人工磁导体结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,软硬表面(soft and hard surfaces)、光子晶体(photonic crystals)、电磁带隙结构(electromagnetic band-gap stzuctures)、双负材料(double negativematerials)或称左手材料(left-handed materials)以及人工磁导体(artificial magneticconductors)等人工电磁材料开始博得愈来愈广泛的关注,原因在于它们均具有在自然界中并不存在的但极具价值的电磁特性。这些结构或材料被学界称为超材料(metamaterials),而它们所具有的奇特的电磁特性已经在微波领域开始得到广泛的应用,用以实现高性能天线及微波器件。其中人工磁导体在天线应用特别是低剖面天线实现上具有无与伦比的优势与潜力,有着巨大的应用前景,具有极高的研究价值。本文即针对人工磁导体材料进行了深入研究,发现了其另一个奇特的对入射波的极化转换特性,成功设计了更具应用价值的紧凑型结构,并在一些经典天线上实现了成功应用。
     本文首先研究了人工磁导体最基本的表面波带隙与反射相位带隙特性,全面详细地分析了所有的结构参数对带隙特性的影响,并得出了相应的结论。研究了非对称AMC结构(包括矩形结构与缝隙加载结构)的反射相位带隙与入射波极化的关系,发现反射相位带隙只与AMC结构在入射波极化方向上的电尺寸有关,而与相垂直方向上的电尺寸基本无关。进一步研究发现AMC结构单元的中心位置的过孔的存在与否并不影响其反射相位带隙,故在对矩形AMC结构的基础上提出了一种结构更为简单的一维条带型AMC结构。研究了非对称AMC结构(包括矩形结构、缝隙加载结构及条带型结构)的方向性表面波带隙特性,发现与传播方向同向上的单元电尺寸决定着带隙的最低频率,也就是可传输TM模表面波的最高频率,而与传播方向相垂直方向上的单元电尺寸决定着带隙的最高频率,也就是可传输的TE模表面波的最低频率。
     研究了偏置过孔AMC结构的反射相位带隙与入射波极化的关系,发现对线极化的入射波,反射波在不同的频率呈现不同的极化状态,可以分别为与入射波极化相同的线极化、左旋圆极化、与入射波极化相垂直的线极化及右旋圆极化等,我们称之为极化转换特性,并对这种特性在隐身技术及实现天线极化转换上的应用进行了可行性分析及有意义的探索。对简单目标可以有效的降低其共极化的雷达散射截面,而在实现天线的极化转换上可以根据需要将简单线极化馈源发射的电磁波经过抛物面反射后转换为左旋或者右旋圆极化波。
     针对小尺寸是现代微波电路及天线发展的必然趋势,为使AMC结构得到更为广泛的应用,在对其基本特性研究的基础上,本文成功设计了三层结构、十字形结构、缝隙加载结构以及交互嵌入式结构等几种紧凑型AMC结构,并分析了他们的反射相位带隙特性及表面波带隙特性。其中提出的三层结构、十字形结构、缝隙加载结构以及交互嵌入式结构分别可降低AMC结构单元尺寸达50%、15%、30%、70%左右,其中交互嵌入式结构是目前公开发表的相关技术中尺寸最小的结构。
     利用AMC结构的表面波抑制特性,将AMC结构成功的应用于普通微带天线、圆极化微带天线以及微带天线阵列。在普通微带天线应用上分别设计了工作于C波段及蓝牙通信频段的两种天线,并提出了一种改进的菱形栅格的AMC结构,它的应用可以降低天线背瓣达15dB,同是提高增益0.9dB,明显优于普通的正方形栅格及六边形栅格。进而分析了AMC结构与天线之间的距离以及AMC结构的层数等参数对天线性能的影响,并得出了相应的结论。在圆极化微带天线上应用AMC结构,除提高天线增益、降低背瓣辐射外,还能增加频率上的轴比带宽。在天线阵列上使用AMC结构则可以有效的降低天线单元之间的表面波传播造成的耦合,提高天线阵列的性能,增大扫描阵列的扫描范围。
     利用AMC结构的反射相位带隙特性成功实现了具有低剖面特性的水平线天线及平面倒F天线。其中水平线天线的整个纵向尺寸仅为3.5mm,且能形成有效的辐射,这在普通金属表面上是不可能实现的。平面倒F天线是目前无线通信中手持终端设备广泛使用的天线,通过应用AMC结构可以有效的降低天线的纵向尺寸或平面尺寸,为平面倒F天线的使用提供了更为有利的条件。
In recent years, there has been increasing interest in artificial electromagnetic materials, such as soft and hard surfaces, photonic crystals (PCs), electromagnetic band-gap (EBG) structures, double negative (DNG) materials or left-handed materials (LHMs), and artificial magnetic conductors (AMCs), because they all have novel electromagnetic features which may not occur in nature. These structures are broadly classified as metamaterials and their novel electromagnetic features have led to a wide range of applications in microwave fields to achieve high performance antennas and microwave components. Of all these artificial electromagnetic materials, AMCs have incomparable advantage and potential in antenna application, especially in achieving low profile antenna. Therefore, AMCs have expansive prospect in antenna application and are greatly worthy of research. In this dissertation, an in-depth study on AMCs is performed, and a unique polarization converting property of incident plane wave is found. Moreover, some compact structures with more applied value are designed and applied on classic antennas successfully.
     Firstly, two basic properties of surface wave band-gap and reflection phase band-gap are studied in this dissertation. The effects of all structure parameters on band-gap are analyzed, and some corresponding conclusions are obtained. For Asymmetric AMC structures, including rectangular and slotted structures, relation of reflection phase band-gap and incident wave polarization direction is studied. It is found that the reflection phase band-gap is only depend on the electric size of AMC cells in the direction of incident wave polarization, and is independent on the electric size in the perpendicular direction. In further, it is found the reflection phase band-gap is independent on the central vias of AMC structure. And so, a simpler strip type AMC structure is brought forward based on rectangular structure. Directional surface wave band-gap property of asymmetric AMC structures is studied, including rectangular, slotted and strip type structures. It is found the lowest frequency of band-gap, which is the highest frequency of propagated TM mode surface wave, is determined by the cell electric size in the direction of propagation. And the cell electric size in the perpendicular direction determines the highest frequency of band-gap, which is also the lowest frequency of propagated TE mode surface wave.
     The relation of incident wave polarized state and reflection phase band-gap of AMC structure with offset via is studied. For linear polarized incident plane wave, the polarization state of reflected wave can be linear polarization (the direction is parallel to incident wave), left-handed circular polarization, linear polarization (the direction is perpendicular to incident wave), right-handed circular polarization, which is termed polarization converting property. Feasibility analysis of application on stealth technique and significative research on achieving polarization converting of antennas are performed. For simple targets, with application of AMCs, there co-polarization radar cross section (RCS) can be decreased greatly. After reflected by paraboloid with AMC, linear polarized wave transmitted by feed source can be converted to left-handed or right-handed circular polarized plane wave with demand.
     Small size is the development trend of modern microwave circuit and antenna. Therefore compact AMCs can be applied more extensively. In this dissertation, at the foundation of basic property study, some compact AMC structures are designed successfully, including three-layer structure, cross shape structure, slotted structure and inter-embedded structure. There reflection phase band-gap and surface wave band-gap are studied, and there element size can be decreased about 50%, 15%, 30% and 70% respectively. In these structures, the inter-embedded AMC structure is the smallest one in all structures published in public.
     Utilizing its suppressing propagation of surface wave, AMCs are applied on linear, circular polarization microstrip antenna and microstrip antenna array successfully. Two linear polarization microstrip antennas are designed, which work at C-band and Bluetooth communication band respectively. With the application of a novel triangle grid AMC structure, back lobe of antenna is decreased about 15dB, and the gain is increased about 0.9dB, which is superior to antennas with square or hexagon AMC applied. In further, the effects of some parameters on antenna performance are analyzed, including distance between AMC and patch, the number of AMC layer, and some corresponding conclusions are obtained. With the AMC applied on circular polarization patch antenna, not only the gain is increased and the back radiation is decreased, but also the axial ratio band width vs frequency can be increased. By suppressing the propagation of surface wave, applying AMC on antenna array can decrease the mutual couple of antenna elements, and improve antenna performance, and enlarge scan angle of scanning antenna arrays.
     Using in-phase reflection of AMCs, low profile horizontal wire antenna and plane inverted F antenna built on AMCs are achieved successfully. Horizontal wire antenna with AMCs can radiate effectively, and its height is only 3.5mm, which is impossible on metal plane. Plane inverted F antennas are applied extensively on handle terminal equipments in wireless communication. The application of AMCs on PIFA can decrease longitudinal size or planar size of antenna, which is advantaged in actual application.
引文
[1]I.J.Bahl,and P.Bhartia.Microwave solid-state design.John Wiley&Sons,New York,1988.
    [2]张钧,刘克诚,张贤铎,赫崇骏.微带天线理论与工程.北京,国防工业出版社,1988.
    [3]A.J.Simmons and A.E Kay.The scalar feed:A high-performance feed for large paraboloid reflectors.Inst.Eng.Eng.Conf..1966,Pub.21:213-217.
    [4]V.H.Rumscy.Horn antennas with uniform power patterns around their axes.IEEE Trans.Antennas Propagat.1966,14(9):656-658.
    [5]H.C.Minnett and B.M.Thomas.A method of synthesizing radiation patterns with axial symmetry.IEEE Trans.Antennas Propagat.1966.14(9):654-656.
    [6]S.Lee and W.Jones.Surface waves on two-dimensional corrugated surfaces,Radio Science.1971,6,811-818.
    [7]P.-S.Kildal.Definition of artificial sort and hard surfaces for electromagnetic waves.Electronics Letters.1988,24(3):168-170.
    [8]P.-S.Kildal.Artificial soft and hard surfaces in electromagnetics.IEEE Trans.Antennas Propagat.1990,38(10):1537-1544.
    [9]P.-S.Kildal.The hat feed:a dual-mode rear-radiating waveguide antenna having low cross palrizaiton,IEEE Trans.Antennas Propagat.1987,35(9):1010-1016.
    [10]M.S.Aly and S.F.Mahmoud.Propagation and radiation behavior of a longitudinally slotted horn.Proc.IEE.1985,132(7):477-479.
    [11]J.Salomonsson,J.Hirokawa,P.-S.Kildal and A.Tengs.A corrugated soft sector horn with different beam properties in the two principal planes.Proc.IEE.1997,144(1):13-19.
    [12]Z.Ying and P.-S.Kildal.Improvement of dipole,helix,microstrip path and aperture antennas with ground planes by using corrugated soft surfaces.Proc.IEE.1996,143(3):244-248.
    [13]M.Albani,F.Capolino,S.Maci,R.Tibefio.Diffraction at a thick screen inchluding corrugations on the top face.IEEE Trans.Antennas Propagat.1997,45(2):277-283.
    [14]Z.Ying,P.-S.Kildal.and A.Kishk.Study of different realizations and calculation models for soft surfaces by using vertical monopole on soft disk as test bed.IEEE Trans.Antennas Propagat.1996,44(11):1474-1481.
    [15]P.-S.Kildal,A.Kishk and A.Tengs.Reduction of forward scattering from cylindrical objects using hard surfaces,IEEE Trans.Antennas Propagat.1996,44(11):1509-1520.
    [16]I.Novikova,P.-S.Kildal,M.Celuch-Marcysiak and W.Gwarek.FDTD.investigation of the field distribution in rectangular hard waveguides.IEEE International Symposium on Antennas and Propagation.1996(2):1304-1307.
    [17]T.Ivanov and A.Mortazawi.A two-stage spatial amplifier with hard horn feeds.IEEE Microwave and Guided Wave Letters.1996,6(2):88-90.
    [18]S.P.Skobelev and P.-S.Kildal.Blindness removal in arrays of rectangular waveguides using dielectrically loaded hard walls.IEEE Trans.Antennas Propagat.1998,46(4):546-550.
    [19]M.A.Ali,S.C.Ortiz,T.Ivanov and A.Mortazawi.Analysis and measurement of hard-horn feeds for the excitation of quasi-optical amplifiers.IEEE Trans.Microwave Theory Tech..1999,47(4):479-487.
    [20]M.Ozkar and A.Mortazawi.Analysis and design of an inhomogeneous transformer with hard wall waveguide section.IEEE Microwave and Guided Wave Letters.2000,10(2):55-57.
    [21]S.P.Skobelev and P.-S.Kildal.Analysis of arrays of rectangular waveguides radiating through stepwise transitions with dielectrically loaded hard walls in one plane.Proc.IEE.2000,45(9):964-969.
    [22]S.P.Skobelev and P.-S.Kildal.Performance of an array of circular waveguides eith strip-loaded dielectric hard walls.IEEE Trans.Antennas Propagat.2000,48(7):1106-1114.
    [23]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics.Physical Review Letters.1987,58(20):2059-2062.
    [24]S.John.Strong localization of photons in certain disordered dielectric superlattiees.Physical Review Letters.1987,58(20):2486-2489.
    [25]V.Radisie,Y.Qian and T.Itoh.Broadband power amplifier using dielectric photonic bandgap structure.IEEE Microwave Guided Wave Lett.,1998,8(1):13-14.
    [26]Y.Qian,V.Radisic and T.Itoh.Simulation and experiment ofphotonic band-gap structures for microstrip circuits.Asia Pacific Microwave Conference.1997:585-588.
    [27]I.Rumsey,M.Piket-May and P.K.Kelly.Photonic band-gap structures used as filters in mierostrip circuits.IEEE Microwave Guided Wave Lett.1998,8(10):336-338.
    [28]Vesna Radisie,YongXi Qian,Roberto Coccioli,and Tatsuo Itoh.Novel 2-D Photonie Bandgap Structure for Microstrip Lines.IEEE Microwave and Guided Wave Letters.1998,8(2):69-71.
    [29]F.Falcone,T.Lopetegi,and M.Sorolla.1-D and 2-D photonic bandgap microstrip structures.Microwave and Optical Technology Lett,1999,22(6): 411-412.
    [30]C.S.Kim,J.S.Park,D.Ahn,and J.B.Lim.A novel 1-D periodic defected ground structure for planar circuits.IEEE Microwave and Guided Wave Lett,2000,10(4):131-133.
    [31]T.Lopetegi,M.A.G Laso,M.J.Erro,D.Benito,M.J.Garde,F.Falcone,and M.Sorolla.Novel photonic bandgap mierostrip structures using network topology.Microwave and Optical Technology Lett..2000,25(1):33-36.
    [32]M.A.G.Laso,T.Lopetegi,M.J.Erro,D.Benito,M.J.Garde,and M.Sorolla.Novel wideband photonie bandgap microstrip structures.Microwave and Optical Technology Lett..2000,24(5):357-360.
    [33]闫敦豹,袁乃昌,付云起,张光甫.基于FDTD的1-D和2-D PBG结构的研究.红外与毫米波学报.2002,21(4):281-284.
    [34]Q.Xue,K.M.Shum,and Chi Hou Chan.Novel perforated microstrip PBG cell.Microwave and Optical Technology Lett..2000,26(5):325-327.
    [35]张国华,袁乃昌,付云起.FDTD方法分析光子带隙微带结构.微波学报.2001,17(4):14-17.
    [36]庞云波,高葆新.多层结构的光子带隙特性.电子学报.2002,30(9):1372-1375.
    [37]Dunbao Yan,Yunqi Fu,Qiang Gao,Guohua Zhang and Naichang Yuan.A novel two-layer compact EBG structure.Asia-Pacific Radio Science Conference,2004:287-289.
    [38]T.Lopetegi,F.Falcone,B.Martinez,R.Gonzalo and M.Sorolla.Improved 2-D photonie bandgap structures in microstrip technology.Microwave and Optical Technology Lett..1999,22(3):207-211.
    [39]闫敦豹,王超,付云起,袁乃昌.一种新型的宽带电磁带隙结构.电子与信息学报.2005.27(6):991-994.
    [40]J.Kim,K.Kim,J.Yook and H.Park.A slow-wave structure with Koch fractal slot loops.Microwave and Optical Technology Lett..2002,34(2):87-88.
    [41]Y.Fu,N.Yuan and G.Zhang.A novel fractal microstrip PBG structure.Microwave and Optical Technology Lett..2002,32(2):136-138.
    [42]闫敦豹,袁乃昌.PBG缺陷结构的谐振特性的研究.微波学报.2003,19(1):29-33.
    [43]T.Suzuki and P K.L.Yu.A new type of waveguide structures with photonic band structures.IEEE MTT-S Digest.1996:911-914.
    [44]Y.Qian,F.R.Yang and T.Itoh.Characteristics of microstip lines on a uniplanar compact PBG ground plane.Asia Pacific Microwave Conf.Dig.1998:589-598.
    [45]Y.Qian and T.Itoh.Planar periodic structures for microwave and millimeter wave circuit applications,IEEE MTT-S Microwave Symp.Dig..1999:1533-1536.
    [46]Fei-Ran Yang,Kuang-Ping Ma,Yongxi Qian and T.Itoh.A novle TEM waveguide using uniplanar compact photonic-bandgap structure.IEEE Trans.Microwave Theory Tech..1999,47(11):2092-2098.
    [47]K.P.Ma,K.Hirose,F.R.Yang,Y.Qian and T.Itoh.Realization of magnetic conducting surface using novel photonic bandgap structure.Electron.Lett..1998,34(11):2041-2042.
    [48]M.Belald and K.Wu.Spatial power amplifier using a passive and active TEM waveguide concept.IEEE Trans.Microwave Theory Tech..2003,51(3):684-689.
    [49]C.A.kyriazidou,H.F.Contopanagos and N.G.Alexopoulos.Monilithic waveguide filters using printed photonic-bandgap materials.IEEE Trans.Microwave Theory Tech..2001,49(2):297-307.
    [50]闫敦豹,袁乃昌,付云起.基于FDTD的波导介质层PBG结构的的研究.电子与信息学报.2004,26(1):118-121.
    [51]United States Patent,Highly efficient planar antenna on a periodic dielectric structure,Patent number:5386215,1995.
    [52]Yasushi Horii,Makoto Tsutsumi.Harmonic control by photonic bandgap on microstrip patch antenna.IEEE Microwave Guided Wave Lett.1999,9(1),13-15.
    [53]闫敦豹,袁乃昌,张光甫,付云起,PBG结构在微波有源天线中的应用,电子与信息学报.2003,25(8):1139-1142.
    [54]J.S.Colburn and Y Rahrnat-Samii.Patch antennas on externally perforated high dielectric constant substrates.IEEE Trans.Antennas Propagat.1999,47(12):1785-1794.
    [55]J.B.Birks and J.H.Schulman,Progress in Dielectrics.New York:Wiley,1960,p.2.
    [56]R.Gonzalo,P.Maagt and M.Sorolla,Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap structures.IEEE Trans.Microwave Theory Tech..1999,47(11):2131-2138.
    [57]R.Coecilli,F.R.Yang,K.P.Ma and T.Itoh.Aperture-coupled patch antenna on UC-PBG substrate.IEEE Trans.Microwave Theory Tech..1999,47(11):2123-2130.
    [58]B.L.Ooi.A modified contour integral analysis for Sierpinski fractal carpet antennas with and without electromagnetic band gap ground plane.IEEE Trans.Antennas Propagat.2004,52(5):1286-1293.
    [59]S.Pioeh and J.M.Laheurte.Size reduction of microstrip antennas by means of periodic metallic patterns.Electronics Letters.2003,39(13):959-961.
    [60]D Sievenpiper,Lijun Zhang,R F Jimenez Broas,et al.High-impedance electromagnetic surfaces with a forbidden frequency band.IEEE Trans.MTT.,1999,47(11):2059-2074.
    [61]D.Sievenpiper.High-impedance electromagnetic surfaces.Ph.D.Dissertation,University of California at Los Angles,1999.
    [62]Keven J.Golla.Broadband application of high-impedance ground planes.MS thesis,AFIT/GE/ENG/99M-26.School of Engineering,Air Force Institute of Technology,Wright-Patterson AFB OH,Mar.2001.
    [63]M.Saville.Investigation of Conformal High-Impedance Ground Planes.MS thesis,AFIT/GE/ENG/00M-17.School of Engineering,Air Force Institute of Technology,Wright-Patterson AFB OH,Mar.2000.
    [64]R.F.Jimenez Broas.Experimental characteristics of high impedance electromagnetic surfaces in the microwave frequency regime.MS thesis,Dept.Elect.Eng,,UCLA,1999.
    [65]Romulo F.Jimenez Broas,Daniel F. Sievenpiper,and Eli Yablonovitch.A high-impedance ground plane applied to a cellphone handset geometry.IEEE Trans.On Microwave Theory and Techniques,vol.49,July 2001:1261-1265.
    [66]M.Rahman and M.A.Stuchly.Circularly polarized patch antenna with periodic structure.IEE Proe.Microw.Antennas Propag.2002,149(3):141-146.
    [67]F.Yang,and Y Rahmat-Samii.Microstrip antennas integrated with electromagnetic band-gap structures:a low mutual coupling design for array applications.IEEE trans,on Antenna and Propag.,vol.51,Oct.2003:2936-2946.
    [68]S.Clavijo,R.E.Diaz,and W.E.McKinzie.Design methodology for Sievenpiper high-impedance surfaces:an artificial magnetic conductor for positive gain electrically small antennas.IEEE trans,on Antenna and Propag.,vol.51,Oct.2003:2678-2690.
    [69]F.Yang,and Y.Rahrnat-Samii.A low profile circularly polarized curl antenna over electromagnetic bandgap surface.Microwave and Optical Technology Letters,vol.31,no 3,2001:165-168.
    [70]G.Zhang,Y.Fu,C.Zhu,D.Yan and N.Yuan.A circular waveguide antenna using high-impedance ground plane.IEEE Antennas and Wireless Propagation Letters.2003,2:86-88.
    [71]F.Yang,and Y.Rahrnat-Samii.Reflection phase characterization of the EBG ground plane for low profile wire antenna applications.IEEE trans,on Antenna and Propag.,2003,51(10):2691-2703.
    [72]M.Thevenot,C.Cheype,A.Reineix,and B.Jecko.Directive Photonic-Bandgap Antennas. IEEE Trans. Microwave Theory Tech.. 1999,47(11): 2115-2122.
    [73] J. D. Shumpert, W. J. Chappll and L. P. B. Katehi. Paralled-plate mode reduction in conductor-backed slots using electromagnetic bandgap substrates. IEEE Trans. Microwave Theory Tech.. 1999,47(11): 2099-2104.
    [74] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 1968, 10(4): 509-514.
    [75] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters. 1996, 76(25): 4773-4776.
    [76] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart. Low frequency plasmas in thin-wire structures. J. Phys. C. 1998,10: 4785-4808.
    [77] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech.. 1999,47(11): 2075-2084.
    [78] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000,84(18): 4184-4187.
    [79] R. A. Shelby, D. R. Smith and S. Schultz. Experimental verification of a negative index of refraction. Science. 2001,292(6): 77-79.
    [80] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser and S. Schultz. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterials. Appl. Phys. Lett. 2001, 78(4): 489-491.
    [81] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85(18): 3966-3969.
    [82] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen and S. Ilvonen. BW media: Media with negative parameters, capable of supporting backward waves. Microwave Opt. Tech. Lett. 2001, 31(2): 129-133.
    [83] R. W. Ziolkowski and E. Heyman. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E. 2001,64(5), 056625: 1-15.
    [84] R. W. Ziolkowski. Pulsed and CW Gaussian beam interactions with double negative maetamaterial slabs. Opt. Express. 2003,11(7): 662-681.
    [85] J. A. Kong. Electromagnetic waves in stratified negative isotropic media. Progress in Electromagnetics Research. PIER 35,2002: 1-52
    [86] J. A. Kong, B. I. Wu and Y. Zhang. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and negative permeability. Appl. Phys. Lett. 2002, 80(12): 2084-2086.
    [87] J. Pacheco Jr., T. M. Grzegorezyk, B. I. Wu, Y. Zhang and J. A. Kong. Power propagation in homogeneous isotropic frequency-dispersive left-handed media. Phys.Rev.Lett.2002,89(25),257401:1-4.
    [88]B.I.Wu,T.M.Grzegorezyk,Y.Zhang nd J.A.Kong.Guided modes with imaginary transverse wave number in a slab waveguide with negative permitivity and permeability.J.Appl.Phys.2003,93(11):9386-9388.
    [89]毛均杰,何建国.电磁场理论.国防科技大学出版社.1998.
    [90]C.R.Simovski,P.de Maagt,S.A.Trityakov,M.Paquay and A.A.Sochava.Angular stabilization of resonant frequency of artificial magnetic conductors for TE-incidence.Electronics Letters.2004,40(2):959-961.
    [91]A.Monorchio,G.Manara ang L.Lanuzza.Sythesis of artificial magnetic conductors by using multilayered frequency selective surfaces.IEEE Antennas and Wireless Propagation Letters.2002,1:196-199.
    [92]Y.Zhang,J.yon Hagen,M.Younis,C.Fischer and W.Wiesbeck.Planar artificial magnetic conductors and patch antennas.IEEE trans,on Antenna and Propag.,2003,51(10):2704-2712.
    [93]R.J.King,D.V.Thiel and K.S.Park.The synthesis of surface reactances using an artificial dielectric.IEEE trans,on Antenna and Propag.,1983,31(5):471-476.
    [94]R.E.Diaz and J.T.Aberle.TM mode analysis of a Sievenpiper high-impedance reactive surface.IEEE AP-S International Symposium,2000(1):327-330.
    [95]L.C.Kretly and A.M.P.A.Silava.The influence of the height variation on the frequency bandgap in an AMC,artificial magnetic conductor,for wireless applications:an EM experimental design approach.Proe.SBMO/IEEE MTT-S IMOC 2003:219-223.
    [96]S.Tse,B.S.Izquierdo,J.C.Batchelor and R.J.Langley.Reduced sized cells for electromagnetic bandgap structures.Electronics Letters.2003,39(24):1699-1701.
    [97]R.Diaz,V.Sanchea,E.Caswell and A.Miller.Magnetic loading of artificial magnetic conductors for bandwidth enhancement.IEEE AP-S International Symposium,2003(2):431-434.
    [98]D.J.Kerm,D.H.Werner and M.J.Wilhelm.Active negative impedance loaded EBG structures for the realization of ultra-wideband artificial magnetic conductors.IEEE AP-S International Symposium,2003(2):427-430.
    [99]W.MeKinzie and S.Rogers.A multi-band artificial magnetic conductor comprised of multiple FSS layers.IEEE AP-S International Symposium,2003(2):423-426.
    [100]M.Kim,J.B.Hacker,A.L.Sailer,S,Kim,D.Sievenpiper and J.A.Higgins.A rectangular TEM waveguide with photonic crystal walls for excitation of quasi-optical amplifiers.IEEE MTr-S Digest,1999:543-546.
    [101]F.Yang,C.S.Kee and Y.Rahmat-Samii.Step-like structure and EBG structures to improve the performance of patch antenna on high dielectric substrate.IEEE AP-S International Symposium,2001(2):482-485.
    [102]F.Yang and Y.Rahmat-Samii.Curl antennas over electromagnetic band-gap surface:a low profiled design for CP applications.IEEE AP-S International Symposium,2001(3):372-375.
    [103]F.Yang and Y.Rahmat-Samii.Applications of electromagnetic band-gap(EBG)structures in microwave antenna designs.International Conference on Microwave and Millimeter Wave Technology,2002:528-531.
    [104]P.Salonen,F.Yang,Y.Rahmat-Samii and M.Kivikoski.WEBGA-wearable electromagnetic band-gap antenna.IEEE AP-S International Symposium,2004(1):451-454.
    [105]W.E.McKinzie Ⅲ,R.Hurtado and W.Klimczak.Artificial magnetic conductor technology reduces size and weight for precision GPS antennas.Institute on Navigation National Technical Metting.2002:448-459.
    [106]W.E.McKinzie Ⅲ.R.Hurtado,B.K.Klimczak and J.D.Dutton.Mitigation of multipath through the use of an artificial magnetic conductor for precision GPS surveying antennas.IEEE AP-S International Symposium,2002(4):640-643.
    [107]W.E.McKinzie Ⅲ and g.R.Fahr.A low profile polarization diversity antenna built on an artificial magnetic conductor.IEEE AP-S International Symposium,2002(1):762-765.
    [108]V.C.Sanchez,W.E.McKinzie Ⅲ and g.E.Diaz.Broadband antennas over electrically reconfigurable artificial magnetic conductor surfaces.Antenna Applications Symposium.2001.
    [109]S.Rogers,J.Marsh,W.McKinzie and G.Mendolia.AMC edge treatments enable high isolation between 802.11b and BluetoothTM antennas on laptop computers.IEEE AP-S International Symposium,2003(2):38-41.
    [110]W.E.McKinzie Ⅲ and E.Caswell.An electrically-thin,two-pole,bandpass radome.IEEE AP-S International Symposium,2003(4):22-27.
    [111]Z.Iluz,R.Shavit and R.Bauer.Mistrip antenna phased array with electromagnetic bandgap substrate.IEEE trans,on Antenna and Propag.,2004,52(6):1446-1453.
    [112]A.P.Feresidis,G.Apostolopoulos,N.Seffas and J.C.Vardaxoglou.Closely coupled metallodielectric electromagnetic band-gap struclxtres formed by double-layer dipole and tripole arrays.IEEE trans,on Antenna and Propag.,2004,52(5):1149-1158.
    [113]F.Frezza.L.Pajewski and G.Schettini.Fractal two-dimensional electromagnetic bandgap structures.IEEE trans,on Antenna and Propag.,2004,52(1):220-227.
    [114]J.M.Baracco,M.Paquay and P.de Maagt.An electromagnetic bandgap curl antenna for phased array applications.IEEE trans,on Antenna and Propag.,2005,53(1):173-186.
    [115]A.P.Feresidis,G.Goussetis,S.Wang and J.C.Vardaxoglou.Artificail magnetic conductor surfaces and their application to low-profile high-gain planar antennas.IEEE trans,on Antenna and Propag.,2005,53(1):209-215.
    [116]D.F.Sievenpiper.Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface.IEEE trans,on Antenna and Propag.,2005,53(1):236-247.
    [117]H.Xin,J.B.West,J.C.Doane,J.A.I-Iiggins,H.Kazemi and M.J.Rosker.Two-dimensional millimeter wave phase scanned lens utilizing analog electromagnetic crystal waveguide phase shifters.IEEE trans,on Antenna and Propag.,2005,53(1):151-159.
    [118]H.Nakano,K.Hitosugi,N.Tatsuzawa,D.Togashi,H.Mimaki and J.Yamauchi.Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an elcctromagnetic band-gap reflector with a spiral antenna.IEEE trans,on Antenna and Propag.,2005,53(1):191-199.
    [119]A.R.Weily,L.Horvath,K.P.Esselle,B.C.Sanders and T.S.Bird.A planar resonator antenna based on a woodpile EBG material.IEEE trans,on Antenna and Propag.,2005,53(1):216-223.
    [120]黎滨洪.表面电磁波和介质波导.上海,上海交通大学出版社,1990.
    [121]N.Ashcroft,N.Mermin,Solid State Physics,Orlando,Saunders College Publishing,1976.
    [122]毛均杰,何建国.电磁场理论.长沙.国防科技大学出版社.1998.
    [123]付云起,张国华,袁乃昌.高阻表面光子晶体设计公式的修正.全国微波与毫米波会议.2003:1123-1126.
    [124]黄昆著、韩汝琦改编.固体物理学.北京.高等教育出版社.1988.
    [125]金建铭著,王建国译.电磁场有限元方法.西安.西安电子科技大学出版社.1998.
    [126]C.J.Reddy,M.D.Deshpande,C.R.Cockrell and F.B.Beck,Finite element method for eigenvalue problems in electromagnetics,NASA Technical Paper 3485,Dec.1994.
    [127]C.Mias,J.P.Webb and K L.Fen'aft,Finite element modelling of electromagnetic waves in doubly and triply periodic structures,IEE Proceedings Optoelectronics,1999,146(2):111-118.
    [128]J.P.Berenger,A perfectly matched layer for the absorption of electromagnetic waves,Journal of Computational Physics,1994,114:185-200.
    [129]Z.S.Sacks,D.M.Kingsland,R.Lee and J.F.Lee,A perfectly matched anisotropic absorber for use as an absorbing boundary condition,IEEE Trans.on Antennas and Propagation,1995,43(12):1460-1463.
    [130]张克潜,李德杰编著,微波与光电子学中的电磁理论,北京:电子工业出版社,1994.
    [131]王长清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    [132]高本庆.时域有限差分法FDTD Method.北京:国防工业出版社,1995.
    [133]K.S.Yee,Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,IEEE Trans.on Antennas and Propagation,1966,14(2):302-307.
    [134]K.S.Kunz and R.J.Luebbers,Finite difference time domain method for electromagnetics,Boca Raton,FL:CRC Press,1993.
    [135]Kane S.Yee,David Ingham,Kurt Shlager.Time-Domain Extrapolation to the Far Field Based on FDTD Calculstions.IEEE Trans.Antennas Propagat.1991,39(3):410-413.
    [136]Raymond J.Luebbers,Karl S.Kunz,Michael Schneider etc..A Finite-Difference Time-Domain Near Zone to Far Zone Transformation.IEEE Trans.Antennas Propagat.1991,39(4):429-433.
    [137]P.C.Cherry and M.F.Iskander,FDTD analysis of power deposition patterns of an array of intestitial antennas for use in microwave hyperthermia.IEEE Trans.Microwave Theory Tech.,1992,40(8):1692-1700.
    [138]P.C.Cherry and M.F.Iskander,Calculations of heating patterns of an array of microwave interstitial antennas.IEEE Trans.Biomed.Eng.,1993,40(8):771-779.
    [139]J.R.Ren,O.P.Gandhi,L.R.Walker,J.Fraschilla,and C.R.Boerman,Floquet-based FDTD analysis of two-dimensional phased array antennas.IEEE Microwave Guided Wave Lett.,1994,4(4):109-111.
    [140]E.Thiele and A.Taflove,FD-TD analysis of Vivaldi flared horn antennas and arrays.IEEE Trans.Antennas Propagat..1994,42(5):633-641.
    [141]K.Uehara and K.Kagoshima,Rigorous analysis of microstrip phased array antennas using a new FDTD method.Electron.Lett..1994,30(2):100-101.
    [142]D.Crouch,On the use of symmetry to reduce the computational requirements for FDTD analyses of finite phased arrays.Microwave Opt.Technol.Lett..1996,13(10):123-128.
    [143]Jean-Pierre Berenger.Perfectly Matched Layer for the FDTD Solution of Wave-Structure Interaction Problems.IEEE Trans.Antennas Propagat.1996,44(1):110-117.
    [144]Jean-Pierre Berenger.Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves.J.Compt.Phys..1996:363-379.
    [145]Jean-Pierre Berenger.Improved PML for the FDTD Solution of Wave-Structure Interaction Problems.IEEE Trans.Antennas Propagat 1997,45(3):466-473.
    [146]S.Dey and R.Mittra,Compact rnierostrip patch antenna.Microwave Opt.Technol.Lett..1996,13(9):12-14.
    [147]J.George,M.Deepukumar,C.K.Aanandan,P.Mohanan,and K.Ca Nair,New compact microstrip antenna.Electron.Lett..1996,32(3):508-509.
    [148]K.L.Wong,C.L.Tang,and H.T.Chert.Acompact meandered circular microstip antenna with a shorting pin.Microwave Opt.Technol.Lett.,1997,15(6):147-149.
    [149]C.K.Wu,K.L.Wong,and W.S.Chen.Slot-coupled meandered microstrip antenna for compact dual-frequency operation.Electron.Lett..1998,34(5):1047-1048.
    [150]J.H.Lu and K.L.Wong.Slot-loaded,meandered rectangular microstrip antenna with compact dual-frequency operation.Electron.Lett..1998,34(5):1048-1050.
    [151]闫敦豹,高强,付云起,张国华,袁乃昌,改进的宽带AMC结构,电波科学学报,vol.20,2005(5):586-589.
    [152]C.Puente and R.Pous,Fractal design of multiband and low side-lobe arrays.IEEE Trans.Antennas Propagat.,1998,44(5):730-739.
    [153]Xu Liang,Wu Zhensen and Wang Wenbing,Synthesis of fractal patterns to the Sierpinsld gasket antenna.IEEE Trans.Antennas Propagat.,1999,32(21):1940-1941.
    [154]N.Cohen,"Fractal antennas part 1:Introduction and the fractal quad.",Communications Quarterly,1995:7-22.
    [155]N.Cohen,"Fractal antennas part 2:A discussion of relevant,but disparate,qualities",Communications Quarterly,1995:53-66.
    [156]闫敦豹,高强,付云起,张国华,袁乃昌.具有分形特征的宽带人工磁导体结构.微波学报.已录用.
    [157]S.Rogers,W.McKinzie and G.Mendolia.AMCs comprised of interdigital capacitor FSS layers enable lower cost applications.IEEE AP-S International Symposium,2003(2):22-27.
    [158]Y.Fu,N.Yuan and G.Zhang.A very compact electromagnetic bandgap structure for suppressing surface waves in integrated circuits.Microwave Opt Technol Lett.,2004,41(6):455-457.
    [159]I.J.Bahl and P.Bhartia.Microstrip antenna.Dedham,MA:Artech House,1980.
    [160]R.Garg,P.Bhartia,I.Balal and A.Ittipoboon.Mierostrip antenna design handbook.Boston:Artech House,2001.
    [161]钟顺时.微带天线理论与应用.西安:西安电子科技大学出版署,1991.
    [162]K.C.Gupta.Microstrip antenna design.Artech House,1988.
    [163]K.L.Wong and Y F.Lin.Circularly polarized microstrip antenna with a tunning stub.Electron.Lett..1998,34(9):831-832.
    [164]J.H.Lu and C.L.Tang.Circular polarization design of a single-feed equilateral-triangular microstrip antenna.Electron.Lett..1998,34(4):319-321.
    [165]K.L.Wong and J.Y.Wu.Sing-feed small circularly polarized square microstrip antenna.Electron.Lett..1997,33(22):1833-1834.
    [166]D.M.Pozar.A microstrip antenna aperture coupled to a mierostrip line ElectronLett.1985,21(1):49-50.
    [167]S.D.Targonski and D.M.Pozar.Design of wideband circularly polarized aperture coupled microstrip antennas.IEEE Transactions on Antennas and Propagation.1993,41(2):214-219.
    [168]K.L.Wong.Bandwidth enhancement of circularly polarized microstrip antenna using chip resister loading.Electron.Lett..1997,3(21):1749-1751.
    [169]C.Y.Huang.Broadband circularly polarized square mierostrip antenna using chip resistor loading.IEEE Transactions on Antennas and Propagation,1999,46(1):94-96.
    [170]T.R.Dedski and P.W.Hannan,Complex mutual coupling measured in a large phased array antenna,Microwave Journal,1965,8(6):93-96.
    [171]G.F.Farrell.Jr.and D.H.Kuhn,Mutual coupling in infinite planar arrays of rectangular waveguide horns,IEEE Trans.on Antennas and Propagation,1968,16(7):405-414.
    [172]R.J.Mailloux,Phased array theory and technology,Proceedings of the IEEE,1982,70:246-291.
    [173]N.阿米特,V.加林德,C.P.吴著,陆雷译,相控阵天线理论与分析,北京:国防工业出版社,1978.
    [174]郭燕昌,钱继曾,黄富雄,冯祖伟编,相控阵和频率扫描天线原理,北京:国防工业出版社,1978.
    [175]R.King C.W.Harisson and D.H.Denton.Transmission-line missile antenna.IRE Trans.Antennas Propagat..1960,8(1):88-90.
    [176]J.Nagai and T.Satoh.On the analysis of transmission line type inverted L anatenna.Tohoku Univ.,Japan,Tech.Rep..1967,36(3):289-294.
    [177]K.Fujimoto,H.Itoh and T.Takizawa.Antennas for UHF portable radio units.In Toint Convention Rec.of Four Unstitutes of Elec.Engs.1968,p.2223.
    [178]J.Tabata,Y.Sakurai,M.Miura,Y.Matsuzaku and N.Tsukamoto.The analysis on transmission-line rocket antennas.Nat.Aerospace Lab.,Japan.,Tech.Rep.TR-186,Sept.1969.
    [179]M.A.Jensen and Y.Rahmat-Samii.Performance analysis of antennas for hand-held transceivers using FDTD.IEEE Trans.Antennas Propoagat..1994,42(8):1106-1113.
    [180]L.Z.Dong,P.S.Hall and D.Wake.Dual-frequency planar inverted-F antennas.IEEE Trans.Antennas Propagat..1997,45(10):1451-1458.
    [181]G.K.H.Lui and R.D.Murch.Compact dual-frequency PIFA designs using LC resonators.IEEE Trans.Antennas Propagat..2001,49(7):1016-1019.
    [182]M.Ali,R.A.Sadler and G.J.Hayes.A uniquely packaged internal inverted-F antenna for bluetooth or wireless LAN application.IEEE Antennas Wireless Propagat.Lett..2002(1):5-7.
    [183]C.R.Rowell and R.D.Murch.A compact PIFA suitable for dual-frequency 900/1800-MHz operation.IEEE Trans.Antennas Propagat..1998,46(4):596-598.
    [184]Y.-B.Kwon,J.-I.Moon and S.-O.Park.An internal triple-band planar inverted-F antenna.IEEE Antennas Wireless Propagat.Lett..2003(2):341-344.
    [185]Y.Guo,I.ang and M.Y.W.Chia.Compact internal multiband antennas for mobile handsets.IEEE Antennas Wireless Propagat.Lett..2003(2):143-146.
    [186]P.Cials,R.Staraj,G.Kossiavas and C.Luxey.Design of an internal quad-band antenna for mobile phones.IEEE Microwave and Wireless Components Letters.2004,14(4):148-150.
    [187]P.Ciais,C.Luxey,A.Diallo,R.Staraj and G.Kossiavas.Design of internal multiband antennas for mobile phone and WLAN standards.
    [188]D.Richardson.Stealth.Crown Publisher Inc.,1989.
    [189]Jones.Stealth technology,the art of black magic.TAB books Inc.,Blue tige summit,1989.
    [190]张考,马东立编著,军用飞机生存力与隐身设计,北京:国防工业出版社,2002.
    [191]庄钊文,袁乃昌,刘少斌,莫锦军著,等离子体隐身技术,北京:科学出版社,2005.
    [192]沈民谊,蔡镇远编著,卫星通信天线、馈源、跟踪系统,北京:人民邮电出版社,1993.
    [193]D.S.Lerner.A wave polarization converter for circular polarization.IEEE Trans.Antennas Propagat..1965,13(1):3-7.
    [194]T.K.Ishii and F.J.Thalhauser.Polarization converting antenna.IEEE Intern.Symp.on Antennas and Propagation.1971:148-151.
    [195]M.C.D Maddocks and M.S.Smith.Flat-plate steerable antennas for satellite communications and broadcast reception.IEE Proc.-Microw.Antennas Propagat.1991,138(2):159-168.
    [196]A.J.Viitanen and I.V.Lindell.Uniaxial chiral quarter-wave polarisation transformer.Electron.Lett.,1993,29(6):1074-1075.
    [197]I.V.Lindell and A.H.Sihvola.Plane-wave reflection from uniaxial chiral interface and its application to polarization transformation.IEEE Trans.Antennas Propagat..1995,43(12):1397-1404.
    [198]A.J.Viitanen and P.P.Puska.Plane wave reflection from a chiral slab backed by soft and hard surfaces with application to polarisation transformers.IEE Proc.-Microw.Antennas Propagat.,1998,145(4):299-302.
    [199]A.J.Viitanen.Reflected and transmitted fields of uniaxial bianisotropic slab.Proc.URSI 1995,Int.Symp.EM Theory.1995:649-651.
    [200]W.Zhang,Z.Wu,L.Zhang,P.Liu,Z.Liu and W.Shen.On the printed refleetarray with polarized transformation.IEEE International Workshop on Antenna Technology:Small Antennas and Novel Metamaterials,IWAT 2005,2005:59-62.
    [201]R.E.V.Doeren.Polarization transformation in twisted anisotropic media.1966,14(3):106-111.
    [202]K.Karkkainen and M.Stuchly.Frequency selective surface as a polarization transformer.IEE Proc.Microw.Antennas Propagat..2002,149(56):248-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700