人胰腺癌基因治疗的实验性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是人类恶性肿瘤中诊断和治疗均很困难的一种肿瘤。由于确诊时大多数病例已是晚期,因而手术切除机率极低,其它非手术治疗效果亦差,故胰腺癌预后差,死亡率高。本研究的目的是从基因水平研究胰腺癌的实验性治疗,为临床上人胰腺癌的基因治疗提供理论和实验依据。
     我们的研究分两部分:1.构建能表达反义癌基因(c-myc和ki-ras)的重组逆转录病毒载体,观察这些重组载体对人胰癌细胞生长的抑制作用和恶性表型的逆转作用;2.构建能表达“自杀”基因HSV-TK的重组逆转录病毒载体介导的药物致敏对人胰腺癌细胞的杀伤作用。
     1.重组逆转录病毒载体
     (1)表达反义c-myc的重组逆转录病毒载体:将c-myc基因的第3外显子及其旁侧序列约长1.35Kb的片段正向和反向插入逆转录病毒载体pXT1,连接后构成2个重组载体pXT1Sm(正义)和pXT1Am(反义)。经PA317细胞包装和转染PC-2细胞,G418筛选后获转化细胞系PC-2/S-c-myc(正义)和PC-2/AS-c-myc(反义)。
     (2)表达反义Ki-ras的重组逆转录病毒载体:将Ki-ras第4B外显子及其旁侧序列2.4kb长的片段插入逆转录病毒载体pBabe-puro,经连接后构成两个重组载体pBabe/s-Ki-ras(正义)和pBabe/As-Ki-ras(反义)。经PA317细胞包装和转染PC-2细胞,puromycin筛选后获转化细胞系PC-2/S-Ki-ras(正义)和PC-2/AS-Ki-ras(反义)。
     (3)表达HSV-TK基因的重组逆转录病毒载体:将HSV-TK基因插入逆转录病毒载体后构成重组载体NTK,经PA317细胞包装后转染PC-2细胞,形成转化细胞系PC-2/NTK。
Human pancreatic carcinoma (HPC) is one of the malignant tumor which are very difficult in both diagnosis and treatment. Because of the lack of early detecting method, most of the HPC cases diagnosed are in advanced stage of the disease. Tumor resectability is therefore very low, and other non-operative approaches are also not encouraging. The prognosis of HPC is very poor and the mortality is very high. The aim of our researches was to investigate the gene therapy of HPC experimentally, and try to pave the theoretical and practical ground for the clinical gene therapy of HPC.
    Our studies included two parts: A). Constructing the recombinant retroviral vectors expressing antisense c-myc or antisense Ki-ras, and observing the effects of recombinant retroviral vectors on retardation of HPC cell growth in vitro and reversion of malignant phenotype of HPC. B). Constructing a recombinant retroviral vector expressing the "suicide" gene (HSV-TK) , and examining the killing effect of the HSV- TK gene on HPC cells ( tumor cells "suicide").
    1. Construction of the recombinant retroviral vectors
    (1).A 1.35Kb c-myc fragment containing the third exon and adjoining flanking intron sequences was inserted into the retroviral vector pXT1 in both sense and antisense orientation, the recombinant vectors were defined as pXT1Sm (sense) and pXTlAm (antisense).The recombinant vector DNA was introduced into PA317 amphotropic packaging cells. The HPC cell line (PC-2 )
引文
1. Pellegata NS.et al. K-ras and p53 gene mutation in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions. Cancer Res, 1994; 54: 1556.
    
    2. Ledwith BJ. et al. Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene.Mol Cell Biol, 1990; 10: 1545.
    
    3. Bishop JM.et al. Cellular oncogenes and retroviruses. Ann Rev Biochem, 1983; 52: 301.
    
    4. Pitot HC. Oncogenes and human neoplasia. Clin Lab Med. 1986;6:167.
    
    5.Albini A.et al. Tumor cell invasion inhibited by TIMP -2.J Natl Cancer Inst, 1991; 83: 775.
    
    6. Mary EM.et al. Tumor specific inhibition of lymphoma growth by an antisense OND.The Lancent, 1990; 335: 808.
    
    7. Salmons B.and Walter HG. Targeting of retroviral vectors for gene therapy. Hum Gene Ther, 1993; 4: 129.
    
    8. Mooltan FL.Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther, 1994; 1: 279.
    
    9. Moolten FL.Mosaicism induced by gene insertion as a means of improving chemotherapeutic selectivity. Crit Rev Immunol. 1990; 10:203.
    
    10. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res, 1986; 46: 5276.
    
    11. In M13 cloning and sequencing system. A laboratory manual, pp7.
    
    12. Sambrook J. Fritsch EF.Maniatis T. In: Molecular cloning. A laboratory manual (2nd edition), 1988.
    13.Zhen LD.and Richard TS.A simple and high yieldmethod for recoving DNA from agarose gels. Biotechniques,1993; 14: 897.
    14. Chomzynski P. Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate phenol chloroform extraction. Anal Biochem, 1987; 162:156.
    15.路桂荣等,c-Ha-ras反义RNA对细胞恶性表型逆转作用的研究.中国科学(B),1991;1:67.
    16. Lamemmli UK. Cleavage of structure protein during the assembly of the head of bacteriophage T4. Nature, 1970; 227: 680.
    17.鄞灿荣.免疫组织化学实验新技术及其应用.北京科学技术出版社,1994,pp102.
    18. Jakoby WB, Pastan IH. In: Meth Enzy. 8th, Cell Culture,1989.
    19. Kotani K. Newton PB. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther, 1994; 5: 19.
    20. Palmer TD, Hock RA. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase deficient human. Proc Natl Acad Sci USA, 1987; 84: 1055.
    21.颚征.组织培养技术.人民卫生出版社,1990.
    22. Procwicnk EV. et al. c-myc antisense transcripts accelerate differentiation and inhibit G1 progression in murine erythroleukemia cells. Mol Cell Biol, 1989; 8: 3683.
    23. Park JG. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazoliumbased colorimetric assay. Cancer Res, 1987; 47: 5875.
    24. Yoshinori H. et al. Gene transfer of HSV-Ⅰ TK gene as a drug sensitivity gene into human lung cancer cell lines using retrovirual vectors. Am J Respir Cell Mol Biol, 1993; 8: 655.25. Freeman SM. et al. The "bystander effect": Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res, 1993; 53: 5274.
    26. Moolten F. and Well JM. Curability of tumors bearing HSV-TK genes transferred by retroviral vectors. J Natl Cancer Inst, 1990; 82: 297.
    27. Wolff JA. Robert W.Direct gene transfer into mouse muscle in rive. Science, 1990; 247: 1465.
    28. Culver KW. Ram Z. In rive gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 1992; 256: 1550.
    29. Rosolen A. et al. Antisense inhibition of single copy N-myc expression result in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line. Cancer Res, 1990; 50: 6316.
    30. Holt JT. et al. An oligomer complimentary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol, 1988; 8: 963.
    31. Mukhopadhyay T. et al. Specific inhibition of lung cancer cells by antisense RNA. Cancer Res. 1991;51: 1740.
    32. Chen Jie et al. Two new human exocrine pancreatic adenocarcinoma cell lines in vitro and in vivo. Chinese Med J, 1990; 103: 396.
    33.李德春,刘彤华.胰腺癌癌基因的表达和点突变.中华病理学杂志,1992;21:152.
    34.刘彤华,李德春,王志永.反义寡脱氧核苷酸对人胰腺癌细胞系细胞生长的抑制作用.中华病理学杂志。1993:22:25.
    35. Morononi MC. et al. EGFR antisense RNA blocks expression of the epidermal growth factor receptor and supresses the transforming phenotype of a human carcinoma cell line. J Biol Chem. 1992; 267: 2714.
    36. Melton DA. et al. Injected antisense RNAs specifically block messenger RNA translation in rive.??Proc Natl Acad Sci USA, 1985; 82: 144.
    37. Ye Xin, et al. Retrovirus mediated transfer of antisense human c-mye gene into human esophageal cancer cells suppressed cell proliferation and malignancy. Science In China (B), 1992; 35: 76.
    38.黄显明等,c-ets-2,c-myc,N-ras三个癌基因联合反义RNA对肝癌细胞恶性表型的逆转.中华肿瘤杂志,1994;16:243.
    39. Emerman M.Temin HM. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell, 1984; 39: 459.
    40. Ceplo CL. et al. Construction and application of a highly transmissible murine retrovirus shuttle vector. Cell, 1984; 37: 1053.
    41. Tomizawa J. et al. Control of Co1E1 plasmid replication:Binding of RNA Ⅰ to RNA Ⅱ and inhibition of primer formation. Cell, 1986; 47: 89.
    42. Wong EM. et al. Alternative conformation of the Co1E1 replication primer modulate its interaction with RNA Ⅰ. Cell, 1985; 42: 959.
    43. Okamoto K. et al. Mechanism for the autogenous control of the crp operon:Transcription inhibition by a divergent RNA transcript. Proc Natl Acad Sci USA, 1986; 83: 5000.
    44. Kumar CC. et al. Plasmid pT181 replication is regulated by two counter transcripts. Proc Nat1 Aead Sci USA, 1985; 82: 638.
    45. Mereola D. et al. Analysis of a transformed cell line using antisense e-los RNA. Gene, 1988; 72: 253.
    46. Mary EM. et al. Tumor-specific inhibition of lymphoma growth by an antisense OND. The Lancent, 1990; 335: 808.
    47. John CR. et al. BCL2-mediated tumorigenicity of a human T-lymphoid cell line: Synergy with MYC and inhibition by BCL2 antisense. Proc Natl Acad Sci USA,??1990; 87: 3665.
    
    48. Rivera RT.et al. Journal of Cell Biology, 1989; 108: 2423.
    
    49. Colomer R.et al. Proceeding of The American Association Cancer Research. 1990; 31: 303.
    50.Kamano H.et al. Effects of the antisense v-myb expression on K562 human leukemia cell proliferation and differentiation. Leuk Res, 1990; 14: 831.
    
    51. Brian JM.et al. Antisense c-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene.Mol Cell Biol, 1990; 10: 1545.
    
    52. Wolff JA.et al. Direct gene transfer into mouse muscle in vivo. Science, 1990; 247: 1465.
    
    53. Michael LS.et al. In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther, 1994; 5: 837.
    
    54. Nabel EG. et al. Direct transfer of transforming growth factor β 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA, 1993; 90: 10759.
    
    55. Nabel GJ. et al. Immunotherapy for cancer by direct gene transfer into tumor (Clinical protocol). Hum Gene Ther, 1994; 5: 57.
    
    56. Georges RN.et al. Prevention of orthotropic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res, 1993; 53: 1743.
    
    57.Moolten FL. Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther, 1994; 1: 279.
    
    58. Faulds D.Heal RC. Ganciclovir. Drugs, 1990; 39: 596.
    
    59.Ezzeddine ZD.et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of HSV-TK gene. New Biologist. 1991; 3: 608.
    
    60. Culver KW.et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 1992; 256: 1550.
    61.Takamiya Y. et al. An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg, 1993; 79: 104.
    
    62. Mineta T.et al. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase- deficient HSV mutant. Cancer Res, 1994; 54: 3963.
    
    63. Tadashi O.et al. Gene therapy for CEA-producing human lung cancer cells by cell type-specific expression of HSV-TK gene. Cancer Res, 1994; 54: 5258.
    
    64. Yoshinori H. et al. Gene transfer of HSV-TK gene as a drug sensitivity gene into human lung cancer cell lines using retroviral vectors. Am J Respir Cell Mol Biol, 1993; 8: 655.
    
    65. Huber BE.et al. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: An innovative approach for cancer therapy. Proc Natl Acad Sci USA, 1993; 90: 7024.
    
    67. Ram Z.et al. Intrathecal gene therapy for malignat leptomeningeal neoplasia. Cancer Res, 1994; 54: 2141.
    
    68. Vile RG. et al. Use of tissue-specific expression of the HSV-TK gene to inhibit growth of established murine melanoma following direct intratumoral injection of DNA. Cancer Res, 1993; 53: 83.
    
    69.Moolten FL.et al. Mutiple transduction as a means of preserving GCV chemosensitivitty in sarcoma cells carring retrovirally transduced HSV-TK genes. Cancer Lett, 1992; 64: 257.
    
    70.Moolten FL.et al. Curability of tumors bearing HSV- TK genes transferred by retroviral vectors. J Natl Cancer Inst, 1990; 82: 297.
    71.Eastham JA.et al. Prostate cancer gene therapy: HSV-
    TK gene transduction followed by ganciclovir. Cancer Gene Ther, 1994; 1: 327.
    72. Kolberg R. Gene therapists test puzzling "bystander effect". [News].NIH Res, 1992;4:68.
    73. Moolten FL. Tumor chemosensitivity conferred by inserted HSV-TK genes: Paradigm for a prospective cancer control strategy. Cancer Res, 1986; 46: 5276.
    74. Freeman SM. et al. The "bystander effect": Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res, 1993; 53:5274
    75. Bi WL. et al. In vivo evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther, 1993; 4: 725.
    76. Smythe WR. et al. Use of recombinant adenovirus to transfer HSV-TK gene to thoracic neoplasms: An effective in vitro drug sensitization system. Cancer Res, 1994; 54: 2055.
    77. Freeman SM. et al. Treatment of ovarian cancer using HSV-TK gene modified vaccine-regulatory issues. Hum Gene Ther. 1992: 3: 342.
    78.李和伟,王志永,刘彤华.一种改进的质粒DNA提取及回收方法.基础医学与临床.1995;15:77.
    79. Kotani H. Newton PB. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther, 1994; 5: 19.
    80.李和伟,王志永,刘彤华.一种提高逆转录病毒滴度的方法.基础医学与临床.1995(印刷中).1. Adernson WF. Prospects for human gene therapy. Science, 1984; 22 6:401.
    
    2. Joyner A.Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature, 1983; 305:556.
    
    3. Williams DA. et al. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature, 1984; 310: 476.
    
    4. Konn DB.et al. Increased cytotoxity and CD16 expression in long-term, IL-2-activated human peripheral blood mononuclear cells. Blood Cells, 1987; 13: 117.
    
    5. Rosenberg SA,Aebersold P, Coonet K. Gene transfer into human immunotherapy of patients with advanced melanoma, using TIL modified by retroviral gene transduction. N Engl J Med, 1990; 323: 570.
    
    6. Karp JE.and Samuel B. New directions in molecular medicine. Cancer Res, 1994; 54: 653.
    
    7. Capecci MR. High efficiency transformation by direct microinjection of DNA into culture cells. Cell, 1980; 22: 479.
    
    8. Potter H. Electroporation in biology: method, applications, and instrumentation. Anal Biochem, 1988; 174: 361.
    
    9. Klein TM, Harper EC. Stable genetic transformation of intact nicotiana cells by particle bombardment process. Proc Natl Acad Sci, USA, 1988; 85: 8502.
    
    10. Granham FL.Vander EA.A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 1973; 52:456.
    
    11. Feigner PL,Ringold GM. Cationic liposome-mediated transfection. Nature, 1989; 337: 387.
    12.Loata MA, et al. High level transient expression of a chlorampheniol acetyl transferase gene by DEAE- Dextran mediated DNA transfection with a dimethl sulfoxide or glycerol shock treatment. Nucl Acids Res, 1984; 12: 5707.
    
    13. Brian S, Walter HG. Targeting of retroviral vectors for gene therapy. Hum Gene Ther, 1993; 4: 129.
    
    14. Weiss RA. The molecular biology of RNA tumor viruses. Cold Spring Harber Lab. Cold Spring Harber, New York, 1982.
    
    15. Gibcoa E. Experimental manipulation of gene expression. Stony Brook. New York, 1983.
    
    16. Kinnon D. Gene therapy for cancer. Eur J Cancer. 1990; 26:638.
    
    17. Ceplo CC. et al. Construction and application of a highly transmissible murine retrovirus shuttle vector. Cell, 1984; 37: 1053.
    
    18. Gilbcoa E. Transfer and expression of cloned genes using retroviral vectors. Biotechniques, 1986; 4:504.
    
    19. Miller AD,et al. Infections and selectable retrovirus containing an inducible rate growth hormone minigene. Science, 1984; 225: 365.
    
    20.Emerman M,Temin HM. Genes with promoters in retrovirus vector scan be independently suppressed by an epigenetic mechanism. Cell, 1984; 39: 459
    21.Levine F. Efficient gene expression in mammalian cells from adicistronic transcriptional unit in an improved retroviral vector. Gene, 1991; 108: 167.
    22.Emami S. Transfection of fetal rat intestinal epithelial cells by viral oncogene: Establishment and characterization of the EIA immortalized SLC-11 cell line.Proc Natl Acad Sci USA, 1989; 8 6:3194.
    23. Mann R.Walter ED. Construction of a retrovirus packaging mutant and its use to produce help-free
    defective retrovirus. Cell, 1983; 33: 153.
    
    24. Cone RD. Mulligan AC. High-efficiency gene transfer into mammalian cells generation of help-free recombinant retrovirus with broad mammalian host rang. Proc Natl Acad Sci USA, 1984; 81: 6349.
    
    25. Miller AD. et al. Generation of help-free amphotropic retroviruses that transduce a dominant acting methotrexate-resistant dehydrofolatereductase gene. Mol Cell Biol. 1985; 5: 431.
    
    26. Miller AD. et al. Factors involved in production of help-free retrovirus vectors. Somastic Cell Mol Genet, 1986; 12: 175.
    
    27. Muenchau DD.et al. Analysis of retrovirus packaging lines for generation of replication competent virus. Virology, 1990; 176: 262.
    
    28. Miller AD,et al. Redesign of retrovirus packaging cell lines to avoid recombination leading to help virus production. Mol Cell Biol, 1986; 6: 2895.
    29.Bosselman RA.Hsn RV,Nicolson M,et al. Replication- defective chimeric helper provirus and factors affecting generation of competent virus. Mol Cell Biol, 1987; 7: 1797.
    
    30.Danos D, Mulligan RC. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA, 1988; 85: 6460.
    
    31. Miller AD, Jolly DJ, Friedmann K, et al. Construction of safety amphotropic packaging cell line. J Virology, 1991; 65: 2220.
    
    32. Miller, AD. et al. Transmissible retrovirus expressing human hypoxanthine phosphoribosyl transferase in HPRT. Proc Natl Acad Sci USA, 1983; 80: 4709.
    
    33.Bodine DM. et al. Development of high titerretrovirus producer cell line capable of gene transfer into rhusus monkey hematopoietic stem cells. Proc Natl Acad Sci USA, 1990; 87: 3788.
    
    34. Miller AD. Human gene therapy comes of age. Nature 1992; 357: 455.
    
    35. John E.et al. Recombinant adenovirus is an efficient vector for in vivo gene transfer and can be preferentially directed at vascular endothelium or smooth muscle cells. Circulation, 1992; 86: 473
    
    36. Horxitz MS. in virology, Fieds BN and Knipe DM. Eds pp1679, 1990.
    
    37. Cao L,et al. Direct in vivo gene transfer to airway epithelium employing adenovirus-polylysine-DNA complexes. Hum Gene Ther, 199 3; 4:17.
    
    38. Crystal RG. Gene therapy of the respiratory manifestation of cystic fibrosis using a replication deficient recombinant adenovirus to transfer the normal human CFTR cDNA to the airway epithelium. National Institutes of Health. Bethesda MD, US Government Printing Office, 1992.
    
    39. Joseph Z. et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell, 1993; 75: 207.
    
    40.Rosenfeld MA. et al. In vivo transfer of the human CFTR gene to the airway epithelium. Cell, 1992; 68: 143.
    
    41.Kershen LA. et al. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. Clin Invest, 199 3; 92: 381.
    
    42. Strans SZ. in the Adenovirus, Ginsberg HS Ed. New York.pp451, 1984.
    
    43.Haj-Ahmad Y and Grahan GL. J Virol 1980; 57:276.
    
    44. Berns KI. et al. Seperation of two types of adenoassociated virus particles containing complemetary
    polynucleotide chains. Virology, 1972; 9: 394.
    
    45. Rose JA. et al. Evidence for single stranded adeno- associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA, 1969; 64: 863.
    
    46.Chassan S. et al. Molecular biology and therapy of disease. Am J Surg, 1993; 165:720.
    
    47. Mcchesney MB. et al. Suppression of T Lymphocyte function by measles virus is due to cell cycle arrest in G1. J Immunol, 1988; 140: 1269.
    
    48.Kotin RM. et al: Site-specific integration by AAV. Proc Natl Acad Sci USA, 1990; 87: 2211.
    
    49. Muro-cacho CA. et al. Gene transfer in human lymphocytes using a vector based on AAV. J Immunother, 1992; 11:231.
    
    50. Gelb LD. Varicella-zoster virus, in Virology, pp. 591 , Raven Press, New York, 1985.
    
    51. Miller G. Epstein-Barr virus in Virology, pp563, Raven Press, New York, 1985.
    
    52. Rawls WE, Herpes simplex virus, in Virology pp.527, Raven Press, New York 1985.
    
    53. Stevens JG. Human herpesviruses: a consideration of the latent state. Micobiol Rev, 1989a; 53:318.
    
    54. Roizman B. et al. Herpes Viruses and their replication, in Feild BN Virology, 2nd Ed, Raven Press, New York. pp. 1795, 1990.
    
    55. Ugolimi G et al. Transneuronal transfer of herpes virus from peripheral nerves to cortex and brain stem. Science, 1989; 243: 89.
    
    56. Stevens JG. et al. RNA complementary to a herpesvirus alpha gene mRNA is prominant in latantly infected neurons. Science, 1987; 235: 1056.
    
    57. Longnecker R, et al. Herpes simplex viruses as vector: properties of a prototype vaccine strain suitable foruse as a vector. In viral vectors. Cold Spring Harbor Lab Press, New York. pp. 68, 1988.
    
    58. Geller AI. et al. An efficient deletion mutant packaging system for applications to human gene therapy and neuronal physiolog y. Proc Natl Acad Sci USA, 1990; 87:8950.
    
    59. Geller AI. et al. A defective HSV-I vector expresses E.coli beta-Gal in cultured rat peripheral neurons. Science, 1988; 241: 166 7.
    
    60.Desrosiers RC. et al. Sythesis of bovine growth hormone in primates by using a herpes virus vector. Mol Cell Biol, 1985; 5: 2796.
    
    61. Jenner E. In classics of medicine and surgery, C.N. B. Camac, Ed. New York. pp213, 1959.
    
    62. Moss B. Vaccinia virus: a tool for research and vaccine development. Science, 1991; 252: 1662.
    
    63. Smith GL. and Moss B. Infections poxvirus vectors have capacity for at least 25000 base pairs of foreign DNA. Gene, 1983; 25: 21.
    
    64. Falkner FG. and Moss B. J virol, 1988; 62: 1849.
    
    65. Chakrabarti K. Brechling B.Moss B. Vaccinia Virus expression vector: coexpression of β -gal provides visual screening of recombinant virus plaques. Mol Cell Biol, 1985; 5: 3403.
    
    66. Cocran MA. et al. Eukaryotic transient expression system dependent on transcription factors and regulatory DNA sequences of vaccinia virus. Proc Natl Acad Sci USA, 1985; 82: 19.
    
    67. Walker BD. et al. HIV-specific cytotoxic T lymphocytes insert a positive individuals. Nature, 1987; 328:345.
    
    68. Koening S. et al. Binding region for human HIV and epitopes for HIV-blocking monocloned antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc
    Natl Acad Sci USA, 1988; 85: 9273.
    
    69. Wu GY. Receptor-mediated gene delivery and expression in vivo. J Biol Chem, 1988; 263: 14162.
    
    70. Wu GY. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 1987; 262: 4429.
    
    71. Wu GY. et al. Receptor-mediated gene delivery in vivo. J Biol Chem, 1991; 226: 14338.
    
    72. Wolff JA. et al. Direct gene transfer into mouse muscle in vivo. Science, 1990; 247: 1465.
    
    73. Wolff JA. et al. Biotechniques, 1991; 247: 1465.
    74.Barr E. and Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science, 1991; 254: 1507.
    
    75. Dhawam J, et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science, 1991; 254: 1509.
    
    76. Yang NS,et al. In vivo and in vitro gene transfer to mammalian somastic cells by particle bombardment. Proc Natl Acad Sci USA, 1990; 87: 9568.
    
    77. Neumann EM. et al. Gene transfer into mouse lyphoma cells by electroporation in high electric fields. EMBO J, 1982; 1:841.
    
    78. Boggs SS. et al. Efficient transformation and frequent single-site, single-copy insertion of DNA can be obtained in mouse erythroleukemia cells transformed by electroporation. Exp Hematol, 1986; 14: 988.
    
    79. Nabel EG. et al. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science, 1990; 249: 1285.
    
    80. Thomas AH, et al. Localization and induced expression of fusion genes in the rat lung. Am J Respir Cell Mol Biol. 1991; 4: 206.
    81. Chang WG et al. High-frequency transfection of CHO cells using polybrene. Somastic Cell Mol Genet, 1986; 12: 273.
    
    82. Almoguera C, Shibata D,Forresteer K, et al. Most human carcinoma of the exocrine pancreas contain mutant K-ras genes. Cell, 1988; 53: 549.
    
    83.Yokota J, Tsunetsugu Y,Battifola H, et al. Alteration of myc,myb and ras proto-oncogenes in cancers are frequent and show clinical correlation. Science, 1986; 231: 861.
    
    84. Krontins TG, Cooper GM. Transforming activity of human tumor DNAs. Proc Natl Acad Sci USA, 1981; 78:1181.
    
    85. Simons RW. Naturally occurring antisense RNA control: A brief review. Gene, 1988; 72: 35.
    
    86.Takayama KM, Hanba-Herin N, Inouge M. Overproduction of anantisense RNA containing the oop RNA sequence of bacteriophage lamda induced clear plaque formation. MGG, 1987; 210: 184.
    
    87. Liao SM, Wu RH, Chiang CH. Control of gene expression in bacter-iophage P22 by a small antisense RNA I, Characterization in vitro of the Psar promoter and the Psar RNA transcript. Genes Dev, 1987; 1: 197.
    
    88. Inouge M. Antisense RNA: its functions and applications in gene regulation. Gene, 1988; 72:25.
    
    89.Tomizawa J. Mol Biol of RNA. New York, 1987;pp: 249- 259.
    
    90. Simons RW,Kleckner N. Translational control of IS 10 transposition. Cell, 1983; 34: 683.
    
    91.Okamoto K,Freundlich M. Mechanism for the autogenous control of the Crp operon: transcriptional inhibition by a divergent RNA transcript. Proc Natl Acad Sci USA, 1986; 83: 5000.
    
    92. Nepreu A,Marcu KB. Intragenic pausing and antisense transc-ription within the murine c-myc locus
    . EMBO J, 1986; 5: 2895.
    
    93. Krystal Gw, Armstrony BC, Battey JF. N-myc mRNA form an RNA-RNA duplex with endogenous antisense transcripts. Mol Cell Biol, 1990; 10: 4180.
    
    94. Kimelman D,Kirscher MR. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in xenopus oocytes. Cell, 1989; 59:687.
    
    95.Munore SH. Antisense RNA inhibits splicing of pre-mRNA in vitro. EMBO J. 1988; 7: 2523.
    
    96. Stont JT, Caskey CT. Antisense RNA inhibition of HPRT systems. Somatic Cell Mol Genet, 1990; 16: 369.
    
    97. Cornelissen M. Nuclear and cytoplasmic site for antisense control. Nucleic Acids Res, 1989; 17: 7203.
    
    98. Heikkila R, Schwab G.Wickstrom E,et al. A c-myc antisense oligo. inhibits entry into S phase but not progress from G0 to G1. Nature, 1987; 328: 445.
    
    99. Cohen JS. Considerations in the application of oligonucleotides as regulators of gene expression. Proc Natl Acad Sci USA, 1990; 81: 484.
    
    100. Memanaway M, et al. Tumor-specific inhibition of lyphoma growth by an antisense olig.. Lancet, 1990; 335: 808.
    
    101.Thoung NT. Olig( α-deoxynucleotide)s covalently linked to intercalatiny agents: Differentia binding to ribo- and deoxyribopolynucleotides and stability towards nuclease digestion. Proc Natl Acad Sci USA, 1988; 85: 1028.
    
    102. Wickstrom EL, et al. Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by anantisense pentadecadeoxynucleotide targeted against c-myc mRNA. Proc Natl Acad Sci USA. 1988; 85: 1028.
    
    103.Leonetli JP,Bayner B. Antiviral activity ofconjugates between poly-L-lysine and synthetic ODN. Gene, 1988; 72: 323.
    
    104.Agris CH, Bloke KR, Miller PS, etal. Inhibition of vasicular stomatitis virus protein sythesis and infection by sequence specific ODN methylphoaphonates. Biochemistry , 1986; 25: 6268.
    
    105.Zamecnik PC. Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligo. complimentary to viral RNA. Proc Natl Acad Sci USA, 1986; 83:4143.
    
    106. Rosolen A,Witesell I. Antisense inhibition of single copy N-myc expression results in decreased cellgrowth without reduction of c-myc protein in a neuroepithelioma cell line. Cancer Res, 1990; 50: 6316.
    107.Kume TU. Prohibility that the commitment of murine erythroleukemia cell differentiation in determined by the c-myc level. J Mol Biol. 1988; 202: 779.
    108.Newbury SF, Smith NH.Robrinson EC, et al. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell, 19 87; 48: 297.
    109.Gorski K,Roch JM,Prentkii P,et al. The stability of bactriophage T4 gene 32 mRNA; A 5' leader sequence that can stabilize mRNA transcript. Cell, 1985; 43: 46.
    
    110. Brian S.Walter HG. Targeting of retroviral vector for gene therapy. Hum Gene Ther. 1993; 4: 129.
    
    111. Mukhopadyay T, et al. Specific inhibition of lung cancer cells by antisense RNA. Cancer Res. 1991; 51: 1740.
    
    112. Holt JT. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol, 1988; 8: 963.
    
    113. Led with BJ. et al. Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by
    the H-ras oncogene. Mol Cell Biol, 1990; 10: 1545.
    114.Rosolen A, et al. Antisense inhibition of single copy N-myc ex-pression results in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line. Cancer Res, 1990; 50: 6316.
    115. Holt JT.Gopal V,Moulton AD, et al. Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci USA, 1986; 83: 4794.
    116.Kamana H, Ohinishio H. Effects of the antisense v- myb expression on K562 human leukemia cell proliferation and differentiation. Leuk Res, 1990; 14: 832.
    117.Huber BE, Richards CA.Krenitsky TA. Retroviral- mediated gene therapy for the treatment of hepatocellular carcinoma: An innovative approach for cancer therapy. Proc Natl Acad Sci USA, 1991; 88: 8039.
    118.Plautz G,Nabel EG,Nabel GJ, et al. Selective elimination of recombinant genes in vivo with a suicide retroviral vector. New Biol, 1991; 3: 709.
    119. Boviatsis EJ, Chase M,Wei MX, et al. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus and retrovirus vectors. Human Gene Ther, 1994; 91: 4348.
    
    120.Borba D, Hardin J, Sadelain M,et al. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci USA, 1994; 91: 4348.
    
    121. Vile RG, Nelson A, Simon C,et al. Systemic gene therapy of murine melanoma using tissue specific expression of the HSV-tk gene involvesan immune component. Cancer Res, 1994; 54: 6228.
    122.Albelda SM, Zhang HB.Elshami AA,et al. Successful treatment of malignant pleural mesothelioma in an immunocompetent rat model using adenovirus containing the HSV-tk gene. Cancer Gene Ther, 1994; 1: 328.
    
    123. Osaki T,Tanio Y,Isao T, et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of HSV-tk gene. Cancer Res, 1994; 54: 5258.
    
    124. Yoshinori H,Emi N, Kaoru S,et al. Gene transfer of HSV-tk gene as a drug sensitivity gene into human lung cancer cell lines using retroviral vectors. Am J Respir Cell Mol Biol, 1993; 8: 655.
    
    125. Qian C.Bilbao R, and Prieto J. Induction of sensitivity to GCV in human hepatocellular carcinoma cell by adenovirus-mediated gene transfer of HSV-tk. Cancer Gene Ther, 1994; 1: 329.
    
    126. Freeman SM,McCune M. Treatment of ovarian cancer using HSV-tk gene modified vaccine—regulatory issues. Human Gene Ther, 199 2; 3: 342.
    
    127. Jolly D. Viral vector systems for gene therapy. Cancer Gene Ther, 1994; 1:51.
    
    128. Roy WS, Harry CH, Kunjlate A,et al. Use of recombinant adenovirus to transfer the HSV-tk gene to thoracic neoplasms: An effective in vitro drug sensitization system. Cancer Res, 1994; 54: 2055.
    
    129. Kim JH.Kim SH, Brown SL, et al. Selective enhancement by an antiviral agent of the radiation induced cell killing of human gliomacells transduced with HSV-tk gene. Cancer Res, 1994; 54: 6053.
    130.Kolberg R. Gene therapists test puzzling "bystander effect". [News]. NIH Res, 1992; 4: 68.
    
    131. Freeeman SM, Abbound CN, Whartenby KA,et al. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res, 1993; 53: 5274.
    
    132.Dagher SF, Conrad SE, Werner EA, et al. Phenotypic conversion of TK-deficient cells following electroporation of functional TK enzyme. Exp Cell Res,1992; 198: 36.
    
    133. Miller FR, McEachern D, and Miller BE. Efficiency of communication between tumor cells in collagen gel cultures. Br J Cancer, 1990; 62: 360.
    
    134. Freeman SM,Ramesh R,Marrogi AJ, et al. In vivo studies on the mechanism of the "bystander effect". Cancer Gene Ther, 1994; 1: 32 6.
    
    135. Freeman SM,McCune C, Angel C,et al. Treatment of ovarian cancer using HSV-tk gene modified vaccine- regulatory issues. Hum Gene Ther, 1992; 3: 342
    136.Huber BE, Austin EA, Good SS.et al. In vivo antitumor activity of 5-Fc on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res, 1993; 53: 4619.
    137.Sorscher EJ,Peny S.Bebok Z,et al. Tumor cell bystander killing in colonic carcinoma utilizing the E. coli DeoD gene to generate toxic purines. Gene Ther, 1994; 1:233.
    
    138. Moolten F, Wells JM.Mroz PJ. Multiple transduction as a means of preserving ganciclovir chemosensitivity in sarcoma cell carring retrovirally transduced HSV-tk genes. Cancer Lett, 1992; 64: 257.
    
    139. Thomas K, Capecchi M. Site-directed mutogenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987; 51: 503.
    
    140. Mullen CA, Coale MM, Robert L, et al. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5 -Fc and induced protective immunity to wild type tumor. Cancer Res, 1994; 54: 1503.
    
    141. Moolten FL.Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther, 1994; 1: 279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700