C J Swigert, R L Forward. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast: Theory and Experiments, Journal of Spacecraft, 1981, 18(1):5-17.
    [45] T Bailey, J E Hubbard. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam. Journal of Guidance, Control and Dynamics, 1985, 8(5): 605-611.
    [46] Crawley E F, De Luis J. Use of Piezoelectric Actuators Aselements of Intelligent Structures. AIAA Journal, 1987,25(10): 1373–1385.
    [47] Edberg D L, Bicos A S. Design and Development of Passive and Active Damping Concepts for Adaptive Space Structures. Active Materials and Adaptive Structures–Proceedings of the ADPA/AIAA/ASME/SPIEConference,925:377-382.
    [48] Liang C, Rogers C A. One dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures,1997,8(4):285-302.
    [49] Masri S F, Kumar R. Modeling and control of an electrorheological device for structural control applications. Smart Materials and Structures,1995,4(A):121-131.
    [50] Jiang Chengbao. Tissue and performances of directional free zesupe magnet strictive alloy Tb0.3DY0.7(FeiM)1.95. Beijing: Beijin University of Science and Technology,1995.
    [51] Juang J N, W Sparks. Survey of Experiments and Experimental Facilities for Control of Flexible Structures. Journal of Guidance, Control and Dynamics, 1992,15(4):801-816.
    [52] Fanson J L, Black Wood G H, Chu C C. Active Member Control of Precision Structures. Proc of the 30th AIAASDM Conference,1480-1494.AIAA Paper 8921329.1989.
    [53] Fanson J L, Garba J A. Experimental Studies of Active Member Sin Control of Large Space Structures. IN: Structures, Structural Dynamics and Materials Conference, 29th, Williamsburg, VA, Apr 18-20, 1988, Technical Papers. Part 1 (A88-32176 12-39). Washington, DC, American Institute of Aeronautics and Astronautics,1988,AIAA-1988-2207,9-17.
    [54] Chen G S, Lurie B J, Wada B K. Experimental Studies of Adaptive Structures for Precision Performance. Proceedings of the30th AIAA/SDM conference, 1989, AIAA-89-1327-CP, 1462-1472.
    [55] Sun C T, Wang R T. Enhancement of Frequency and Damping in Large Space Structures with Extendible Members. AIAA Journal,1991,29(12):1774-1780.
    [56] Preumont A, J P Dufour, C Malekian. Active Damping by a Local Force Feedback with Piezoelectric Actuators. AIAA Journal of Guidance, Control, and Dynamics , 1992,15(2): 390-395.
    [57] Sayapin Sergei Nicolaevich. Active Vibration Isolation and Pointing System for High-Precision Large Deployable Space Antennas. FACTA Universitatis (Series: Mechanical Engineering),2001,1(8):935 -938.
    [58] H Furuya, R T Haftka. Static Shape Control of Space Trusses with Partial Measurements. AIAA Journal of Spacecraft and Rockets,1995,32 (5):856-865.
    [59] S E Johnson, J Vlattas. Modal Analysis and Active Vibration Control of the Naval Postgraduate School Space Truss [Master's Thesis]. California:Naval Postgraduate School, 1998.
    [60] 李俊宝,张令弥.自适应桁架结构局部力反馈振动控制及其主动构件的配置研究.振动工程学报,1997,10(3):380-386.
    [61] 聂润兔,邵杨勋,邹振祝.自适应桁架形状控制中主动杆多目标最优配置.应用力学学报,1997,14(3):48-53.
    [62] 陈士橹,祝小平等.挠性航天器动力学的几个研究方向.世界科技研究与发展(院士论坛), 1998, 20(6): 43-47.
    [63] E F Crawley. Inteligent Structures for Aerospace:a Technology View and Asseasment. AIAA Joumal, 1994, 32(8): 168-169.
    [64] 李俊宝,张景绘,任勇生,张令弥. 振动工程中智能结构的研究进展. 力学进展, 1999, 29(2): 165-177.
    [65] Matsuzaki Yuji. Smart Structures Research in Japan. Smart Materials and Structures, 1997,6(4): R1-R10.
    [66] 邱志成.智能结构及其在振动主动控制中的应用.航天控制, 2002(4): 8-15.
    [67] Rich W F, Ames G H, Williams W A Jr, etc. Constant Length Strut. US Patent No. 4742261,3,1988.
    [68] Umland J W, Webster M. Active Member Design, Modeling, and Verification. Adaptive Structures and Material Systems,1993,35:217-227.
    [69] Anderson E H, Moore D M, Fanson J L, etc. Development of an Active Member Using Piezoelectric and Electrostrictive Actuation for Control of Precision Structures. Proceedings of 31st AIAA SDM Conference,1990:2221-2233.
    [70] Umland J W, Chen G S. Active Member Vibration Control for a 4 Meter Primary Reflector Support Structure. AIAA-1992-2341, IN: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 33rd, Dallas, TX, Apr 13-15, 1992, Technical Papers. Pt. 1 (A92-34276 13-39). Washington, DC, American Institute of Aeronautics and Astronautics, 1992:393-401.
    [71] Umland J W. Operational Description and Characterization of the ASTREX Active Member. JPL IOM 35422922-371,1992.
    [72] http://www.piezomechanik.com ,PIEZOMECHANIK 公司(德国).
    [73] 张景绘,李新民.主、被动振动控制一体化理论及技术(Ⅱ)—组合控制. 强 度 与 环 境,2004,31(2):47-64.
    [74] 李俊宝.智能桁架结构设计、建模与阻尼控制的理论和实验研究[博士论文]. 南京:南京航空航天大学, 1996.
    [75] 吕刚.桁架结构组合式一体化振动控制及其在航天结构中的应用[博士学位论文].西安交通大学,1998.
    [76] 赵国伟,黄海,夏人伟.柔性自适应桁架及其振动最优控制实验.北京航空航天大学学报, 2005,31(14):434-437.
    [77] 刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展, 2000, 25(4): 506-516.
    [78] 任建亭,闫云聚,姜节胜.振动控制传感器作动器的数目和位置优化设计.振动工程学报, 2001, 14(2): 237-241.
    [79] Y J Yan, L H Yam. Optimal Design of Number and Locations of Actuators in Active Vibration Control of a Space Truss. Smart Materials and Structures, 2002, 11(2): 496-503.
    [80] Zames G. Feedback and optimal sensitivity:model reference transformations multiplicative seminorms and approximate inverses. IEEE Transaction on Automatic Control, 1981, AC-26(2): 301-320.
    [81] Abdel Rohman M, Leipholz H H E. Structural Control by Pole-Assignment Method. Journal of the Engineering Mechanics Division, 1978, 104 (5):1159-1175.
    [82] Baz A, Poh S, Fedor J. Independent Modal Space Control with Positive Position Feedback. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1992,114(1): 96-103.
    [83] Abdel Rohman M, Quintana V H, Leipholz H H E. Optimal Control of Civil Engineering Structures. Journal of Engineering Mechanics Division ASCE,1980, 106(EMI): 57-73.
    [84] 周军,陈新海.大型柔性空间结构的变结构模型参考自适应控制.航空学报, 1992, 13(4): B158-B163.
    [85] 马扣根.结构的自适应振动控制[学位论文].南京:南京航空航天大学, 1992.
    [86] Ping Guan, Xiang-Jie Liu, Ji-Zhen Liu. Adaptive Fuzzy Sliding Mode Control for Flexible Satellite. Engineering Applications of Artificial Intelligence, 2005 ,18(4):451–459.
    [87] Bayard D S, Chiang R Y. Identification, Uncertainty Characterization and Robust Control Synthesis Applied to Large Flexible Structures Control. International Journal of Robust and Nonlinear Control, 1998,8:97–112.
    [88] Zadeh L A. 模糊集与模糊信息粒理论:(英文版). 北京:北京师范大学出版社, 2000.
    [89] Zadeh L A. Fuzzy Set. Information and Control, 1965(8): 338–353.
    [90] E H Mamdani. Application of Fuzzy Algorithms for Control of Simple Dynamic Plants. Proceedings of the the Institution of Electrical Engineers, 1974, 121(12): 1585-1588.
    [91] 楼顺天,胡昌华,张伟编著.基于 MATLAB 的系统分析与设计:模糊系统.西安:西安电子科技大学出版社, 2001.
    [92] 王立新著;王迎军译.模糊系统与模糊控制教程=A Course in Fuzzy Systemsand Control. 北京:清华大学出版社, 2003.
    [93] 谢振华.自适应模糊控制几个基本问题的研究进展.电光与控制,2000,78(1): 18-24.
    [94] Kevin M Passino, Stephen Yurkovich. Fuzzy Control. Addison Wesly Longman,Inc.,1998.
    [95] Kazuo Tanaka, Hua O Wang. Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach. John Wiley & Sons, Inc,2001.
    [96] L X Wang. Adaptive Fuzzy Systems and Control, Design and Stability Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, 1994.
    [97] 吴晓莉,林哲辉等.MATLAB 辅助模糊系统设计.西安:西安电子科技大学出版社,2002.
    [98] 张吉礼编著.模糊-神经网络控制原理与工程应用.哈尔滨:哈尔滨工业大学出版社, 2004.
    [99] 刘金琨.先进 PID 控制 MAYLAB 仿真(第二版).北京:电子工业出版社,2004.
    [100] Hyun-Joon Chao, Kwang-Bo Cho, Bo-Hyeun Wang. Fuzzy-PID Hybrid Control: Automatic Rule Generation Using Genetic Algorithms. Fuzzy Sets and Systems, 1997(92): 305-316.
    [101] Mizumoto M. Realization of PID Controls by Fuzzy Control Methods. Fuzzy Sets and Systems, 1995(70):171-182.
    [102] Brown C B, Yao J T P. Fuzzy Sets and Structural Engineering. Journal of Structural Engineering. Journal of Structural Engineering ASCE, 1983, 109(5): 1211–1225.
    [103] Juang C, Elton D J. Fuzzy Logic for Estimation of Earthquake Intensity Based on Building Damage Records. Civil Engineering System, 1986(3): 187–191.
    [104] A Tsoukkas, H Vanlandinghan. Application of Fuzzy Logic Control to Active Vibration Control Damping. Proceeding of Eighth VPI&SU Symposium on Dynamic and Control of Large Structures, 1991: 371-379.
    [105] Casciati F, Yao T. Comparison of Strategies for the Active Control of Civil Structures. Housner G W, etc. Proc. of First World Conf. Struct. Control. Los Angeles,California,USA :John Wiley & Sons, 1994, WA1: 3-12.
    [106] Faravelli L, Yao T C. Application of an Adaptive Network Based Fuzzy Inference System(ANFIS) to Active Structural Control. Housner G W Et Al. Proc. of First World Conf. Struct. Control. Los Angeles, California, USA :John Wiley & Sons, 1994, WP1: 49-58.
    [107] Furuta H, Okanan H, Kaneyoshi M, Tanaka H. Application of Genetic Algorithms to Selftuning of Fuzzy Active Control for Structural Vibration. Housner G W Et Al. Proc. of First World Conf. Struct. Control. Los Angeles, California, USA: John Wiley & Sons, 1994, WP1: 3-12.
    [108] Iiba M, Fujitani H, etc. Saking Table Test on Seismic Response Control System by Fuzzy Optimal Logic. Housner G W Et Al. Proc. of First World Conf. Struct. Control. Los Angeles, California, USA: John Wiley & Sons, 1994, WP1: 69-77.
    [109] Sun L M, Goto Y. Application of Fuzzy Theory to Variable Dampers for Bridge Vibration Control Proc. of First World Conf. Struct .Control. Los Angeles, California, USA: John Wiley & Sons, 1994, WP1: 31-40.
    [110] Yomada M, Goto K, etc. Active Vibration Control Using Fuzzy Theory Optimal Membership Functions. Housner G W Et Al. Proc. of First World Conf. Struct. Control. Los Angeles, California, USA: John Wiley & Sons, 1994, WP1: 13-20.
    [111] S Nagarajaiah. Fuzzy Controller for Structures with Hybrid Isolation System. Housner G W Et Al. Proc. of First World Conf. Struct. Control. Los Angeles, California, USA: John Wiley & Sons, 1994 TA2: 67-76.
    [112] Battaini M, Casciati F, Faravelli L. Fuzzy Control of Structural Vibration-an Active Mass System Driven by a Fuzzy Controller. Earthquake Engineering and Structural Dynamics, 1998, 27(11): 1267-1276.
    [113] S S ymans M D, Kelly S W. Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Seismic Isolation Systems. Earthquake Engineering and Structural Dynamics, 1999,28(1): 37-60.
    [114] Ahlawat A S, Ramaswamy A. Multi-Objective Optimal Design of FLC Driven Hybrid Mass Damper for Seismically Excited Structures. Earthquake Engineering and Structural Dynamics, 2002,31(7): 1459-1479.
    [115] 阎石,李宏男,黎海林.模糊结构振动控制研究的进展.沈阳建筑工程学院学报, 2000, 16(12): 95-98.
    [116] Kwan Soon Park, Hyun Moo Koh, Chung Won Seo. Independent Modal Space Fuzzy Control of Earthquake-Excited Structures. Engineering Structures, 2004,26(11): 279-289.
    [117] Kwan Soon Park, Hyun Moo Koh, Seung Yong Ok. Active Control of Earthquake Excited Structures Using Fuzzy Supervisory Technique. Advances in Engineering Software, 2002,33(11/12): 761-768.
    [118] Tso Liang Teng, Cheng Ping Peng, Chun Chuang. A Study on the Application of Fuzzy Theory to Structural Active Control. Computer Methods in Applied Mechanics and Engineering,2000,189(2):439-448.
    [119] Kang Min Choi, Sang Won Cho, Dong-ok Kim, In-Won Lee. Active Control for Seismic Response Reduction Using Modal-Fuzzy Approach. International Journal of Solids and Structures, 2005(42): 4779-4794.
    [120] 阎石.结构振动智能控制的人工神经网络与模糊逻辑方法研究[博士论文]. 大连理工大学, 2000.
    [121] 王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取.地震工程与工程振动, 2001, 21(2): 130-135.
    [122] 杨润林.结构模糊振动控制的研究[博士论文].中国建筑科学研究院, 2002.
    [123] Hung S L, Lai C M. Unsupervised Fuzzy Neural Network Structural Active Pulse Controller. Earthquake Engineering and Structural Dynamics, 2001,30(4): 465-484.
    [124] Rabih Alkhatib, M F Golnaraghi. Active Structural Vibration Control: a Review. the Shock and Vibration Digest, 2003, 35(5): 367–383.
    [125] James R Wiegand, John J Helferty. Distributed Fuzzy Control of a Flexible Structure. Smart Structures and Materials, in: SPIE Proceedings, 1994: 488-499.
    [126] Zeinou I J, Khorrami F. An Adaptive Control Scheme Based on Fuzzy Logic and Its Application to Smart Structures. Smart Materials and Structures, 2001(3): 266-276.
    [127] Hasan Alli, Oguz Yakut. Fuzzy Sliding-Mode Control of Structures. Engineering Structures, 2005,27(2): 277-284.
    [128] A G Sreenatha, Makarand Pradhan. Fuzzy Logic Controller for Position Control of Flexible Structures. Acta Astronautica, 2002, 50(11): 665-671.
    [129] Lin J. An Active Vibration Absorber of Smart Panel by Using a Decomposed Parallel Fuzzy Control Structure. Engineering Applications of Artificial Intelligence, 2005,18(8): 985–998.
    [130] Lin J. A Vibration Absorber of Smart Structures Using Adaptive Networks in Hierarchical Fuzzy Control. Journal of Sound and Vibration, 2005(287): 683-705.
    [131] Gustavo Luiz C M de Abreu, José F. Ribeiro. A Self-Organizing Fuzzy Logic Controller for the Active Control of Flexible Structures Using Piezoelectric Actuators. Applied Soft Computing, 2002,1(4): 271-283.
    [132] Liviu Librescu, Sungsoo Na. Comparative Study on Vibration Control Methodologies Applied to Adaptive Thin-Walled Anisotropic Cantilevers. European Journal of Mechanics A. Solids, 2005,24(4): 661-675.
    [133] I Z Mat Darus, M O Tokhi. Soft Computing-Based Active Vibration Control of a Flexible Structure.Engineering. Engineering Applications of Artificial Intelligence, 2005,18(1): 93-114.
    [134] M K Kwak, D Sciulli. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures. Journal of Sound and Vibration, 1996, 191(1): 15-28.
    [135] 屈文忠.模糊控制理论在柔性结构振动主动控制中的应用.机械科学与技术, 1998, 17(2): 194-196.
    [136] 王存堂.柔性结构的模糊主动振动控制控制研究.振动工程学报,1998, 11(3): 265-272.
    [137] 王青.柔性空间结构的分散模糊变结构控制.宇航学报, 2000, 21(1): 23-27.
    [138] Y Y Li, L H Yam. Robust Vibration Control of Uncertain Systems Using Variable Parameter Feedback and Model-Based Fuzzy Strategies. Compute and Structures, 2001,79(1): 1109-1119.
    [139] D Beale, S W Lee, D Boghiu. An Analytical Study of Fuzzy Control of a Flexible Rod Mechanism. Journal of Sound and Vibration, 1998, 210(1): 37-52.
    [140] Moon K Kwak, Seok Heo, Gil-Joo Jin. Adaptive Positive Position Feedback Controller Design for the Vibration Suppression of Smart Structures. Smart Structures and Materials: Modeling, Signal Processing, and Control, Proceedings of SPIE,2002,4693:246-255.
    [141] Takeshi Takawa, Takehito Fukuda, Koichiro Nakashima. Fuzzy Control of Vibration of a Smart CFRP Laminated Beam. Smart Materials and Structures, 2000,9(2): 215–219.
    [142] Mohammed Aldawod, Bijan Samali, Fazel Naghdy, Kenny C S Kwok. Active Control of Along Wind Response of Tall Building Using a Fuzzy Controller. Engineering Structures, 2001(23): 1512–1522.
    [143] K Worden, G R Tomlinson. Nonlinearity in Structural Dynamics Detection, Identification and Modelling. Institute of Physics Publishing, Bristol and Philadelphia, 2003.
    [144] Wu K C, Sutter T R. Structural Analysis of Three Space Crane Articulated-Truss Joint Concepts. NASA TM 4373, 1992.
    [145] Emero D H. Quarter-Scale Space Shuttle Design, Fabrication, and Test. Journal of Spacecraft and Rocket,1980,17:7-8.
    [146] Javeed Mehzard. Correlation of Ground Test and Analysis of a Dynamic Cally Scaled Space Station Model Configuration. AIAA-93-1604-CP.
    [147] Xie Yang. Dynamic Scale Modeling of Large Flexible Spacecraft for Laboratory Experiments. AIAA Dynamics Specialists Conference, Hilton Head, SC, Technical Papers (A94-23572 06-39), Washington, DC, American Institute of Aeronautics and Astronautics, 1994: 494-499.
    [148] 李亚智等.有限元法基础与程序设计.北京:科学出版社, 2004.
    [149] 黄圳圭,赵志建.大型航天器动力学与控制.长沙:国防科技大学出版社, 1990.
    [150] 王光庆,吉丰.空间柔性结构振动控制用压电主动构件模型与实验研究.中国机械工程,2005,16(2):95-100.
    [151] 聂润兔.智能桁架结构静/动态分析与控制研究[博士学位论文].哈尔滨工业大学,1997.
    [152] Nikola Vujic. Power Regeneration in Actively Controlled Structures[Master Thesis]. Virginia Polytechnic Institute and State University, 2002.
    [153] 王荣津等编.水声材料手册.北京:科学出版社,1983.
    [154] Ramin Sedaghati, Afzal Suleman. Force Method Revisited. AIAA Journal, 2003, 41(5): 957-966.
    [155] 缪炳祺,曲广吉等.关于柔性航天器动力学模型降阶问题.中国工程科学,2001,13(11):60-64.
    [156] Youshida K, Shimogo T, Inose J. Optimal Control of Elastic Structure Systems Taking Account of Spillover.Transaction of the Japan Society of Mechanica Engineers,1988,54:201-207.
    [157] Moustafa Al-Bassyiouni, B Balachandran. Control of Enclosed Sound Fields Using Zero Spillover Schemes. Journal of Sound and Vibration, 2006, 292(3-5):645-660.
    [158] 马兴瑞,王本利,苟兴宇等.航天器动力学-若干问题进展与应用.北京:科学出版社,2001.
    [159] Y Li, J Onoda, K Minesugi. Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronautica, 2002, 50(6):335–341
    [160] 刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展,2000,25(4):506-516.
    [161] De Fonseca P, Sas P, Van Brussel H. A Comparative Study of Methods for Optimising Sensor and Actuator Location in Active Control Applications. Journal of Sound and Vibration, 1999,221(4):651–679.
    [162] Yang S M, Lee Y J. Vibration Suppression with Optimal Sensor/Actuator Location and Feedback Gain. Smart Materials and Structures, 1993,2:232-239.
    [163] Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning. Reading:Addison Wesley, 1989.
    [164] Michalewicz Z, Janikow C Z, Krawczyk J B. A Modified Genetic Algorithm for Optimal Control Problems. Computers Math Applic,1992,23(12):83-94.
    [165] 李茂军 , 朱陶业 , 童调生 . 单亲遗传算法及其应用研究 . 湖南大学学报,1998,25(6):56~59.
    [166] Sanders M S, Mecormick E J. Human Factors in Engineering and Design. Seventh Edition, Singapore: Megraw-Hill Inc,1992.
    [167] Clarke A M. Human Factors Guidelines for Multimedia. RACE Project 1065 ISSUE, the Elms Grove Loughborough Leics: HUSAT Research Institute Loughborough University,1992.
    [168] Tucker P, Jones D M. Voice As Interface: an Overview. International Journal of Human-Computer Interaction,1991,3(2) :145-170.
    [169] 张宏伟,徐世杰,黄文虎.作动器传感器配置优化的遗传算法应用.振动工程学报,1999,12(4):529-534
    [170] 王巍,于登云,马兴瑞.关于航天器铰接结构非线性动力学研究的几点建议.中国空间科学技术,2004(4):24-29.
    [171] 陈 向 阳 , 关 富 玲 等 . 复 杂 剪 式 铰 结 构 的 几 何 分 析 和 设 计 . 空 间 结构,1998,4(1):45-51.
    [172] Jesse R Croolston, Steven L Folkman. An Approach for Modeling a Truss Using Clearance Fit Pinned Joints. 38th AIAA Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL,AIAA-97-1170:586-596.
    [173] Mark S Lake, Walter L Heard ,etc Evaluation of Hardware and Procedures for Astronaut Assembly and Repair of Large Precision Reflectors. NASA/TP-2000-210317,2000.
    [174] Lothar Gaul, Hans Albrecht, Jan Wirnitzer. Semi-Active Damping of Large Space Truss Structures Using Friction Joints. Proceedings of SPIE, Smart Structures, and Syestems,2002,4935:232-243.
    [175] 任重.ANSYS 实用分析教程.北京:北京大学出版社,2003.
    [176] 熊永虎,寇晓东等.桁架式可展开网状抛物面天线反射器的模态分析,中国空间科学技术,2004(4):54-59.
    [177] A G Tibert. Optimal Design of Tension Truss Antennas. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit,2003:1-11.
    [178] B A Boutin, A K Misra, etc. Dynamics and Control of Variable-Geometry Truss Structures. Acta Astronautica, 1999,45(12):717-728.
    [179] Gun-Shing Chen, Ben K Wada. Adaptive Truss Manipulator Space Crane Concept. Journal of Spacecraft & Rockets, 1993,30(1):111-117.
    [180] K Chauncey Wu, Mark S Lake. Natural Frequency of Uniform and Optimized Tetrahedral Truss Platforms. NASA Technical Paper 3461,1994.
    [181] R R Strunce, E Forgel, etc. Active Control of Space Structures. Charles Stark Draper Laboratory, Inc, Cambrige, Report No. RADC-TR-81-289,1981.
    [182] Gang Song, B N Agrawal. Vibration Suppression of Flexible Spacecraft during Attitude Control. Acta Astronautica,2001,49(2):73-83.
    [183] 和兴锁,邓峰岩,张烈霞,林胜勇.大型空间刚柔耦合组合体的动力学建模. 机械科学与技术, 2004,23(5):543-546.
    [184] B K Andberg. Modal Testing and Analysis of the NPS Space Truss [Master's Thesis]. NPS, Monterey, California, 1997.
    [185] Holcomb Mark D, Pokines Brett J, etc. Active Control Using Piezoceramic Linear Motors. Proc. of SPIE, Smart Structures and Materials, 1994,2193:325-335.
    [186] Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Application toModeling and Control. IEEE Trans Syst, Man. Cybern, 1985, 15(1): 1l6-132.
    [187] Takagi T, Sugeno M. Stability Analysis and Design of Fuzzy Control Systems. Fuzzy Sets and Systems, 1992, 45(2): L35-156.
    [188] Takagi T, Sugeno M. Fuzzy Stability Criterion of a Class of Nonlinear Systems. Information Science, 1993, 70(1); 3-26.
    [189] Wang H O, Tanaka K, Griffin M. An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues. IEEE Trans Fuzzy Systems. 1996, 4(1):14-23.
    [190] Wang H O, Li J. Parallel Distributed Compensation for Takagi-Sugeno Fuzzy Models: New Stability Conditions and Design. Acta Automation Sinica,2001, 27(4):460-476.
    [191] Paolo Dadone. Design Optimization of Fuzzy Logic Systems[PHD].Polytechnic Institute and State University, 2001.
    [192] Kruse R. Foundations of Fuzzy Systems. John Wiley & Sons, UK, 1994.
    [193] Guo-Jun Wang. Logic Foundation of Fuzzy Ponens and Fuzzy Modus Tollens.Fuzzy Mathematics,1997, 5 (1):229-250.
    [194] 王国俊.模糊推理的一个新方法.模糊系统与数学, 1999,13(3):1-120.
    [195] 宋士吉等.关于模糊推理的全蕴涵三 I 算法的约束度理论.自然科学进展,2000,10(10):884-889.
    [196] 王国俊.三 I 方法与区间值模糊推理.中国科学(E 缉),2000,30(4):331-340.
    [197] Ying H. Fuzzy Control and Modelling: Analytical Foundation and Applications. New York:IEEE Press, 2002.
    [198] Ying H. General Analytical Structure of Typical Fuzzy Controllers and Their Limiting Structure Theorems. Automatica, 1993,29:1139-1143.
    [199] 胡包钢,应浩.模糊 PID 控制技术研究回顾及其面临的若干重要问题.自动化学报,2001,27(4):567-585.
    [200] 李洪兴.从模糊控制的数学本质看模糊逻辑的成功.模糊系统与数学,1995, 9(4): 1-13.
    [201] L X Wang. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1993,1(2):146-155.
    [202] Xihong Wang, Tadashi Matsumoto. New Time-Domain Stability Criterion for Fuzzy Control Systems. IEICE Transactions on Fundamental of Electronic, Communications and Computer Sciences, 1996, E79-A(10): 1700-1706.
    [203] 李 洪 兴 . 非 线 性 系 统 的 变 论 域 稳 定 自 适 应 模 糊 控 制 . 中 国 科 学 (E辑).2002,32(2):211-223.
    [204] C S Chen, W L Chen. Robust model reference adaptive control of nonlinear systems using fuzzy systems, International journal of systems science, 1996,27(12) :1435–1442.
    [205] 李洪兴.模糊控制的插值机理.中国科学(E 辑),1998,28(3):259-267.
    [206] 徐宁 , 李春光等 . 几种现代优化算法的比较研究 . 系统工程与电子技术,2002,24(12):100-103.
    [207] T C Chin, X M Qi. Genetic Algorithms for Learning the Rule Base of Fuzzy Logic Controller. Fuzzy Sets and Systems, 1998,65(2): 1-7.
    [208] K Belarbi, F Titel, W Bourebia, K Benmahammed. Design of Mamdani Fuzzy Logic Controllers with Rule Base Minimisation Using Genetic Algorithm. Engineering Applications of Artificial Intelligence, 2005,18(7): 875-880.
    [209] S V Wong, A M S Hamouda. Optimization of Fuzzy Rules Design Using Genetic Algorithm. Advances in Engineering Software, 2000,31(4): 251-262.
    [210] S Settea, L Boullart. An Implementation of Genetic Algorithms for Rule Based Machine Learning. Engineering Applications of Artificial Intelligence, 2000,13: 381-390.
    [211] Patrick Siarry, Francois Guely. A Genetic Algorithm for Optimizing Takagi-Sugeno Fuzzy Rule Bases. Fuzzy Sets and Systems, 1998,99(1): 37-47.
    [212] F Herrera, M Lozano, J L Verdegay. A Learning Process for Fuzzy Control Rules Using Genetic Algorithms. Fuzzy Sets and Systems, 1998,100: 143-158.
    [213] Luis Castillo, Antonio Gonzalez, Raul Perez. Including a Simplicity Criterion in the Selection of the Best Rule in a Genetic Fuzzy Learning Algorithm. Fuzzy Sets and Systems, 2001,120(2): 309-321.
    [214] 王昌,李天石,黎晖.基于智能积分因子的三维模糊控制器及其应用. 机床与液压,2004, (4):47-48.
    [215] Zhang Tianping, Zhu Qing. Direct adaptive fuzzy control based on integral-type Lyapunov function. Journal of Southeast University (English Edition), 2003,19(1):92-97.
    [216] 卢连成,张令弥.基于模态滤波器的智能空间桁架结构独立模态控制方法.南京航空航天大学学报,1997,29(5):529-534.
    [217] 卢连成,吴琼,张令弥.智能空间桁架结构独立模态控制方法.振动工程学报, 1997, 10(4): 481-486.
    [218] 刘福强,岳林,张令弥.基于模态滤波器的柔性智能桁架结构振动主动控制实验研究.航空学报, 2000, 21(6): 508-511.
    [219] 孙东昌,王大钧.智能桁架振动控制的模态方法及主动杆优化配置.中国空间科学技术,1998(4):1-7.
    [220] L Meirovitch. Some Problems Associated with the Control of Distributed Structures. J Optimal Theory and Application, 1987(54): 1-12.
    [221] L Meirovitch. Introduction to Dynamics and Control. New York John Wiley andSons, 1995.
    [222] L Meirovitch, Baruh H. On the Implementation of Modal Filter for Control of Structure. Journal of Guidance and Control, 1985, 8(6): 707-716.
    [223] 王大钧,孙东昌.压电智能结构的一种模态控制新方法.振动工程学报, 1997, 10(3): 280-286.
    [224] 岳林,刘福强.柔性智能桁架结构的独立模态空间控制方法实验研究.机械科学与技术, 2001, 20(3): 456-459.
    [225] 章仁为.卫星姿态动力学与控制.北京:北京航空航天大学出版社, 1998.
    [226] J V R Prasad, T Y Jiang. Synthesis of Adaptive Fuzzy Logic Controllers with Control Rate and Amplitude Limits. AIAA-98-4200:429-437.
    [227] George Kopasakis. Fuzzy Current-Mode Control and Stability Analysis. AIAA-2000-2803:20-29.
    [228] Daley S, Gill K F. Attitude control of a spacecraft using an extended self-organizing fuzzy logic controller. Proceedings of the institute of mechanical engineers, 1987(201): 97-106.
    [229] Lea N R, Hoblit J, Jani Y. A fuzzy logic based spacecraft controller for six degree of freedom control and performance results. AIAA-91-2800-cp,1991.
    [230] Richard Y Chiang, Jyh-Shing Jang. Fuzzy logic attitude control for Cassini spacecraft. IEEE World Congress on Computational Intelligence, Orlando, Florida, 1994: 1532-1537.
    [231] Woodard M A. Fuzzy open-loop attitude control for the FAST spacecraft. NASA web server at http://fdd.gsfc.nasa.gov/mwoodard/aiaa96/aiaa96.html, Goddard Space Flight Center, Greenbelt, MD,1996.
    [232] C M Kwan, H Xu, F L Lewis, etc. Robust spacecraft attitude control using fuzzy CMAC. Proceeding of IEEE International Symposium on Intelligent Control, Dearbom, MI, 1996: 43-48.
    [233] Bor-Sen Chen, Charng-Shi Wu, Ying-Wen Jan. Adaptive fuzzy Mixed H2/Hinf attitude control of spacecraft. IEEE Transactions on Aerospace and Electronics Systems, 2000, 36(4):1343-1359.
    [234] Ping Guan, Xiang-Jie Liu, Ji-Zhen Liu. Adaptive fuzzy sliding mode control for flexible satellite. Engineering Applications of Artificial Intelligence, 2005 (18):451–459.
    [235] Bong Wie. Space Vehicle Dynamics and Control. American Institute of Aeronautics and Astronautics. Inc., 1998: 503-583.
    [236] Liang Chen, Guanrong Chen, Yang-Woo Lee. Fuzzy Modeling and Adaptive Control of Uncertain Chaotic System. Information Sciences,1999,121:27-37.
    [237] 刘延柱,陈立群等.航天器姿态动力学中的稳定性、分岔和混沌.力学进展,2000,30(3):351-357.
    [238] Partha Battacharya, Hassan Suhail, Prasanta K Sinha. Finite Element Analysis and Distributed Control of Laminated Composite Shells Using LQR/IMSC Approach. Aerospace Science and Technology, 2002(6): 273-281.
    [239] Pengxiang Liu, Vitta S Rao. Lower-Order Robust Controller Design for Smart Structures. Signal Proceeding, and Control in Smart Structures, Proceeding of SPIE Modeling,2001,4326:273-282.
    [240] Wu Wangming. Fuzzy Reasoning and Fuzzy Relational Equations. Fuzzy Sets and Systems,1986(20):67-78.
    [241] 陈永义,汪培庄.最优模糊蕴涵与近似直接推理法.模糊数学,1985(1):29-41.
    [242] Baldwzn J F, Pilsworth B. Automatic Approach to Implication for Approximate Reasoning Using a Fuzzy Logic. Fuzzy Sets and System,1980,4(3):193-219.
    [243] 刘叙华.广义模糊逻辑和锁语义归结原理.计算机学报,1980,3(2):97-111.
    [244] 张文修,梁怡.不确定性原理和方法.西安:西安交通大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700