心血管内靶向定位基因递送体系—载基因支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮腔内冠状动脉成形术(Percutaneous Transluminal Coronary Angioplasty,PTCA)是冠状动脉硬化性心脏病的主要治疗手段,但PTCA术后血管再狭窄的发生率高达15—60%,迄今仍是临床亟待解决的难题。转基因技术的飞速发展为血管再狭窄的基因治疗奠定了基础。心血管内基因治疗的成功必须依靠有效的治疗基因,安全的载体和可以把基因(和载体)递送到血管内靶部位的递送体系。心血管内基因治疗的特殊性在于很难把基因专一性递送到血管组织而不进入血液循环系统。以往的研究大多数采用球囊导管向血管内灌注基因(和载体),研究表明,灌注到血管内的载体大部分随血流进入全身循环系统,到达病灶局部的基因很少,达不到治疗效果。
     血管内支架携带基因有其独特的优势,可以在植入支架的同时将基因递送到心血管内的病灶部位,借助支架与血管壁的紧密接触,使基因被局部血管组织吸收,随着基因的缓慢释放,达到长期的基因转染和表达。基因载体分为病毒载体和非病毒载体。病毒载体转染效率高,但安全性方面存在潜在的危险性。非病毒载体安全性好,易于制备,近年来倍受关注。阳离子脂质体和壳聚糖是目前研究最广泛的非病毒载体,显示出了一定的优越性。
     本课题针对心血管基因治疗的主要技术难题,采用血管支架为基因递送平台,将抗DNA抗体—质粒DNA—阳离子脂质体三元复合纳米基因载体和壳聚糖基因纳米粒两种非病毒载体结合在支架上,并通过体内外试验验证这一新型血管内基因递送体系的有效性和可行性。
     本文第一章对PTCA术后再狭窄的发病机理及治疗现状进行了综述。
     本文具体研究内容如下:
     1.制备了新型抗DNA抗体—质粒DNA—阳离子脂质体三元复合纳米基因载体(DAC),筛选出了最佳配方,并初步进行了细胞摄取及细胞基因转染实验。结果发现,抗DNA抗体—质粒DNA—阳离子脂质体可以自组装为360nm左右的球形粒子,与传统的质粒DNA—阳离子脂质体二元基因载体(DC组)相比,DAC体系对质粒DNA(28.5±1.3%vs13.6±0.9%,p<0.01)的包封率明显增加,并且明显地提高了细胞基因转染效率(41.8%vs10.2%,p<0.01)。采用双重荧光标记联合共聚焦显微观察发现抗DNA抗体可促进质粒DNA进入细胞核。使用胶原对金属支架表面进行涂层,通过化学和免疫双重偶联的方法将上述DAC载体固定化在支架表面。使用放射性同位素分别标记抗DNA抗体和质粒DNA来测定支架结合量及释放曲线。用细胞培养及动物体内植入实验验证了这一新型基因递送体系的转基因效果。结果显示,支架表面通过化学交联的胶原涂层具有很好的均一性
PTCA (Percutaneous Transluminal Coronary Angioplasty ) has become one of the most important strategies to treat coronary artery diseases. However, restenosis has been observed in pathological and clinical studies, and poses a formidable problem (15-60%). The gene therapy for restenosis has progressed for the development of transgenic technique. The most challenging issues for successful application of gene therapy to human diseases concern: (1) the choice of the relevant therapeutic gene, (2) the choice of promoter and regulatory sequences driving expression of the transgene; and (3) the vector used for delivery of the transgene into cells (that is, for transduction of target cells). The difficulties in the development of an effective percutanous gene deliver system to the diseased site without distal spread have proven to be a major hurdle to the advancement of vascular gene therapy. In the past decades, balloon catheters have been used for vector delivery. However, catheter-based gene delivery systems fail to limit systemic biodistribution of vector to circulation and distal organs.
    Endovascular stents represent an ideal platform for localized vascular gene therapy for vascular diseases due to their permanent scaffolding structure. Because of long-term residue within the vessel, the gene tethered on the stent could release slowly and access the vascular cells directly. There are essentially two classes of gene therapy vectors: nonviral vectors and viral vectors. Viruses are efficient in transducing cells. However, the safety concerns regarding the use of virus in humans make nonviral delivery systems an attractive alternative. Nonviral vectors are particularly suitable with respect to simplicity of use, ease of large-scale production and lack of specific immune response. Recently, several novel nonviral vectors have been developed that approach viruses with respect to transfection efficiency. Among them, cationic lipid and chitosan have been extensively studied for gene vectors.
    To resolve the difficult problem of vascular gene therapy, we attached DAC system and chitosan-plasmid DNA nanoparticles on coronary stents to assesss the feasibility and effectivity of this novel gene delivery system.
    In chapter 1, the recent progress of the research topic was reviewed.
引文
1. Williams, D. O., R. Holubkov, W. Yeh, et al., Percutaneous coronary intervention in the current era compared with 1985-1986: the National Heart, Lung, and Blood Institute Registries. [J]. Circulation, 2000. 102(24). 2945-51.
    2. Mehran, R., G. Dangas, A. S. Abizaid, et al., Angiographicpatterns of in-stent restenosis: classification and implications for long-term outcome. [J]. Circulation, 1999. 100(18). 1872-8.
    3. Fischman, D. L., M. B. Leon, D. S. Baim, et al., A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. [J]. N Eng1 J Med, 1994. 331(8). 496-501.
    4. Serruys, P. W., D. P. Foley, M. J. Suttorp, et al., A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions: final results of the additional value of NIR stents for treatment of long coronary lesions (ADVANCE) study. [J]. J Am Coll Cardiol, 2002. 39(3). 393-9.
    5. Kuntz, R. E. and D. S. Bairn, Defining coronary restenosis. Newer clinical and angiographic paradigms. [J]. Circulation, 1993. 88(3). 1310-23.
    6. Farb, A., G. Sangiorgi, A. J. Carter, et al., Pathology of acute and chronic coronary stenting in humans. [J]. Circulation, 1999. 99(1). 44-52.
    7. Nobuyoshi, M., T. Kimura, H. Nosaka, et al., Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. [J]. J Am Coil Cardiol, 1988. 12(3). 616-23.
    8. Heitzer, T., H. Just, and T. Munzel, Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. [J]. Circulation, 1996. 94(1). 6-9.
    9. Isner, J. M., M. Kearney, S. Bortman, et al., Apoptosis in human atherosclerosis and restenosis. [J]. Circulation, 1995. 91(11). 2703-11.
    10. Violaris, A. G., R. Melkert, J. P. Herrman, et al., Role of angiographically identifiable thrombus on long-term luminal renarrowing after coronary angioplasty: a quantitative angiographic analysis. [J]. Circulation, 1996. 93(5). 889-97.
    11. Komatsu, R., M. Ueda, T. Naruko, et al., Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. [J]. Circulation, 1998. 98(3). 224-33.
    12. Speidel, C. M., P. R. Eisenberg, W. Ruf, et al., Tissue factor mediates prolongedprocoagulant activity on the luminal surface of balloon-injured aortas in rabbits. [J]. Circulation, 1995. 92(11). 3323-30.
    13. Rekhter, M. D., E. O'Brien, N. Shah, et al., The importance ofthrombus organization and stellate cell phenotype in collagen I gene expression in human, coronary atherosclerotic and restenotic lesions. [J]. Cardiovasc Res, 1996. 32(3). 496-502.
    14. Bar-Shavit, R., M. Benezra, A. Eldor, et al., Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. [J]. Cell Regul, 1990. 1(6). 453-63.
    15. Gasic, G. P., C. P. Arenas, T. B. Gasic, et al., Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells. [J]. Proc Natl Acad Sci U S A, 1992. 89(6). 2317-20.
    16. Moreno, P. R., V. H. Bernardi, J. Lopez-Cuellar, et al., Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. [J]. Circulation, 1996. 94(12). 3098-102.17. Mickelson, J. K., N. M. Lakkis, G. Villarreal-Levy, et al., Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? [J]. J Am Coil Cardiol, 1996. 28(2). 345-53.
    18. Castronuovo, J. J., Jr., S. B. Guss, D. Mysh, et al., Cytokine therapy for arterial restenosis: inhibition of neointimal hyperplasia by gamma-interferon. [J]. Cardiovasc Surg, 1995. 3(5). 463-8.
    19. Lincoff, A. M., J. G Furst, S. G Ellis, et al., Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. [J]. J Am Coil Cardiol, 1997. 29(4). 808-16.
    20. Banters, C., P. de Groote, M. Adamantidis, et al., Proto-oncogene expression in rabbit aorta after wall injury. First marker of the cellular process leading to restenosis after angioplasty? [J]. Eur Heart J, 1992. 13(4). 556-9.
    21. Ciezld, J. E, U. O. Hafeli, P. Song, et al., Parenchymal cell proliferation in coronary arteries after percutaneous transluminal coronary angioplasty: a human tissue bank study. [J]. Int J Radiat Oncol Biol Phys, 1999. 45(4). 963-8.
    22. Moreno, P. R., I. F. Palacios, M. N. Leon, et al., Histopathologic comparison of human coronary in-stent andpost-balloon angioplasty restenotic tissue. [J]. Am J Cardiol, 1999. 84(4). 462-6, A9.
    23. Gordon, P.C., C.M. Gibson, D.J. Cohen, et al., Mechanisms ofrestenosis and redilation within coronary stents-quantitative angiographic assessment. [J]. J Am Coil Cardiol, 1993. 21(5). 1166-74.
    24. Kornowski, R., G. S. Mintz, K. M. Kent, et al., Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia. A serial intravascular ultrasound study. [J]. Circulation, 1997. 95(6). 1366-9.
    25. Arakawa, K., K. Isoda, Y. Sugiyabu, et al., lntimal proliferation after stenting reflected by increased stent-to-vessel cross-sectional area ratio: serial intravascular ultrasound study. [J]. J Cardiol, 1998. 32(6). 379-89.
    26. de Smet, B. J., J. van der Zande, Y. J. van der Helm, et al., The atherosclerotic Yucatan animal model to study the arterial response after balloon angioplasty: the natural history of remodeling. [J]. Cardiovasc Res, 1998. 39(1). 224-32.
    27. Mintz, G. S., J. J. Popma, A. D. Pichard, et al., Intravascular Ultrasound Assessment of the Mechanisms and Predictors of Restenosis Following Coronary Angioplasty. [J]. J Invasive Cardiol, 1997. 9(4). 303-314.
    28. Cho, A., L. Mitchell, D. Koopmans, et al., Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. [J]. Circ Res, 1997. 81(3). 328-37.
    29. Guarda, E., L. C. Katwa, S. E. Campbell, et al., Extracellular matrix collagen synthesis and degradation following coronary balloon angioplasty. [J]. J Mol Cell Cardiol, 1996. 28(4). 699-706.
    30. Lafont, A., E. Durand, J. L. Samuel, et al., Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. [J]. Circulation, 1999. 100(10). 1109-15.
    31. Waksman, R., J. C. Rodriguez, K. A. Robinson, et al., Effect of intravascular irradiation on cell proliferation, apoptosis, and vascular remodeling after balloon overstretch injury of porcine coronary arteries. [J]. Circulation, 1997. 96(6). 1944-52.
    32. Yee, K. O. and S. M. Schwartz, Why atherosclerotic vessels narrow: the fibrin hypothesis. [J]. Thromb Haemost, 1999. 82(2). 762-71.
    33. Betriu, A., M. Masotti, A. Serra, et al., Randomized comparison of coronary stent implantation and balloon angioplasty in the treatment of de novo coronary artery lesions (START): a four-year follow-up.??[J]. J Am Coil Cardiol, 1999. 34(5). 1498-506.
    34. Maillard, L., M. Hamon, K. Khalife, et al., A comparison of systematic stenting and conventional balloon angioplasty during primary percutaneous transluminal coronary angioplasty for acute myocardial infarction. STENTIM-2 Investigators. [J]. J Am Coil Cardiol, 2000. 35(7). 1729-36.
    35. Mehran, R., G. S. Mintz, J. J. Popma, et al., Mechanisms and results of balloon angioplasty for the treatment ofin-stent restenosis. [J]. Am J Cardiol, 1996. 78(6). 618-22.
    36. Lowe, H. C., S. N. Oesterle, and L. M. Khachigian, Coronary in-stent restenosis: current status and future strategies. [J]. J Am Coil Cardiol, 2002. 39(2). 183-93.
    37. Lee, S. G., C. W. Lee, S. S. Cheong, et al., Immediate and long-term outcomes of rotational atherectomy versus balloon angioplasty alone for treatment of diffuse in-stent restenosis. [J]. Am J Cardiol, 1998. 82(2). 140-3.
    38. Mahdi, N. A., A. Z. Pathan, L. Harrell, et al., Directional coronary atherectomyfor the treatment of Palmaz-Schatz in-stent restenosis. [J]. Am J Cardiol, 1998. 82(11). 1345-51.
    39. Mehran, R., G. S. Mintz, L. F. Satler, et al., Treatment of in-stent restenosis with excimer laser coronary angioplasty: mechanisms and results compared with PTCA alone. [J]. Circulation, 1997. 96(7). 2183-9.
    40. Smyth Templeton, N., Cationic liposomes as in vivo delivery vehicles. [J].Curr Med Chem, 2003. 10(14). 1279-87.
    41. Nyamekye, I., S. Anglin, J. McEwan, et al., Photodynamic therapy of normal and balloon-injured rat carotid arteries using 5-amino-levulinic acid. [J]. Circulation, 1995. 91 (2). 417-25.
    42. Waksman, R., R. L. White, R. C. Chart, et al., Intracoronary gamma-radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis. [J].Circulation, 2000. 101 (18). 2165-71.
    43. Teirstein, P. S., V. Massullo, S. Jani, et al., Catheter-based radiotherapy to inhibit restenosis after coronary stenting. [J]. N Engl J Med, 1997. 336(24). 1697-703.
    44. Ajani, A. E., H. S. Kim, and R. Waksman, Clinical trials of vascular brachytherapy for in-stent restenosis: update. [J]. Cardiovasc Radiat Med, 2001. 2(2). 107-13.
    45. Raizner, A. E., S. N. Oesterle, R. Waksman, et al., Inhibition of restenosis with beta-emitting radiotherapy: Report of the Proliferation Reduction with Vascular Energy Trial (PREVENT). [J].Circulation, 2000. 102(9). 951-8.
    46. Leon, M. B., D. S. Baim, J. J. Popma, et al., A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators. [J]. N Engl J Med, 1998. 339(23). 1665-71.
    47. Kunishima, T., H. Musha, F. Eto, et al., A randomized trial of aspirin versus cilostazol therapy after successful coronary stent implantation. [J].Clin Ther, 1997. 19(5). 1058-66.
    48. Tsuchikane, E., A. Fukuhara, T. Kobayashi, et al., lmpact ofcilostazol on restenosis after percutaneous coronary balloon angioplasty. [J]. Circulation, 1999. 100(1). 21-6.
    49. Osinski, M. T. and K. Schror, Inhibition of platelet-derived growth factor-induced mitogenesis by phosphodiesterase 3 inhibitors: role of protein kinase A in vascular smooth muscle cell mitogenesis. [J]. Biochem Pharmacol, 2000. 60(3). 381-7.
    50. Savage, M. P., S. Goldberg, A. A. Bove, et al., Effect ofthromboxane A2 blockade on clinical outcome and restenosis after successful coronary angioplasty. Multi-Hospital Eastern Atlantic Restenosis Trial (M-HEAR T Ⅱ). [J]. Circulation, 1995. 92(11). 3194-200.
    51. Gershlick, A. H., D. Spriggins, S. W. Davies, et al., Failure ofepoprostenol (prostacyclin, PGI2) to inhibit platelet aggregation and to prevent restenosis after coronary angioplasty: results of a randomisedplacebo controlled trial [J]. Br Heart J, 1994. 71 (1). 7-15.52. Lineoff, A. M., R. M. Califf, D. J. Molitemo, et al., Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein Ⅱb/Ⅲa receptors. Evaluation of Platelet Ⅱb/Ⅲa Inhibition in Stenting Investigators. [J]. N Engl J Med, 1999. 341(5). 319-27.
    53. Garas, S. M., P. Huber, and N. A. Scott, Overview of therapies for prevention ofrestenosis after coronary interventions. [J]. Pharmacol Ther, 2001. 92(2-3). 165-78.
    54. Lablanche, J. M., E. P. McFadden, N. Meneveau, et al., Effect of nadroparin, a low-molecular-weight heparin, on clinical and angiographic restenosis after coronary balloon angioplasty: the FACT study. Fraxiparine Angioplastie Coronaire Transluminale. [J]. Circulation, 1997. 96(10). 3396-402.
    55. Chert, X., S. Ren, M. G. Ma, et al., Hirulog-like peptide reduces restenosis and expression of tissue factor and transforming growth factor-beta in carotid artery of atherosclerotic rabbits. [J]. Atherosclerosis, 2003. 169(1). 31-40.
    56. ten Berg, J. M., J. C. Kelder, M. J. Suttorp, et al., Effect of coumarins started before coronary angioplasty on acute complications and long-term follow-up: a randomized trial. [J]. Circulation, 2000. 102(4). 386-91.
    57. Hillegass, W. B., E. M. Ohman, J. D. Leimberger, et al., A meta-analysis of randomized trials of calcium antagonists to reduce restenosis after coronary angioplasty. [J]. Am J Cardiol, 1994. 73(12). 835-9.
    58. Jinno, T., M. Iwai, Z. Li, et al., Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. [J]. Hypertension, 2004. 43(2). 263-9.
    59. Bartunek, L., [Endothelins and ischemic heart disease]. [J].Vnitr Lek, 2000. 46(1). 49-53.
    60. Lablanche, J. M., G. Grollier, J. R. Lusson, et al., Effect of the direct nitric oxide donors linsidomine and molsidomine on angiographic restenosis after coronary balloon angioplasty. The ACCORD Study. Angioplastic Coronaire Corvasal Diltiazem. [J].Circulation, 1997. 95(1). 83-9.
    61. Serruys, P. W., W. Klein, J. P. Tijssen, et al., Evaluation ofketanserin in the prevention ofrestenosis after percutaneous transluminal coronary angioplasty. A multicenter randomized double-blind placebo-controlled trial. [J]. Circulation, 1993. 88(4 Pt 1). 1588-601.
    62. Tamai, H., O. Katoh, S. Suzuki, et al., Impact of tranilast on restenosis after coronary angioplasty: tranilast restenosisfollowing angioplasty trial (TREAT). [J]. Am Heart J, 1999. 138(5 Pt 1). 968-75.
    63. Ishiwata, S., S. Verheye, K. A. Robinson, et al., Inhibition of neointima formation by tranilast in pig coronary arteries after balloon angioplasty and stent implantation. [J]. J Am Coll Cardiol, 2000. 35(5). 1331-7.
    64. Walter, D. H., V. Schachinger, M. Elsner, et al., Effect ofstatin therapy on restenosis after coronary stent implantation. [J]. Am J Cardiol, 2000. 85(8). 962-8.
    65. Tardif, J. C., G. Cote, J. Lesperance, et al., Probucol and multivitamins in the prevention ofrestenosis after coronary angioplasty. Multivitamins and Probucol Study Group. [J]. N Engl J Med, 1997. 337(6). 365-72.
    66. Serruys, P. W., D. E Foley, B. Hofling, et al., Carvedilolfor prevention of restenosis after directional coronary atherectomy: final results of the European carvedilol atherectomy restenosis (EUROCARE) trial. [J]. Circulation, 2000. 101(13). 1512-8.
    67. Cairns, J. A., J. Gill, B. Morton, et al., Fish oils and low-molecular-weight heparinfor the reduction of restenosis after percutaneous transluminal coronary angioplasty. The EMPAR Study. [J]. Circulation, 1996. 94(7). 1553-60.
    68. Serruys, P. W., P. de Jaegere, F. Kiemeneij, et al., A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. [J]. N Engl J Med, 1994. 331(8). 489-95.69. George, J., J. Sack, I. Barshack, et al., Inhibition of intimal thickening in the rat carotid artery injury model by a nontoxic Ras inhibitor. [J]. Arterioscler Thromb Vasc Biol, 2004. 24(2). 363-8.
    70. Regar, E., G. Sianos, and P. W. Serruys, Stent development and local drug delivery. [J]. Br Med Bull, 2001. 59. 227-48.
    71. Bolz, A., M. Amon, C. Ozbek, et al., Coating of cardiovascular stents with a semiconductor to improve their hemocompatibility. [J]. Tex Heart Inst J, 1996. 23(2). 162-6.
    72. Klugherz, B. D., C. Song, S. DeFelice, et al., Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. [J]. Hum Gene Ther, 2002. 13(3). 443-54.
    73.钱杰,高润霖,史瑞文,宋来凤,祁哲,李永利,等,金属蛋白涂层支架用于小型猪冠状动脉质粒介导下转基因研究[J].中国循环杂志,1999.14(3).152-154.
    74.袁晋青,高润霖,史瑞文,宋来凤,汤健,李永利,等,在小型猪模型由蛋白涂层金属支架局部转染尿激酶前体基因对冠状动咏再狭窄的影响.[J].中华心血管病杂志,1999.27(5).349-352.
    75.戴军,高润霖,汤健,宋来凤,魏英杰,宋莉,等,蛋白涂层支架携带一氧化氮合酶基因转染小型猪冠状动脉的可行性研究[J].中国循环杂志,2001.16(1).61-63.
    76.钱杰.高润霖,汤健,等,质粒介导下转染血管内皮生长因子基因不能防治小型猪冠状动脉再狭窄[J].中国循环杂志,2002.17(5).389-391.
    77. McKenna, C. J., A. R. Camrud, G. Sangiorgi, et al., Fibrin-film stenting in a porcine coronary injury model: efficacy and safety compared with uncoated stents. [J]. J Am toll Cardiol, 1998. 31(6). 1434-8.
    78. Whelan, D. M., W. J. van der Giessen, S. C. Krabbendam, et al., Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. [J]. Heart, 2000. 83(3). 338-45.
    79.吴隐雄,Johnson L H.C.,Baumbach A,Newby AC,Karsch KK,等,包裹支架转移治疗基因到猪冠状动脉的实验研究.[J].中山大学学报:医学科学版,2003.24(5).471-474,478.
    80. van der Giessen, W. J., A. M. Lincoff, R. S. Schwartz, et al., Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. [J]. Circulation, 1996. 94(7). 1690-7.
    81. De Seheerder, I. K., K. L. Wilczek, E. V. Verbeken, et al., Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. [J]. Atherosclerosis, 1995. 114(1). 105-14.
    82. Tanabe, K., E. Regar, C. H. Lee, et al., Local drug delivery using coated stents: new developments and future perspectives. [J]. Curr Pharm Des, 2004. 10(4). 357-67.
    83. Hardhammar, P. A., H. M. van Beusekom, H. U. Emanuelsson, et al., Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. [J]. Circulation, 1996. 93(3). 423-30.
    84. Serruys, P. W., B. van Hout, H. Bonnier, et al., Randomised comparison of implantation of heparin-coated stents with balloon angioplasty in selected patients with coronary artery disease (Benestent Ⅱ). [J].Lancet, 1998. 352(9129). 673-81.
    85. Christensen, K., R. Larsson, H. Ernanuelsson, et al., Coagulation and complement activation. [J]. Biomaterials, 2001. 22(4). 349-55.
    86. Alan, Y. K., M. H. Jeong, J. W. Kim, et al., Preventive effects of the heparin-coated stent on restenosis in the porcine model. [J]. Catheter Cardiovasc Interv, 1999. 48(3). 324-30.
    87. de Feyter, P. J., The quest for the ideal stent. [J]. Eur Heart J, 2001.22(19). 1766-8.
    88. Alt, E., I. Haehnel, C. Beilharz, et al., Inhibition of neointima formation after experimental coronary artery stenting: a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprost. [J]. Circulation, 2000. 101(12). 1453-8.89. de Scheerder, I., K. Wang, K. Wilczek, et al., Local methylprednisolone inhibition of foreign body response to coated intracoronary stents. [J]. Coron Artery Dis, 1996. 7(2). 161-6.
    90. Serruys, P. W., M. Degertekin, K. Tanabe, et al., Intravascular ultrasound findings in the multicenter, randomized, double-blind RAVEL (RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions) trial. [J]. Circulation, 2002. 106(7). 798-803.
    91. Holmes, D. R., Jr., M. B. Leon, J. W. Moses, et al., Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. [J]. Circulation, 2004. 109(5). 634-40.
    92. Newman, K. D., P. F. Duma, J. W. Owens, et al., Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. [J]. J Clin Invest, 1995. 96(6). 2955-65.
    93. Hong, M. K., G. S. Mintz, C. W. Lee, et al., Paclitaxel coating reduces in-stent intimal hyperplasia in human coronary arteries: a serial volumetric intravascular ultrasound analysis from the Asian Paclitaxel-Eluting Stent Clinical Trial (ASPECT). [J]. Circulation, 2003. 107(4). 517-20.
    94. Tanabe, K., P. W. Serruys, E. Grube, et al., TAXUS Ⅲ Trial: in-stent restenosis treated with stent-based delivery of paclitaxel incorporated in a slow-release polymer formulation. [J]. Circulation, 2003. 107(4). 559-64.
    95. Grube, E., S. Silber, K. E. Hauptmann, et al., TAXUS Ⅰ: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. [J]. Circulation, 2003. 107(1). 38-42.
    96. Liistro, F. and A. Colombo, Late acute thrombosis after paclitaxel eluting stent implantation. [J]. Heart, 2001. 86(3). 262-4.
    97. Chang, M. W., E. Barr, J. Seltzer, et al., Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. [J]. Science, 1995. 267(5197). 518-22.
    98. Solovey, A., Y. Lin, P. Browne, et al., Circulating activated endothelial cells in sickle cell anemia. [J]. N Engl J Med, 1997. 337(22). 1584-90.
    99. Lin, Y., D. J. Weisdorf, A. Solovey, et al., Origins of circulating endothelial cells and endothelial outgrowth from blood. [J]. J Clin Invest, 2000. 105(1). 71-7.
    100. Laitinen, M., J. Hartikainen, M. O. Hiltunen, et al., Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. [J]. Hum Gene Ther, 2000. 11(2). 263-70.
    101. Mann, M. J., A. D. Whittemore, M. C. Donaldson, et al., Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. [J]. Lancet, 1999. 354(9189). 1493-8.
    102. Sharif, F., K. Daly, J. Crowley, et al., Current status of catheter- and stent-based gene therapy. [J]. Cardiovasc Res, 2004. 64(2). 208-16.
    103. Rutanen, J., J. Markkanen, and S. Yla-Herttuala, Gene therapy for restenosis: current status. [J]. Drugs, 2002. 62(11). 1575-85.
    104. Gear-y, R. L., A. W. Clowes, S. Lau, et al., Gene transfer in baboons using prosthetic vascular grafts seeded with retrovirally transduced smooth muscle cells: a model for local and systemic gene therapy [J]. Hum Gene Ther, 1994. 5(10). 1211-6.
    105. Barinaga, M., Gene therapy for clogged arteries passes test inpigs. [J]. Science, 1994. 265(5173). 738.
    106. Ye, Y. W., C. Landau, R. S. Meidell, et al., lmproved bioresorbable microporous intravascular stentsfor??gene therapy. [J]. Asaio J, 1996. 42(5). M823-7.
    107. Klugherz, B. D., EL. Jones, X. Cui, et al., Gene delivery from a DNA controlled-release stent inporcine coronary arteries. [J]. Nat Biotechnol, 2000. 18(11). 1181-4.
    108. Perlstein, I., J. M. Connolly, X. Cui, et al., DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating." mechanisms of enhanced transfection. [J]. Gene Ther, 2003. 10(17). 1420-8.
    109. Takahashi, A., M. Palmer-Opolski, R. C. Smith, et al., Transgene delivery ofplasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. [J].Gene Ther, 2003. 10(17). 1471-8.
    110. Nakayama, Y., K. Ji-Youn, S. Nishi, et al., Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer [J]. J Biomed Mater Res, 2001. 57(4). 559-66.
    111. Wilson, J. M., L. K. Birinyi, R. N. Salomon, et al., Implantation of vascular grafts lined with genetically modified endothelial cells. [J]. Science, 1989. 244(4910). 1344-6.
    112. Flugelman, M. Y., R. Virmani, M. B. Leon, et al., Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. [J]. Circ Res, 1992. 70(2). 348-54.
    113. Panetta, C. J., K. Miyauchi, D. Berry, et al., A tissue-engineered stentfor cell-based vascular gene transfer. [J]. Hum Gene Ther, 2002. 13(3). 433-41.1. Williams, D. O., R. Holubkov, W. Yeh, et al., Percutaneous coronary intervention in the current era compared with 1985-1986: the National Heart, Lung, and Blood Institute Registries. [J].Circulation, 2000. 102(24). 2945-51.
    2. Mehran, R., G. Dangas, A.S. Abizaid, et al., Angiographicpatterns of in-stent restenosis: classification and implications for long-term outcome. [J].Circulation, 1999. 100(18). 1872-8.
    3. Newman, K. D., P. F. Dunn, J. W. Owens, et al., Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. [J].J Clin Invest, 1995.96(6). 2955-65.
    4. Sata, M., H. Perlman, D. A. Muruve, et al., Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. [J].Proc Natl Acad Sci U S A, 1998. 95(3). 1213-7.
    5. Luo, Z., M. Sata, T. Nguyen, et al., Adenovirus-mediated delivery of fas ligand inhibits intimal hyperplasia after balloon injury in immunologically primed animals. [J].Circulation, 1999. 99(14). 1776-9.
    6. Palasis, M., Z. Luo, J.J. Barry, et al., Analysis of adenoviral transport mechanisms in the vessel wall and optimization of gene transfer using local delivery catheters. [J].Hum Gene Ther, 2000. 11(2). 237-46.
    7. Marshall, E., Gene therapy death prompts review of adenovirus vector. [J].Science, 1999. 286(5448). 2244-5.
    8. Gao, X. and L. Huang, Cationic liposome-mediatedgene transfer [J].Gene Ther, 1995.2(10). 710-22.
    9. Zabner, J., A. J. Fasbender, T. Moninger, et al., Cellular and molecular barriers to gene transfer by a cationic lipid [J].J Biol Chem, 1995.270(32). 18997-9007.
    10. Steg, P.G., O. Tahlil, N. Aubailly, et al., Reduction ofrestenosis after angioplasty in an atheromatous rabbit model by suicide gene therapy. [J].Circulation, 1997.96(2). 408-11.
    11. Tsui, L.V., A. Camrud, J. Mondesire, et al., p27-p16 fusion gene inhibits angioplasty-induced neointimal hyperplasia and coronary artery occlusion. [J].Circ Res, 2001.89(4). 323-8.
    12. Klugherz, B. D., P.L. Jones, X. Cui, et al., Gene delivery from a DNA controlled-release stent inporcine coronary arteries. [J].Nat Biotechnol, 2000.18(11). 1181-4.
    13. Walter, D.H., M. Cejna, L. Diaz-Sandoval, et al., Local gene transfer ofphVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. [J].Circulation, 2004. 110(1). 36-45.
    14. Laitinen, M., I. Zachary, G. Breier, et al., VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. [J].Hum Gene Ther, 1997.8(15). 1737-44.
    15. Turunen, M. P., M. O. Hiltunen, M. Ruponen, et al., Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes. [J].Gene Ther, 1999.6(1). 6-11.
    16. Laitinen, M., J. Hartikainen, M. O. Hiltunen, et al., Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. [J].Hum Gene Ther, 2000. 11(2). 263-70.
    17. Numaguchi, Y., K. Okumura, M. Harada, et al., Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. [J].Cardiovasc Res, 2004.61(1). 177-85.
    18. Smyth Templeton, N., Cationic liposomes as in vivo delivery vehicles. [J].Curr Med Chem, 2003.??10(14). 1279-87.
    19. Zack, D.J., M. Stempniak, A.L. Wong, et al., Mechanisms of cellular penetration and nuclear localization of an anti-double strand DNA autoantibody. [J].J Immunol, 1996. 157(5). 2082-8.
    20. Yanase, K., R.M. Smith, A. Puccetti, et al., Receptor-mediated cellular entry of nuclear localizing anti-DNA antibodies via myosin I. [J].J Clin Invest, 1997. 100(1). 25-31.
    21. Avrameas, A., L. Gasmi, and G. Buttin, DNA and heparin alter the internalization process of anti-DNA monoclonal antibodies according to patterns typical of both the charged molecule and the antibody. [J].J Autoimmun, 2001.16(4). 383-91.
    22. Wheeler, V.C. and C. Coutelle, Nondegradative in vitro labeling of plasmid DNA. [J].Anal Biochem, 1995. 225(2). 374-6.
    23. Fischman, D.L., M.B. Leon, D.S. Baim, et al., A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. [J].N Engl J Med, 1994. 331(8). 496-501.
    24. Serruys, P.W., P. de Jaegere, F. Kiemeneij, et al., A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. [J].N Engl J Med, 1994.331(8). 489-95.
    25. Serruys, P.W., D.P. Foley, M.J. Suttorp, et al., A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions: final results of the additional value of NIR stents for treatment of long coronary lesions (ADVANCE) study. [J].J Am Coll Cardiol, 2002. 39(3). 393-9.
    26. van den Brand, M.J., B.J. Rensing, M. A. Morel, et al., The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. [J].J Am Coll Cardiol, 2002.39(4). 559-64.
    27. E1-Omar, M. M., G. Dangas, I. Iakovou, et al., Update on In-stent Restenosis. [J].Curr Interv Cardiol Rep, 2001.3(4). 296-305.
    28. Mann, M. J., A. D. Whittemore, M. C. Donaldson, et al., Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. [J].Lancet, 1999. 354(9189). 1493-8.
    29. Sharif, F., K. Daly, J. Crowley, et al., Current status of catheter- and stent-based gene therapy. [J].Cardiovasc Res, 2004.64(2). 208-16.
    30. Hermentin, P., R. Doenges, U. Franssen, et al., Hinge-thiol coupling of monoclonal antibody to silanized iron oxide particles and evaluation of magnetic cell depletion. [J].Bioconjug Chem, 1990.1(6). 411-8.
    31. Strehblow, C., M. Schuster, T. Moritz, et al., Monoclonal antibody-polyethyleneimine conjugates targeting Her-2/neu or CD90 allow cell type-specific nonviral gene delivery. [J].J Control Release, 2005. 102(3). 737-47.
    32. Thomas, A. C. and J. H. Campbell, Conjugation of an antibody to cross-linked fibrin for targeted delivery of anti-restenotic drugs. [J].J Control Release, 2004. 100(3). 357-77.
    33. Hussain, A. A., R. Awad, P. A. Crooks, et al., Chloramine-T in radiolabeling techniques. I. Kinetics and mechanism of the reaction between chloramine-T and amino acids. [J].Anal Biochem, 1993. 214(2). 495-9.
    34. Takahashi, A., M. Palmer-Opolski, R. C. Smith, et al., Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. [J].Gene Ther, 2003. 10(17). 1471-8.
    35. Mei, L., X. Jin, C. Song, et al., Immobilization of gene vectors on polyurethane surfaces using a??monoclonal antibody for localized gene delivery. [J].J Gene Med, 2006.8(6). 690-8.
    36. van der Giessen, W. J., A. M. Lincoff,R.S. Schwartz, et al., Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. [J].Circulation, 1996.94(7). 1690-7.
    37. Shimano, H., J. Ohsuga, M. Shimada, et al., Inhibition of diet-induced atheroma formation in transgenic mice expressing apolipoprotein E in the arterial wall. [J].J Clin Invest, 1995.95(2). 469-76.
    38. Chang, M. W., E. Barr, M. M. Lu, et al., Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. [J].J Clin Invest, 1995. 96(5). 2260-8.
    39. Chang, M. W., E. Barr, J. Seltzer, et al., Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. [J].Science, 1995.267(5197). 518-22.
    40. Mann, M. J., G. H. Gibbons, R. S. Kernoff, et al., Genetic engineering of vein grafts resistant to atherosclerosis. [J].Proc Natl Acad Sci U S A, 1995.92(10). 4502-6.
    41. Wang, C., L. Chao, and J. Chao, Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. [J].J Clin Invest, 1995.95(4). 1710-6.
    42. Janssens, S. P., K.D. Bloch, Z. Nong, et al., Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. [J].J Clin Invest, 1996. 98(2). 317-24.
    43. Rutanen, J., J. Markkanen, and S. Yla-Herttuala, Gene therapy for restenosis: current status. [J].Drugs, 2002.62(11). 1575-85.
    44. Steg, P. G., L.J. Feldman, J.Y. Scoazec, et al., Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. [J].Circulation, 1994.90(4). 1648-56.
    45. Cohen-Sacks, H., V. Elazar, J. Gao, et al., Delivery and expression of pDNA embedded in collagen matrices. [J].J Control Release, 2004.95(2). 309-20.
    46. Klugherz, B. D., C. Song, S. DeFelice, et al., Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. [J].Hum Gene Ther, 2002. 13(3). 443-54.
    47. Perlstein, I., J.M. Connolly, X. Cui, et al., DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. [J].Gene Ther, 2003.10(17). 1420-8.
    48. Shears, L.L., 2nd, M. R. Kibbe, A. D. Murdock, et al., Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. [J].J Am Coll Surg, 1998. 187(3). 295-306.
    49. Wang, K., P. D. Kessler, Z. Zhou, et al., Local adenoviral-mediated inducible nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model. [J].Mol Ther, 2003.7(5 Pt 1). 597-603.
    50. Dulak, J., A. Jozkowicz, A. Dembinska-Kiec, et al., Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. [J].Arterioscler Thromb Vasc Biol, 2000. 20(3). 659-66.
    51. Burton, D.Y., C. Song, I. Fishbein, et al., The incorporation of an ion channel gene mutation associated with the long QT syndrome (Q9E-hMiRP1) in a plasmid vector for site-specific arrhythmia gene therapy: in vitro and in vivo feasibility studies. [J].Hum Gene Ther, 2003.14(9). 907-22.1. Williams, D.O., R. Holubkov, W. Yeh, et al., Percutaneous coronary intervention in the current era compared with 1985-1986: the National Heart, Lung, and Blood Institute Registries. [J].Circulation, 2000. 102(24). 2945-51.
    2. Mehran, R., G. Dangas, A. S. Abizaid, et al., Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. [J].Circulation, 1999. 1000(18). 1872-8.
    3. Onishi, H. and Y. Machida, Biodegradation and distribution of water-soluble chitosan in mice. [J].Biomaterials, 1999. 20(2). 175-82.
    4. Rao, S.B. and C. P. Sharma, Use of chitosan as a biomaterial: studies on its safety and hemostatic potential [J].J Biomed Mater Res, 1997.34(1). 21-8.
    5. Aspden, T. J., J.D. Mason, N. S. Jones, et al., Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. [J].J Pharm Sci, 1997.86(4). 509-13.
    6. Roy, K., H.Q. Mao, S.K. Huang, et al., Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a routine model of peanut allergy. [J].Nat Med, 1999. 5(4). 387-91.
    7. Leong, K.W., H.Q. Mao, V.L. Truong-Le, et al., DNA-polycation nanospheres as non-viral gene delivery vehicles. [J].J Control Release, 1998.53(1-3). 183-93.
    8. MacLaughlin, F.C., R.J. Mumper, J. Wang, et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. [J].J Control Release, 1998.56(1-3). 259-72.
    9. Richardson, S.C., H.V. Kolbe, and R. Duncan, Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. [J].Int J Pharm, 1999. 178(2). 231-43.
    10. Liu, W. G., X. Zhang, S. J. Sun, et al., N-alkylated chitosan as a potential nonviral vector for gene transfection. [J].Bioconjug Chem, 2003.14(4). 782-9.
    11. Sharif, F., K. Daly, J. Crowley, et al., Current status of catheter- and stent-based gene therapy. [J].Cardiovasc Res, 2004.64(2). 208-16.
    12. Erbacher, P., S. Zou, T. Bettinger, et al., Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. [J].Pharm Res, 1998.15(9). 1332-9.
    13. Sato, T., T. Ishii, and Y. Okahata, In vitro gene delivery mediated by chitosan, effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. [J].Biomaterials, 2001.22(15). 2075-80.
    14. Kiang, T., J. Wen, H. W. Lim, et al., The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. [J].Biomaterials, 2004.25(22). 5293-301.
    15. Li, F., W.G. Liu, and K.D. Yao, Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour. [J].Biomaterials, 2002.23(2). 343-7.
    16. Klugherz, B. D., P.L. Jones, X. Cui, et al., Gene delivery from a DNA controlled-release stent inporcine coronary arteries. [J].Nat Biotechnol, 2000. 18(11). 1181-4.
    17. Shears, L.L., 2nd, M. R. Kibbe, A. D. Murdock, et al., Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. [J].J Am Coll Surg, 1998. 187(3). 295-306.
    18. Wang, K., P. D. Kessler, Z. Zhou, et al., Local adenoviral-mediated inducible nitric oxide synthase gene??transfer inhibits neointimal formation in the porcine coronary stented model [J].Mol Ther, 2003. 7(5 Pt 1). 597-603.
    19. Dulak, J., A. Jozkowicz, A. Dembinska-Kiec, et al., Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. [J].Arterioscler Thromb Vasc Biol, 2000. 20(3). 659-66.
    20. Walter, D.H., M. Cejna, L. Diaz-Sandoval, et al., Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. [J].Circulation, 2004. 110(1). 36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700