重组核小体通用性Th表位诱导SLE口服免疫耐受的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及研究目的
     系统性红斑狼疮(SLE)是一种慢性、累及多系统的自身免疫性疾病,临床表现复杂,好发于青年女性,其确切病因和发病机制尚未阐明,发病率有逐渐增高趋势。目前临床上主要以糖皮质激素联合环磷酰胺等非特异性免疫抑制剂治疗为主,虽然可以在一定程度上控制病情进展,但由于疾病的进展和长期治疗带来的毒副作用使SLE患者的平均寿命明显短于正常人。这种以免疫系统的普遍抑制为代价的疗法,在发挥治疗作用的同时,往往也造成患者多器官或系统的损伤。因此有必要探索一种可控性的免疫治疗措施,这种措施只抑制特定的自身反应性淋巴细胞克隆,这是SLE等自身免疫性疾病防治研究的方向,其中治疗或预防性肽耐受疫苗被认为最具发展前景。
     应用特异性抗原诱导免疫耐受治疗自身免疫病已有很长历史。该方法可高度选择性地抑制针对特定抗原的淋巴细胞克隆,而对机体正常免疫功能基本没有影响,克服了传统化学类药物的毒副作用。早期多应用完整抗原来进行免疫耐受的研究取得较好效果,但应用结构复杂抗原作为耐受原存在易激发自身免疫的缺陷,且来源也比较困难。目前已明确不论是内源性或外源性抗原必须经过APC内部的蛋白酶降解以后,以短肽表位-MHC复合物的形式提呈在APC表面,才能被T细胞受体识别,进而诱导T细胞及B细胞的活化。由于器官特异性和非器官特异性AID一般由T细胞直接介导或T细胞调节,因此诱导T细胞的免疫耐受在理论上便可以预防或治疗AID。且相对于B细胞,诱导T细胞的免疫耐受相对容易,需要的抗原量较少,维持时间较长。与完整或大分子抗原相比,肽疫苗更容易诱导机体免疫耐受,而且可大规模化学合成,易于纯化,使用也相对安全。基于上述理论,用自身抗原的Th细胞表位代替完整抗原进行AID的免疫耐受,即制备治疗性肽耐受疫苗逐渐成为AID防治研究的热点。
     自身抗原表位的筛选和鉴定是AID耐受性肽疫苗研究的关键。诱导SLE发病的自身抗原来自于凋亡的外周血单一核细胞,种类繁多,目前已明确核小体是诱导SLE发病及介导组织损伤的重要或关键致病性抗原,阻断核小体的免疫病理反应具有潜在
Background and objectives
     Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect virtually every organ system. Female is often related. The accurate etiology and pathogenesis are still unknown. Epidemiological evidence shows that the incidence of SLE has increased gradually. Though glucocorticoid and cyclophosphamide combination therapy can prevent the disease from advancing, it causes nonspecific immune suppression which leads to multiple organ damages and shortened lifespan. It is necessary to pursuit a controllable immunotherapy that selectively inhibits certain autoreactive lymphcyte clone, among which, therapeutic or prophylactic peptide vaccine is believed to be most prospective.
     It has been a long time to use specific antigens to induce immune tolerance. The method can highly selectively inhibit lymphcyte clones reactive to certain antigen, but has no influence on normal immune function. In early stages, progresses had been made in using complete antigens to induce immuno tolerance. The problems are it can irritate immune system and the antigens are difficult to obtain. Recent researches reveal that whether endogenous or exogenous antigens must be presented on the surface of APC as the pattern of peptide epitope-MHC complex by protease degradation of APC before they are recognized by T cell receptors and induce T and B cell activation. T cell immune tolerance may be easier to be induced because organ-specific and nonorgan-specific AID are mediated by T cells and low dose antigens are enough. Compared with complete or large molecular antigens, peptide vaccines are easier to induce immune tolerance, easy to synthesis, purification and more safe. So it has been the hot spot to use Th cell epitope of autoantigen instead of complete antigen to prepare therapeutic peptide-based vaccines.
     The screening and identification of the autoantigen epitope are important to peptide
引文
1. Zonana-Nacach A, Barr SG, Magder LS, et al. Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum, 2000,43(8):1801-1808
    2. Butani L. Corticosteroid-induced hypersensitivity reactions. Ann Allergy Asthma Immunol, 2002,89(5):439-445
    3. Zimmerman R, Radhakrishnan J, Valeri A, et al. Advances in the treatment of lupus nephritis. Ann Rev Med, 2001, 52:63-78
    4. Hejaili FF, Moist LM, Clark WF. Treatment of lupus nephritis. Drugs, 2003, 63(3): 257-274
    5. Isenberg D, Leckie MJ. Biological treatments for systemic lupus erythematosus. Scand J Rheumatol, 2002, 31(4):187-192
    6. Bagchi D, Misner B, Bagchi M. Effects of orally administered undernatured type Ⅱ collagen against arthritic inflammatory disease: a mechanistic exploration. Int J Clin Pharmacal Res, 2002, 22(3-4):101-110
    7. Martinez NR, Harrison LC. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest, 2003, 111(9): 1365-1367
    8. Maron R, Guerau de Arellano M. Oral administration of insulin to nonobese diabetic mice and induced Fase ligand expression on islets of langerhans. J Autoimmun, 2001,16(1):21-28
    9. Wu HY, Ward FJ, Staines NA. Histone peptide-induced nasal tolerance: suppression of murine lupus. The Journal of Immunology, 2002, 169: 1126-1134
    10. Legge KL, Bell JJ, Li L, et al. Multi-modal antigen specific therapy for autoimmunity. Int Rev Immunol, 2001, 20(5):593-611
    11. Lin-Su K, Kukreja A, Maclaren NK. Diabetes vaccines: a future to be realized. Diabetes Technol Ther, 2001, 3(3):451-461
    12. Winter WE, Schatz D. Prevention strategies for type 1 diabetes mellitus: current status and future directions. BioDrugs, 2003, 17(1):39-64
    13. 郝进,郝飞,钟白玉,等.系统性红斑狼疮患者外周血单核细胞核小体释放水平及其临床意义. 中华皮肤科杂志, 2003,36(7):372-374
    14. 郝进,郝飞,钟白玉,等.核小体诱导 BALB/c 小鼠形成狼疮肾的实验研究. 中华皮肤科杂志, 2004,37(1):12-14
    15. Coritsidis GN, Lombardo F, Rumore P, et al. Nucleosome effects on mesangial cell matrix and proliferation: a possible role in early lupus nephritis. Exp Nephrol, 2002, 10(3):216-226
    16. Kaliyaperumal A, MichaelsM A, Datta SK. Antigen specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol, 1999, 162:5775-5783
    17. Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B Cells. The Journal of Immunology, 2003, 171: 636-644
    18. Singh RR. The potential use of peptides and vaccination to treat systemic lupus erythematosus. Curr Opin Rheumatol, 2000,12(5):399-406
    19. Brosh N, Zinger H, Mozes E. Treatment of induced murine SLE with a peptide based on the CDR3 of an anti-DNA antibody reverses the pattern of pathogenic cytokines. Autoimmunity, 2002, 35 (3):211-219
    20. Eilat E, Dayan M, Zinger H, et al. The mechanism by which a peptide based on complementarity-determining region-1 of a pathogenic anti-DNA auto-Ab ameliorates experimental systemic lupus erythematosus. Proc Natl Acad Sci USA, 2001, 98(3):1148-1153
    21. Waisman A, Ruiz PJ, Israeli E, et al. Modulation of murine systemic lupus erythematosus with peptides based on complementarity determining regions of a pathogenic anti-DNA monoclonal antibody. Proc Natl Acad Sci USA, 1997, 94(10): 4620-4625
    22. Eilat E, Zinger H, Nyska A, et al. Prevention of systemic lupus erythematosus-like disease in (NZBxNZW)F1 mice by treating with CDR1-and CDR3-based peptides of a pathogenic autoantibody. J Clin Immunol, 2000, 20 (4): 268-278
    23. Mohan C, Adams S, Stanik V, et al. Nucleosome: a major immunogen for pathogenic autoantibody inducing T cell of lupus. J Exp Med, 1993,177: 1367-1381
    24. Bruns A, Blass S, Housdorf G, et al. Nucleosomes are major T and B cell autoantigens in systemic lupus erythematosus. Arthritis Rheum, 2000,43(10):2307-2315
    25. Deocharan B, Qing X, Beger E, et al. Antigenic triggers and molecular targets foranti-double-stranded DNA antibodies. Lupus, 2002,11(12):865-871
    26. 郝进,郝飞,林治华,等. BALB/c 小鼠核小体 H2B 组蛋白 Th 细胞表位的鉴定. 中华风湿病学杂志, 2004,8(1):4-7
    27. Nakayama K, Kelly SM, Curtiss R III. Construction of an Asd+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a salmonella vaccine strain. Bio/Technology, 1988, 6: 693–697
    28. Dieffenbach CW, Dveksler GS. PCR Primer: A laboratory manual. Cold Spring Harbor Laboratory Press, 1995
    29. C.W.迪芬巴赫, G.S.德维克斯勒. PCR 技术实验指南[M]. 北京:科学出版社,1998
    30. Helweg - Larsen J, Jensen J S, Benfield T, et al. Diagnostic use of PCR for detection of Pneumocystis carinii in oral wash samples. J Clin Microbiol, 1998,36(7):2068
    31. Komura J, Ikehata H, Hosoi Y, et al. Mapping psoralen cross-links at the nucleotide level in mammalian cells: suppression of cross-linking at transcription factor-or nucleosome–binding sites. Biochemistry,2001,40(13):4096
    32. J.萨姆布鲁克, E.F.弗里奇, T.曼尼阿蒂斯编. 金冬雁, 黎孟枫等译. 分子克隆实验指南, 第二版. 北京: 科学出版社,1996
    33. F.奥斯伯, R.布伦特, R.E.金斯顿等编. 颜子颖, 王海林译. 精编分子生物学实验指南. 北京: 科学出版社,1998
    34. 蔡文琴, 王伯纭. 实用免疫细胞化学与核酸分子杂交技术. 第一版. 成都, 四川科学技术出版社,1994
    35. Meacock PA, Cohen SN. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell,1980, 20: 529-542
    36. Meacock PA, Cohen SN. Genetic analysis of the inter-relationship between plasmid replication and incompatibility. Mol Gen Genet, 1979, 174: 135-147
    37. Van Brugger MCJ, Kramers C, Wramer C, et al. Nucleosomes and histones are present in glomerular deposits in human lupus nephritis. Nephril Dial Transplant, 1997, 273:52-60
    38. Licht R, Van Bbruggen MCJ, Birgitte OW, et al. Plasma levels of nucleosome and nucleosome-autoantibody complexes in murine lupus. Arthritis and Rheumatism, 2001, 44(6):1320-1330
    39. Maron R, Slavin AJ, Hoffmann E, et al. Oral tolerance to copolymer 1 in myelin basicprotein (BMP) TCR transgenic mice: cross-reactivity with MBP-specific TCR and differential induction of anti-inflammatory cytokines. Int Immunol, 2002, 14(2): 131-138
    40. Jun HS, Chung YH, Han J, et al. Prevention of autoimmune diabetes by immunogene therapy using recombinant vaccine virus expressing glutamic acid decarboxylase. Diabetologia, 2002,45(5):668-676
    41. Sirard JC, Niedergang F, Kraehenbuhl JP. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol Rev, 1999, 171:5-26
    42. Nagler-Anderson C, Terhorst C, Bhan AK, et al. Mucosal antigen presentation and the control of tolerance and immunity. Trends in Immunology, 2001, 22(3):120-122
    43. Jonuleit H, Schmitt E, Steinbrink K, et al. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends in immunology, 2001, 22(7):394-400
    44. Richard AK, Hans WM, Andreas H. Emerging paradigms of T-cell co-stimulation. Current Opinion in Immunology, 2004, 16:321–327
    45. Linsley PS, Brady W, Urnes M. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med, 1991, 174(3): 561-569
    46. Linsly PS, Wallence PM, Iohnson J. Immunosuppression in vivo by a soluble form of the CTLA4 T cell activation molecule. Science, 1992, 257:792-797
    47. Guo L, Fujino M, Kimura H, et al. Simultaneous blockade of co-stimulatory signals, CD28 and ICOS, induced a stable tolerance in rat heart transplantation. Transpl Immunol, 2003, 12(1):41-48
    48. Yamashita K, Masunaga T, Yanagida N, et al. Long-term acceptance of rat cardiac allografts on the basis of adenovirus mediated CD40Ig plus CTLA4Ig gene therapies. Transplantation, 2003, 76(7):1089-1896
    49. Wang Q, Zhang M, Ding G, et al. Anti-ICAM-1 antibody and CTLA-4Ig synergistically enhance immature dendritic cells to induce donor-specific immune tolerance in vivo. Immunol Lett, 2003, 90(1):33-42
    50. Corbascio M, Ekstrand H, ?sterholm C, et al. CTLA4Ig combined with anti-LFA-1 prolongs cardiac allograft survival indefinitely. Transpl, Immunology, 2002,10: 55-61
    51. Li TS, Ito H, Kajiwara K, et al. Long-term survival of xenografted neonatal cardiomyocytes by adenovirus-mediated CTLA4-Ig expression and CD40 blockade.Circulation, 2003, 108(14):1760-1765
    52. Masahiko M, Irene T, Yelena C, et al. CTLA4Ig inhibits T cell–dependent B-cell maturation in murine systemic lupus erythematosus. J Clin Invest, 2000, 106(1): 91-101
    53. Ruderman EM, Pope RM. The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther, 2005, 7 Suppl 2: S21- S25
    54. Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science, 1994,265:1225-1227
    55. Paglia P, Medina E, Arioli I, et al. Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood, 1998,92(9):3172-3176
    56. Flo J, Tisminetzky S, Baralle F. Oral transgene vaccination mediated by attenuated Salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine, 2001,19(13-14):1772-1782
    57. Curtiss R 3rd, Kelly SM. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun, 1987, 55(12):3035-3043
    58. Giron JA, Xu JG, Gonzalez CR, et al. Simultaneous expression of CFAPI and CS3 colonization factor antigens of enterotoxigenic Escherichia coli by delta aroC, delta aroD Salmonella typhi vaccine strain CVD 908. Vaccine,1995,13(10):939-946
    59. Hone DM, Harris AM, Chatfield S, et al. Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine, 1991,9(11):810-816
    60. Nardelli-Haefliger D, Benyacoub J, Lemoine R, et al. Nasal vaccination with attenuated Salmonella typhimurium strains expressing the Hepatitis B nucleocapsid: dose response analysis. Vaccine, 2001,19(20-22):2854-2861
    61. Bullas LR, Ryu JI. Salmonella typhimurium LT-2 strains which are r-m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol, 1983, 156:471-474
    62. Dunstan SJ, Simmons CP, Strugnell RA. Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen. Infect Immun, 1998, 66(2): 732-740
    1. Mevorach D, Zhou JL, Song X, et al. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med, 1998, 188(2):387-392
    2. Kinoshita KG, Tesch A, Schwarting R, et al. Costimulation by B7-1 and B7-2 is required for autoimmune disease in MRL/lpr mice. J Immunol, 2000, 164(8):6046-56
    3. Andrews BS, Eisenberg RA, Theofilopoulos AN, et al. Spontaneous murine lupus-like syndrome: clinical and immunopathological manifestations in several strains. J Exp Med,1978,148:1198-1215
    4. Cohen PL, Eisenberg RA. lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol,1991, 9:243-269
    5. Elkon KB, Bonfa E, Lovert RL, et al. Association between anti-Sm and anti-ribosomal P protein autoantibodies in human systemic lupus erythematosus and MRL/ lpr mice. J Immunol, 1989, 143:1549-1554
    6. Treadwell EL, Cohen P, Williams D, et al. MRL mice produce anti-Sm autoantibody, a specificity associated with systemic lupus erythematosus. J Immunol,1993,150:695-699
    7. Eisenberg RA, Tan EA, Dixon FJ. Presence of anti-Sm reactivity in autoimmune mouse strains. J Exp Med,1978,147:582-587
    8. Kimura M, Mohri H, Shimada K, et al. Serological and histological characterization of the new mutant strain of lpr mice, CBA/KIJ ms- lprcg/lprcg. Clin Exp Immunol, 1990, 79:123-129
    9. Izui S, Iwamoto M, Fossati L, et al. Yaa gene model of systemic lupus erythematosus. Immunol Rev, 1995,144:137-156
    10. Morel L, Rudofsky UH, Longmate JA, et al. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity, 1994,1:219-229
    11. Stoll ML, Gavalchin J, Borchers A. British Society for rheumatology systemic lupus erythematosus—messages from experimental models. Rheumatology, 2000, 39:18-27
    12. Ansari AA, Hsu T, Kono DH, et al. The pathogenesis of autoimmunity in New Zealand mice. Semin Arthritis Rheum, 2000, 29(6):385-399
    13. Petri M. Epidemiology of systemic lupus erythematosus. Best Prac Res Clin Rheumatol, 2002, 16(5):847-858
    14. Ruiz-Irastorza G, Khamashta MA, Castellino G. Systemic lupus erythematosus. The Lancet, 2001,357:1027-1032
    15. Satoh M, Reeves WH. Induction of lupus associated autoantibodies in BALB/ c mice by intraperitoneal injection of pristine. J Exp Med,1994,180:2341-2346
    16. Satoh M, Kumar A, Kanwar YS, et al. Antinuclear antibody production and immune complex glomerulonephritis in BALB/ c mice treated with pristine. Proc Natl Acad Sci USA,1995,92:10934-10938
    17. Satoh M, Hamilton KJ, Ajmani AK, et al. Autoantibodies to ribosomal P antigens with immune complex glomerulonephritis in SJL mice treated with pristane. J Immunol, 1996,157:3200-3206
    18. Putterman C, Diamond B. Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J Exp Med,1998,188(1):29-38
    19. Beger E, Deocharan B, Edelman M, et al. A peptide DNA surrogate accelerates autoimmune manifestations and nephritis in lupus-prone mice. Journal of Immunology, 2002, 168:3617-3626
    20. Mendelovic S, Fricke H, Shoenfeld Y, et al. The role of anti-idiotypic antibodies in the induction of experimental systemic lupus erythematosus in mice. Eur J Immunol, 1989, 19:729-734
    21. 郝进,郝飞,钟白玉,等.系统性红斑狼疮患者外周血单核细胞核小体释放水平及其临床意义. 中华皮肤科杂志, 2003, 36(7):372-374
    22. 郝进,郝飞,钟白玉,等.核小体诱导 BALB/c 小鼠形成狼疮肾的实验研究. 中华皮肤科杂志, 2004, 37(1):12-14
    23. Zonana-Nacach A, Barr SG, Magder LS, et al. Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum, 2000,43(8):1801-1808
    24. Butani L. Corticosteroid-induced hypersensitivity reactions. Ann Allergy Asthma Immunol, 2002,89(5):439-445
    25. Zimmerman R, Radhakrishnan J, Valeri A, et al. Advances in the treatment of lupus nephritis. Ann Rev Med, 2001, 52:63-78
    26. Hejaili FF, Moist LM, Clark WF. Treatment of lupus nephritis. Drugs, 2003, 63(3):257-274
    27. Isenberg D, Leckie MJ. Biological treatments for systemic lupus erythematosus. Scand J Rheumatol, 2002, 31(4):187-192
    28. Bagchi D, Misner B, Bagchi M. Effects of orally administered undernatured type Ⅱ collagen against arthritic inflammatory disease: a mechanistic exploration. Int J Clin Pharmacal Res, 2002, 22(3-4):101-110
    29. Martinez NR, Harrison LC. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest, 2003, 111(9): 1365-1367
    30. Maron R, Guerau de Arellano M. Oral administration of insulin to nonobese diabetic mice and induced Fase ligand expression on islets of langerhans. J Autoimmun, 2001,16(1):21-28
    31. Wu HY, Ward FJ, Staines NA. Histone peptide-induced nasal tolerance: suppression of murine lupus. The Journal of Immunology, 2002, 169:1126-1134
    32. Davidson A, Diamond B. Autoimmune disease. New Eng J Med, 2001, 345:340-350
    33. Singh RR, Ebling FM, Sercarz EE, et al. Immune tolerance to autoantibody-derived peptides delays development of autoimmunity in murine lupus. J Clin Invest, 1995, 96:2990-2996
    34. Kenneth MK, Monica YK, John BH, et al. Peptide mimics of a major lupus epitope of SmB/B'. Annals of the New York Academy of Sciences, 2003, 987:215-229
    35. Legge KL, Bell JJ, Li L, et al. Multi-modal antigen specific therapy for autoimmunity. Int Rev Immunol, 2001,20(5):593-611
    36. Lin-Su K, Kukreja A, Maclaren NK. Diabetes vaccines: a future to be realized. Diabetes Technol Ther, 2001,3(3):451-461
    37. Winter WE, Schatz D. Prevention strategies for type 1 diabetes mellitus: current status and future directions. BioDrugs, 2003,17(1):39-64
    38. Coritsidis GN, Lombardo F, Rumore P, et al. Nucleosome effects on mesangial cell matrix and proliferation: a possible role in early lupus nephritis. Exp Nephrol, 2002,10(3):216-226
    39. Kaliyaperumal A, MichaelsM A, Datta SK. Antigen specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol, 1999, 162:5775-5783
    40. Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B Cells. The Journal of Immunology, 2003, 171: 636-644
    41. Singh RR. The potential use of peptides and vaccination to treat systemic lupus erythematosus. Curr Opin Rheumatol, 2000,12(5):399-406
    42. 郝进, 郝飞, 林治华, 等. BALB/c 小鼠核小体 H2B 组蛋白 Th 细胞表位的鉴定. 中华风湿病学杂志, 2004,8(1):4-7
    43. Brosh N, Zinger H, Mozes E. Treatment of induced murine SLE with a peptide based on the CDR3 of an anti-DNA antibody reverses the pattern of pathogenic cytokines. Autoimmunity, 2002, 35(3):211-219
    44. Eilat E, Dayan M, Zinger H, et al. The mechanism by which a peptide based on complementarity-determining region-1 of a pathogenic anti-DNA auto-Ab ameliorates experimental systemic lupus erythematosus. Proc Natl Acad Sci USA, 2001, 98(3):1148-1153
    45. Waisman A, Ruiz PJ, Israeli E, et al. Modulation of murine systemic lupus erythematosus with peptides based on complementarity determining regions of a pathogenic anti-DNA monoclonal antibody. Proc Natl Acad Sci USA, 1997, 94(10): 4620-4625
    46. Eilat E, Zinger H, Nyska A, et al. Prevention of systemic lupus erythematosus-like disease in (NZBxNZW)F1 mice by treating with CDR1-and CDR3-based peptides of a pathogenic autoantibody. J Clin Immunol, 2000, 20 (4): 268-278
    47. McSorley SJ, Garside P, Vaccination by inducing oral tolerance. Immunology Today, 1999, 20(12):555-560
    48. Linsley PS, Brady W, Urnes M. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med, 1991, 174(3):561-569
    49. Spahn TW, Weiner HL. Mesenteric Lymph Nodes are critical for the induction of high-dose oral tolerance in the absence of Peyers Patches. Eur J Immunol, 2002, 32(4): 1109-1113
    50. Kraal G. Inducing tolerance against antigens through initial contact via the mucous membrane. Ned Tijdschr Geneeskd, 2002,146(50):2406-2409
    51. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat RevImmunol, 2003,3(3):199-210
    52. Chen M, Chen J, Liao W, et al. Immunization with attenuated Salmonella typhimurium producing catalase in protection against gastric Helicobacter pylori infection in mice. Helicobacter, 2003, 8(6):613-625
    53. Illei GG, Klippel JH. Novel treatment approaches of lupus nephritis. Lupus, 1998,7:644-648
    54. Carvalho CR, Vaz NM. Indirect effects are independent of the way of tolerance induction. Scand J Immunol, 1996, 43(6):613-618
    55. Chen Y, Inobe J, Kuchroo VK, et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA, 1996, 93(1):388-391
    56. Dearborn SM, Maron R, Weiner H. Suppression of type II collagen induced arthritis and in vitro responsiveness with oral collagen type I. FASEB J, 1996, 10(6):A1193
    57. Van-Houten N, Blake SF. Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. J Immunol, 1996, 157(4):1337-41
    58. Francois BJ. Regulatory T cells under scrutiny. Nat Rev Immunol, 2003,3(3):189-198
    59. Prud’homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1(TGF-beta1) in autoimmune diseases. J Autoimmun, 2000,14:23-42
    60. McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol, 2002,110(5):693-702
    61. Flo J, Tisminetzky S, Baralle F. Oral transgene vaccination mediated by attenuated Salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine, 2001,19(13-14): 1772-1782
    1. Kotzin BL. Systemic lupus erythematosus. Cell, 1996, 85(3):303-306
    2. Chen W, Lee JY, Hsieh WC. Effects of dexamethasone and sex hormones on cytokine-induced cellular adhesion molecule expression in human endothelial cells. Eur J Dermatol, 2002, 12 (5):445-458
    3. Strauss G, Osen W, Debatin KM. Induction of apoptosis and modulation of activation and effector function in T cells by immunosuppressive drugs. Clin Exp Immunol, 2002, 128:255-266
    4. Marchetti MC, Marco BD, Cifone G, et al. Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood, 2003, 101(2):585-593
    5. Tseng C, Buyon J, Belmont HM, et al. Moderate dose steroids prevent severe flares of serologically active, clinically stable SLE patient. Arthritis Rheum, 2003, 48:S260
    6. Jonsson CA, Carlsten H. Mycophenolic acid inhibits inosine 5’-monophosphate dehydrogenase and suppresses immunoglobulin and cytokine production of B cells. Int Immunopharmacol, 2003, 3(1):31-37
    7. Izeradjene K, Revillard JP. Apoptosis of superantigen-activated T cells induced by mycophenolate mofetil treatment. Transplantation, 2001, 71(1):118-125
    8. Raab M, Daxecker H, Pavlovic V, et al. Quantification of the influenceof mycophenolic acid on the release of endothelial adhesion molecules. Clin Chim Acta, 2002, 320(1-2):89-94
    9. Haug C, Schmid-Kotsas A, Linder T, et al. The immunosuppressive drug mycophenolic acid reduces endothelin-1 synthesis in endothelial cells and renal epithelial cells. Clin Sci (Lond), 2002, 103 Suppl 48:S76-S80
    10. Karim MY, Alba P, Cuadrado MJ, et al. Mycophenolate mofetil for systemic lupus erythematosus refractory to other immunosuppressive agents. Rheumatology (Oxford), 2002, 41(8):876-882
    11. Buratti S, Szer IS, Spencer CH, et al. Mycophenolate mofetil treatment of severe renal disease in pediatric onset systemic lupus erythematosus. J Rheumatol, 2001, 28:2103-2108
    12. Kingdon EJ, Mclean AG, Psimenou E, et al. The safety and efficacy of MMF in lupus nephritis: a pilot study. Lupus, 2001,10:606-611
    13. Mak A, Mok CC. Mycophenolate mofetil for refractory haemolytic anemia in systemic lupus erythematosus. Lupus, 2005, 14(10): 856-8
    14. Chan TM, Li FK, Tang CS, et al. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol, 2005,16:1076–1084
    15. Chan TM, Wong RWS, Lau CS, et al. Prolonged follow-up of patients with diffuse proliferative lupus nephritis treated with prednisolone and mycophenolate mofetil. J Am Soc Nephrol, 2001,12:A1010
    16. 张江林, 张煊, 马丽, 等. 吗替麦考酚酯治疗系统性红斑狼疮的多中心前瞻性研究. 中华风湿病学杂志, 2002, 6(6):406-410
    17. 黎磊石, 王海燕, 林善锬, 等. 吗替麦考酚酯治疗弥漫增生性狼疮性肾炎的多中心临床研究. 中华内科杂志, 2002, 41(7):476-479
    18. Shipkova M, Armstrong VW, Kuypers D, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit, 2001, 23 (6) :717-721
    19. Rojas M, Rugeles MT, Gil DP, et al. Differential modulation of apoptosis and necrosis by antioxidants in immunosuppressed human lymphocytes. Toxicol Appl Pharmacol, 2002,180 (2):67-73
    20. Houssiau FA, Vasconcelos C, D’Cruz D, et al. Immunosuppressive therapy in lupus nephritis. The Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum, 2002,46(8):2121-2131
    21. Bohm I. Decrease of B cells and autoantibodies after low-dose methotrexate. Biomed Pharmacother, 2003, 57 (7):278-281
    22. Rudwaleit M, Yin Z, Siegert S, et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann Rheum Dis, 2000, 59 (4):311-314
    23. Sato EI. Methotrexate therapy in systemic lupus erythematosus. Lupus, 2001, 10(3): 162-164
    24. Remer CF, Weisman MH, Wallace DJ. Benefits of leflunomide in systemic lupus erythematosus: a pilot observational study. Lupus, 2001,10(7):480-483
    25. Tam LS, Li EK, Wong CK, et al. Double-blind, randomized, placebo-controlled pilot study of leflunomide in systemic lupus erythematosus. Lupus, 2004, 13(8):601-604
    26. Rathmell JC, Fournier S, Weintraub BC, et al. Repression of B7.2 on self-reactive B cells is essential to prevent proliferation and allow Fas-mediated deletion by CD4+ T cells. J Exp Med, 1998, 188:651-659
    27. Saito K, Nawata M, Nakayamada S, et al. Successful treatment with anti-CD20 monoclonal antibody (rituximab) of life-threatening refractory SLE with renal and central nervous system involvement. Lupus, 2003, 12:798-800
    28. Saigal K, Valencia IC, Cohen J, et al. Hypocomplement urticarial vasculitis with angioedema, a rare presentation of SLE: rapid response to rituxibmab. J Am Acad Dermatol, 2003, 49: S283-S285
    29. Weide R, Heymans J, Pandorf A, et al. Successful long-term treatment of SLE with rituximab maintenance therapy. Lupus, 2003,12:779-782
    30. Perrotta S, Locatelli F, La Manna A, et al. Anti-CD20 monoclonal antibody (Rituximab) for life-threatening autoimmune haemolytic anaemia in a patient with systemic lupus erythematosus. Br J Haematol, 2002,116:465-467
    31. Looney RJ, Anolik JH, Campbell D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase Ⅰ /Ⅱ dose-escalation trial of rituximab. Arthritis Rheum, 2004, 50(8):2580-2589
    32. Anolik JH, Campbell D, Felgar RE, et al. The relationship of Fc gamma R IIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum, 2003, 48(2):455-459
    33. Leandro MJ, Edwards JC, Cambridge G, et al. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum, 2002, 46:2673-2677
    34. Anolik JH, Campbell D, Felgar RE, et al. B lymphocyte depletion in the treatment of systemic lupus erythematosus. Arthritis Rheum, 2002, 46(Suppl 9):S717
    35. Boumpas DT, Furie R, Manzi S, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum, 2003; 48:719-727
    36. Kalunian KC, Davis JC, Merrill JT, et al. IDEC-131 Lupus Study Group. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum, 2002, 46:3251-58
    37. Furie RA, Cash JM, Cronin ME, et al. Treatment of systemic lupus erythematosus with LJP394. J Rheumatol, 2001, 28:257-265
    38. Alarcon-Segovia D, Tumlin JA, Furie RA, et al. LJP394 for the prevention of renal flare in patients with systemic lupus erythematosus: results from a randomized, double-blind, placebo-controlled study. Arthritis Rheum, 2003, 48:442-454
    39. Weisman MH, Bluestein HG, Berner CM, et al. Reduction in circulating dsDNA antibody titer after administration of LJP394. J Rheumatol, 1997, 24(2):314-318
    40. Tumlin JA. Lupus nephritis: novel immunosuppressive modalities and future directions. Semin Nephrol, 1999, 19(1):67-76
    41. Aringer M, Stummvoll GH, Steiner G, et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology (Oxford), 2001, 40: 876-881
    42. Aringer M, Zimmermann C, Graninger WB, et al. TNF is an essential mediator in lupus nephritis. Arthritis Rheum, 2002, 46: 3418-3419
    43. Su X, Zhou T, Yang P, et al. Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor.Arthritis Rheum, 1998, 41: 139-149
    44. Aringer M, Smolen JS. Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention. Lupus, 2004, 13: 344-347
    45. De-Bandt M, Sibilia J, Le-Loet X, et al. Systemic lupus erythematosus induced by anti-tumour necrosis factor alpha therapy: a French national survey. Arthritis Res Ther, 2005, 7(3): R545-51
    46. Luis L, Yvonne RP, Carlos GP, et al. Clinical and biologic effects of anti-IL-10 monoclonal antibody administration in SLE. Arthritis Rheum, 2000, 43:1790-1800
    47. Zhang J, Roschke V, Baker KP, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol, 2001, 166:6-10
    48. Stohl W. BlySfulness does not equal blissfulness in systemic lupus erythematosus: a therapeutic role for BLyS antagonists. Curr Dir Autoimmun, 2005, 8:289-304
    49. Stohl W. Targeting B lymphocyte stimulator in systemic lupus erythematosus and otherautoimmune rheumatic disorders. Expert Opin Ther Targets, 2004, 8(3):177-89
    50. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature, 2000, 404:995-999
    51. Thompson JS, Schneider P, Kalled SL, et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med, 2000, 192:129-135
    52. Furie R, Stohl W, Ginzler E, et al. Safty, pharmacokinetics and pharmacodynamic results of a phase 1 single and double dose-escalation study of LymphoStat B in SLE patients. Arthritis Rheum, 2003, 48:S377
    53. Bichile LS, Pruthi MS, Zarkar A, et al. Favourable outcome in a patient with central nervous system lupus. J Assoc Physicians India, 1999, 47:1201-1202
    54. Sherer Y, Levy Y, Shoenfeld Y. Marked improvement of severe cardiac dysfunction after one course of intravenous immunoglobulin in a patient with systemic lupus erythematosus. Clin Rheumatol, 1999, 18:238-240
    55. Arahata H, Migita K, Izumoto H, et al. Successful treatment of rapidly progressive lupus nephritis associated with anti - MPO antibodies by intravenous immunoglobulins. Clin Rheumatol, 1999, 18:77-81
    56. Gladstone DE, Prestud AA, Pradham AA, et al. High dose cyclophosphamide for severe lupus erythematosus. Lupus, 2002, 11:405-410
    57. Petri M, Jones RJ, Brodsky RA, et al. High dose cyclophosphamide without stem cell transplantation in SLE. Arthritis Rheum, 2003, 48:166-173
    1. Richard AK, Hans WM, Andreas H. Emerging paradigms of T-cell co-stimulation. Current Opinion in Immunology, 2004, 16:321–327
    2. Linsley PS, Brady W, Urnes M. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med, 1991, 174(3): 561-569
    3. Lenschow DJ. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 1996, 14:233-258
    4. Beier KC, Hutloff A, Dittrich AM, et al. Induction, binding specificity and function of human ICOS. Eur J Immunol, 2000, 30:3707-3717
    5. Walker LS, Gulbranson JA, Flynn S, et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor
    5-positive CD4 cells and germinal centers. J Exp Med, 1999, 190:1115-1122
    6. Liang L, Porter EM, Sha WC. Constitutive expression of the B7h ligand for inducible costimulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor-mediated pathways and can be rescued by CD40 signaling. J Exp Med, 2002, 196:97-108
    7. Didier AM, Mohamed H, Sayegh. Role of novel T-cell costimulatory pathways in transplantation. Curr Opin Organ Transplant, 2003, 8: 25-33
    8. Shahinian. A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science, 1993, 261:609-612
    9. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270:985-988
    10. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3:541-547
    11. McAdam AJ, Greenwald R, Levin MA, et al. ICOS is critical for CD40-mediated antibody class switching. Nature, 2001, 409:102-105
    12. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature, 2001, 409:97-101
    13. Tafuri A, Shahinian A, Bladt F, et al. ICOS is essential for effective T-helper-cellresponses. Nature, 2001, 409:105-109
    14. Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature, 1999, 397:263-266
    15. Jonathan MG. The B7/CD28/CTLA4 T-Cell activation pathway. Am J Respir Cell Mol Biol, 2000, 22:261-264
    16. Anthony JC, Jose C, Gutierrez R. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nature Immunol, 2001, 3: 203-209
    17. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192: 1027-1037
    18. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291: 319-322
    19. Nicole SG, Otto M, Andreas S. B7-H1 (Programmed Death-1 Ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol, 2003, 170: 3637-3644
    20. Dong H, Zhu G, Tamada K, et al. A third member of the B7 family costimulates T cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5:1365-1369
    21. Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med, 2001, 193:839-846
    22. Gregson BP, June CH, Linsley PS. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA, 2002, 99:11790-11795
    23. Diehn M, Alizadeh AA, Rando OJ, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA, 2002, 99:11796-11801
    24. Cobbold SP, Graca.L, Lin CY, et al. Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transpl Int, 2003, 16(2):66-75
    25. Andrew LM, Babak B, Philip C, et al. Cutting edge: induced Idoleamine 2,3-Dioxygenase exression in Dentric Cell subsets suppress T cell clonal expansion. J Immunol, 2003, 171:1652-1655
    26. Coenen JJ, Koenen HJ, van Rijssen E, et al. Tolerizing effects of co-stimulationblockade rest on functional dominance of CD4+CD25+ regulatory T cells. Transplantation, 2005, 79(2):147-156
    27. McAdam AJ, Chang TT, Lumelsky AE, et al. Mouse inducible costimulatory molecule (ICOS) expression enhanced by CD28 costimulation and regulates differentiation of CD4+T cells. J Immunol, 2000, 165: 5035-5040
    28. Arimura Y, Kato H, Dianzani U, et al. A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in Th cells and regulates their responses. International Immunology, 2002, 14:555-566
    29. Dong C, Temann UA, Flavell RA. Cutting edge: Critical role of inducible costimulator in germinal center reactions. J Immunol, 2001, 166:3659-3662
    30. Iwai H, AbeM, Hirose S, et al. Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J Immunology, 2003, 171: 2848-2854
    31. Yang JH, Zhang J, Cai Q, et al. Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology (Oxford), 2005, 44(10):1245-54
    32. Hutloff A, Buchner K, Reiter K, et al. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum, 2004, 50(10):3211-20
    33. Nurieva RI, Treuting P, Duong J, et al. Inducible costumulator is essential for collagen-induced arthritis. J Clin Invest, 2003, 111:701-706
    34. Dong C. Inducible costimulator is essential for collagen-induced arthritis. J Clin Invest, 2003, 112(10):1597
    35. Iwai H, Kozono Y, Hirose S, et al. Amelioration of collagen-induced arthritis by blockade of inducible costimulator-B7 homologous protein costimulation. J Immunol, 2002, 169:4332-4339
    36. Okamato T, Saito S, Yamanaka H, et al. Expression and function of the co-stimulator H4/ICOS on activated T cells of patients with rheumatoid arthritis. J Rheumatol, 2003, 30:1157-1163
    37. Reynolds J, Tam FW, Chandraker A, et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest, 2000,105(5): 643-651
    38. Mihara M, Tan I, Chuzhin Y, et al. CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus. J Clin Invest, 2000, 106(1):91-101
    39. Davidson A, Diamond B, Wofsy D, et al. Block and tackle: CTLA4Ig takes on lupus. Lupus, 2005, 14(3): 197-203
    40. Akkerman A, Huang W, Wang X, et al. CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice. Autoimmunity, 2004, 37(6-7): 445-51
    41. Dall'Era M, Davis J. CTLA4Ig: a novel inhibitor of costimulation. Lupus, 2004, 13(5): 372-376
    42. Wang X, Huang W, Mihara M, et al. Mechanism of action of combined short-term CTLA4Ig and anti-CD40 ligand in murine systemic lupus erythematosus. J Immunol, 2002, 168(4): 2046-53
    43. Miller SD, vander Lugh CL, Lenschow DJ, et al. Blockage of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity, 1995, 3(6): 739-745
    44. Ijima K, Murakami M, OkamotoH, et al. Successful gene therapy via intraarticular injection of adenovirus vector containing CTLA4IgG in a murine model of type collagen-induced arthritis. Hum Gene Ther, 2001, 12(9):1063-77
    45. Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med, 2003, 349(20):1907-1915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700