腺病毒介导的人白介素24和p16基因体外治疗肺腺癌细胞株A549的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是人类最常见和最难治愈的恶性肿瘤之一,其发生、发展和转移是一个极其复杂的多基因调控异常的过程。该病确诊时多非早期,故疗效较差。最新统计表明,肺癌死亡率上升幅度居各类肿瘤之首[1]。肺癌在临床上分为非小细胞肺癌(NSCLC)和小细胞肺癌(SCLC),其中前者约占肺癌发病总数的80%。虽然传统的放疗、化疗可以在一定程度上提高病人的预后情况,但由于存在负作用、转移等各种问题,目前仍缺乏有效的手段进行根治,严重影响着人类的生命健康。因此,关于肺癌的防治研究,尤其是非小细胞肺癌的治疗研究,成为当今最受人们关注的领域之一。
     近年来,随着医学分子生物学技术和理论的发展以及对肺癌发病机制认识的不断深入,尤其是DNA重组技术和基因转移技术逐步成熟,研究者们提出了利用基因转移技术向体内导入目的基因,从而对肺癌发病的分子环节进行干预的防治策略,为肺癌的治疗开辟了新途径。
     本研究拟以人白介素24(hIL-24)和p16基因作为分子工具,采用重组腺病毒为基因导入载体对非小细胞肺癌中具有代表性的肺腺癌A549细胞株进行体外基因治疗的实验研究,主要探讨外源性hIL-24和p16基因的转入及异位表达对治疗A549肿瘤细胞所发挥的作用及其内在机制,以期为肺癌基因治疗研究的进一步深入奠定必要的实验基础。
     研究方法:
     1.分离人外周血单个核细胞,提取其RNA作为模板采用RT-PCR方法分别扩增人白介素24(hIL-24)和p16基因cDNA全部编码序列,并将其亚克隆至测序载体pMD18-T上进行测序分析。
     2 .将测序正确的IL-24和p16基因片断定向克隆至腺病毒穿梭质粒pAdTrack-CMV上分别构建穿梭质粒pAdTrack-IL24和pAdTrack-p16,然后将阳性重组子分别与腺病毒基因组质粒pAdEasy1在BJ5183工程菌中进行同源重组构建重组腺病毒质粒pAdEasy-IL24和pAdEasy-p16并加以鉴定。
     3.采用脂质体DOTAP介导构建正确的重组腺病毒质粒pAdEasy-IL24和
Lung cancer is one of the most common malignancies in the world, and non-small-cell lung cancer (NSCLC) represents approximately 80% of all lung cancers,its incidence and mortality are increasing rapidly year after year.Surgical resection is the only curative treatment for patients with NSCLC. For patients with nonresectable NSCLC, conventional chemotherapy or radiotherapy improves prognosis,but only a little. Therefore, the development of novel strategies for the treatment of NSCLC continues to be necessary.
     Advances in our understanding of the molecular biology of tumor cells have led to the development of new treatment strategies, including gene therapy. The molecular basis of cancer is now known to involve activation of dominant oncogenes and inactivation of tumour suppressor genes, these genetic events may represent novel targets for cancer therapy.
     Tumor suppressor genes constrain unusual cell proliferation. These genes induce apoptosis and/or cell cycle arrest in malignant cells .There is a growing list of possible tumor suppressors that can potentially be used to control cancer cell growth in the clinic,such as p53, Rb, p21, p16, p27 and so on.Among these genes, p16 and IL-24 are two representative members whose expressions are always lost during tumor progression, and the latter is already inⅡphase clinical trials.More and more subsequent gene transfer studies using plasmid-based or adenoviral vector mediated delivery of IL-24 and p16 confirmed that their protein expression can reduced growth and colony formation in a variety of human cancer models, including breast, lung, colon, prostate carcinomas and so on, but not normal cells. IL-24 can selectively suppressed tumor cell growth via G2/M cell cycle blockade and apoptosis induction;whereas,p16 can suppress cancer by G1/S arrest.Therefore, successful introductin of them into cancerous cells will have therapeutic outcomes.All these are making them promising and popular targets in gene therapy for cancer.
引文
1. Splinter TA. Introduction to the treatment of lung cancer. Semin Oncol.1997, 24(4 suppl 12): S12-1-S12-5.
    2. Carbone DP. The biology of lung cancer. Semin Oncol. 1997, 24(4):388-401.
    3. Parker SL, Tong T, Bolden S, and Wingo PA. Cancer statistics, 1997. CA Cancer J Clin. 1997, 47(1):5-27.
    4. Giaccone, G.. Clinical impact of novel treatment strategies. Oncogene. 2002, 21(45):6970-6981.
    5. 王孟山,张广宇.癌基因和抑癌基因在肺癌研究中的应用和发展趋势[J].中华结核和呼吸杂志.1998, 21(5):261-262.
    6. 金惠铭,卢建,殷连华. 细胞分子病理生理学[M]. 第 1 版. 郑州:郑州大学出版社. 2002,362-365.
    7. 罗超权. 基因诊断与基因治疗进展[M]. 第 1 版. 河南:河南医科大学. 2000,255-260.
    8. 李涛译,朱旭东,黄培堂审校.1989~2004 全球基因治疗临床试验一览[J].生物技术通报. 2005,1:52-56.
    9. Jiang H, Lin J, Su Z, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995(11):2477–2486.
    10. Jiang H,Su ZZ,Lin JJ,Goldstein NI,Young CS,Fisher PB.The melanoma differentiation associated gene mda-7 suppresses cancer cell growth.Proc Natl Acad Sci USA. 1996, 93(17):9160-9165.
    11. Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene-7, exhibits immunostimulatory activity and is designated IL-24. J Immunol. 2002, 168(12):6041–6046.
    12. Huang EY, Madireddi MT, Gopalkrishnan RV, et al.Genomic structure,chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.Oncogene. 2001, 20(48):7051-7063.
    13. Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing geng mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 2002, 21(5):708-718.
    14. Su ZZ, Madireddi MT, Lin JJ, et al.The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice.Proc Natl Acad Sci USA.1998, 95(24):14400-14405.
    15. Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med. 2001, 7(4):271-282.
    16. Su ZZ, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA. 2001, 98(18):10332-10337.
    17. Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002, 21(29):4558-4566.
    18. Pataer A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene-7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase(PKR). Cancer Res. 2002, 62(8):2239-2243.
    19. Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanism. Mol Ther. 2002, 6(5):637-644.
    20. Cao XX, Mohuiddin I, Chada S, et al.Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells,and is abrogated by over-expression of BCL-XL. Mol Med. 2002, 8(12):869-876.
    21. Lebedeva IV, Sarkar D, Su ZZ,et al. Bcl-2 and Bcl-x (L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7,mda-7/IL-24.Oncogene.2003, 22(54):8758-8773.
    22. Yacoub A, Mitchell C, Lebedeva IV, et al. mda-7 (IL-24) Inhibits growth and enhances radiosenisitivity of glioma cells in vitro via JNK signaling.Cancer Biol Ther. 2003, 2(4):347-353.
    23. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosenitization in malignant gliomas in a p53-independent manner.Oncogene. 2003, 22(8):1164-1180.
    24. Sarkar D, Su ZZ, Lebedeva IV, et al. Mda-7/IL-24 mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci. 2002, 99(15):10054-10059.
    25. Saeki T, Mhashilkar A, Chada S, et al. Tumor-suppressive effects by adenovirus- mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro.Gene therapy.2000, 7(23):2051-2057.
    26. Ramesh R, Ito I, Gopalan B, Saito Y, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004, 9(4):510-518.
    27. Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation associated gene-7/interleukin-24 is a novel ligand that regulates angiogenesis via IL-22 receptor. Cancer Res. 2003, 63(16): 5105-5113.
    28. Fisher PB, Gopalkrishnan RV, Chada S, et al. mda-7/ IL-24, a novel cancer selective apoptosis inducing cytokine gene :from the laboratory into the clinic.Cancer Biol Ther. 2003, 2 (4 Suppl 1): S23-37.
    29. Kamb A, Gruis NA, Weaver-Feldhaus, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994, 264: 436-440.
    30. Grana X, Reddy EP. Cell cycle control in mammalian cell: role of cyclin, cyclin-dependent kinase inhibitors(CDKs), growth suppressor genes and cyclin- dependent kinase inhibitors(CKIs). Oncogene. 1995, 11:211-19.
    31. Luca M, Xie S, Gutran M, et al. Abnormalities in the CDKN2 (p16INK4/MTS-1) gene in human melanoma cells: relevance to tumor growth and metastasis. Oncogene. 1995, 11: 1399-1402.
    32. Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/ p16/ MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995, 55: 4525-4530.
    33. Fueyo J, Gomez2Manzano C, Yung WKA, et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene. 1996, 12:103-110.
    34. Jin X, Nguyen D, Zhang WW, et al. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res. 1995, 55: 250-253.
    35. Okubo Y, Bessho K, Fujimura K, et al. Expression of bone morphogenetic protein-2 via adenoviral vector in C2C12 myoblasts induces differentiation into the osteoblast lineage. Biochem-Biophys- Res-Commun. 1999, 262(3):739-743.
    36. Alden TD, Pittman DD, Hankins GR, et al. In vivo endochondral bone formation using a bonemorphogenetic protein 2 adenoviral vector. Hum Gene Ther. 1999, 10(13): 2245-2253.
    37. Mehrara BJ, Saadeh PB, Steinbrech DS, et al. Adenovirus-mediated gene therapy of osteoblasts in vitro and in vivo. J Bone Miner Res. 1999, 14(8):1290-1301.
    38. Spector JA, Mehrara BJ, Luchs JS, et al. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg. 2000, 44(5):522-528
    39. Chada S, Sutton RB, Ekmekcioglu S, et al. MDA-7/ IL-24 is a unique cytokine-tumor suppressor in the IL-10 Family.Int Immunopharmacol. 2004, 4 (5):649-667.
    40. Madireddi MT, Su ZZ, Young CS, et al. Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy.Adv Exp Med Biol. 2000, 465:239-261.
    41. Chada S, Ramesh R, Mhashilkar AM. Cytokine-and chemokine-based gene therapy for cancer1Curr Opin Mol Ther. 2003, 5 (5):463-474.
    42. Talmadge J E. Gene therapy of cancer-12th International Conference. IDrugs. 2004, 7 (2):100-104.
    43. Travis J. Closing in on melanoma susceptibility gene(s). Science. 1992, 258(5085):1080 - 1081.
    1. Okubo Y, Bessho K, Fujimura K, et al. Expression of bone morphogenetic protein-2 via adenoviral vector in C2C12 myoblasts induces differentiation into the osteoblast lineage. Biochem-Biophys- Res-Commun. 1999, 262(3):739-743.
    2. Alden TD, Pittman DD, Hankins GR, et al. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector. Hum Gene Ther. 1999, 10(13): 2245-2253.
    3. Mehrara BJ, Saadeh PB, Steinbrech DS, et al. Adenovirus-mediated gene therapy of osteoblasts in vitro and in vivo. J Bone Miner Res. 1999, 14(8):1290-1301.
    4. Spector JA, Mehrara BJ, Luchs JS, et al. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg. 2000, 44(5):522-528
    5. 萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯. 分子克隆实验指南,第二版,北京:科学出版社,1993;34-46.
    6. Hermens W, Giger RJ, Holtmaat A, et al. Transient gene transfer to neurons and glia: analysis of adenoviral vector performance in the CNS and PNS. J Neuroscience Methods. 1998, 71(1):85-98.
    7. Yagi S, Ono J, Yoshimoto J, et al. Development of anti-influenza virus drugs I: improvement of oral absorption and in vivo anti-influenza activity of Stachyflin and its derivatives. Pharm-Res. 1999, 16(7):1041-1046.
    8. Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress.J-Biol-Chem. 2001, 276(33):31099- 31104.
    9. 江千里,王健民,温丽敏,等. 批量快速测定法测定标志基因为 GFP 的重组病毒滴度. 第二军医大学学报. 2002, 23(9):1034-1035.
    10. He TC, Zhou S, Costa L, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998, 95(5):2509- 2514.
    11. Fisher KJ, Choi H, Burda J, et al. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis.Virology. 1996, 217:11-22.
    12. Slack RS, Bellivean DJ, Rosenberg M, et al. Adenovirus-mediated gene transfer of the tumor suppressor, P53, induces apoptosis in postmitotic neurons. J Cell Biology. 1996, 4:1085-1096
    13. Reddy PS, Idamakanti N, Chen Y, et al. Replication-Defective Bovine Adenovirus Type 3 as an Expression Vector. Journal of Virology. 1999, 73(11):9137-9144.
    14. Robbins PD, Tahara H, Ghivizzani SC. Viral vector for gene therapy. Trends Biotechnol. 1998, 16:35-45.
    15. Kremer EJ, Boutin S, Chillon M, et al.Canine Adenovirus Vectors: an Alternative for Adenovirus-Mediated Gene Transfer. J. Virol. 2000, 74(1):505 - 512.
    16. Mizuguchi H, Kay MA. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther. 1998, 9(17):2577-2583.
    17. 魏道严,糜 军,陈诗书. 细菌内同源重组法高效制备含 CD、TK 融合自杀基因重组体腺病毒. 癌症. 2000, 19(5):399-403.
    18. 杨 庆,杨广顺,卫立辛,等。腺病毒载体的细菌内同源重组系统的建立和初步应用。第二军医大学学报. 2001, 22(1):90-91.
    19. He TC, Zhou S, Costa L, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998, 95(5):2509- 2514.
    20. Kaneto H, Sharma A, Suzuma K, et al. Induction of c-Myc expression suppresses insulin gene transcription by inhibiting NeuroD/BETA2 -mediated transcriptional activation. J-Biol-Chem. 2002, 277(15): 12998-13006.
    1. 萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯. 分子克隆实验指南,第二版,北京:科学出版社,1993:34-46.
    2. 颜子颖, 王海林 译. 精编分子生物学实验指南. 第一版, 北京: 科学出版社,1998.
    3. 司徒镇强,吴军正. 细胞培养,西安:世界图书出版西安公司,2004.3:251
    4. 唐镇生.分子外科与基因治疗.第一版.上海医科大学出版社;1999:26
    5. 郝新保,张利朝。MTT 法测定细胞生长曲线。第四军医大学学报。1997;18(4):190
    6. Negoescu A, Guillermet C, Lorimier P, et al. Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity.Biomed Pharmacother.1998, 52(6):252-8.
    7. 陈惠英, 刘文虎, 秦叔逵. 三氧化二砷对肝癌细胞株凋亡的诱导作用. 世界华人消化杂志。2000, 8:532-535.
    8. Splinter TA. Introduction to the treatment of lung cancer. Semin Oncol.1997, 24(4 suppl 12): S12-1-S12-5.
    9. Carbone DP. The biology of lung cancer. Semin Oncol. 1997, 24(4):388-401.
    10. Parker SL, Tong T. Bolden S. and Wingo PA. Cancer statistics, 1997. CA Cancer J. Clin. 1997, 47:5-27.
    11. Giaccone, G.. Clinical impact of novel treatment strategies. Oncogene. 2002, 21:6970-6981.
    12. Suhendan E, Julie E, Abner M, et al. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer. 2001, 94(1):54-59.
    13. Ellerhorst JA, Prieto VG, Ekmekcioglu S, et al.Loss of MDA-7 expression with progression of melanoma. J Clin Oncol. 2002, 20(4):1069-1074.
    14. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth.Proc Natl Acad Sci USA. 1996, 93(17):9160-9165.
    15. Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducingproperties. Oncogene. 2001, 20(48):7051-7063.
    16. Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing geng mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 2002, 21(5):708-718.
    17. Su ZZ, Madireddi MT, Lin JJ, et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 1998, 95(24):14400-14405.
    18. Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med. 2001, 7(4):271-282.
    19. Su ZZ, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA. 2001, 98(18):10332-10337.
    20. Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002, 21(29):4558-4566.
    21. Pataer A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene-7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase(PKR). Cancer Res. 2002, 62(8):2239-2243.
    22. Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanism. Mol Ther. 2002, 6(5):637-644.
    23. Cao XX, Mohuiddin I, Chada S, et al. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells,and is abrogated by over-expression of BCL-XL. Mol Med. 2002, 8(12):869-876.
    24. Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl-2 and Bcl-x (L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003, 22(54):8758-8773.
    25. Yacoub A, Mitchell C, Lebedeva IV, et al. mda-7 (IL-24) Inhibits growth and enhances radiosenisitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003,2(4):347-353.
    26. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosenitization in malignant gliomas in a p53-independent manner. Oncogene. 2003, 22(8):1164-1180.
    27. Sarkar D, Su ZZ, Lebedeva IV, et al. Mda-7/IL-24 mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci. 2002, 99(15):10054-10059.
    28. Saeki T, Mhashilkar A, Chada S, et al. Tumor-suppressive effects by adenovirus- mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene therapy. 2000, 7(23):2051-2057.
    29. Ramesh R, Ito I, Gopalan B, Saito Y, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004, 9(4):510-518.
    30. Lukas J, Parry D, Agaard L, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumor suppressor p16. Nature. 1995, 375:503.
    31. Grana X, Reddy EP. Cell cycle control in mammalian cell: role of cyclin, cyclin- dependent kinase inhibitors(CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors(CDKIs). Oncogene. 1995,11:211-19.
    32. Frizelle SP, Jan G, Zhou J, et al. Re-expression of p16ink4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene. 1998, 16:3087-95.
    33. Lee JH, Lee CT, Yoo CG, et al. The inhibitory effect of adenovirus-mediated p16INK4a gene transfer on proliferation of lung cancer cell line.Anticenter Res. 1998, 18(5A):3251-61.
    34. Rocco JW, Li D, Liggett WH, et al. p16INK4a adenovirus-mediated gene therapy for human head and neck squmous cell cancer. Clin Cancer Res. 1998, 4(7):1697-704.
    35. Sauane M, Gopalkrishnan RV, Sarkar D, et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev. 2003, 14(1):35-51.
    36. Sandig V, Brand K. Adenovirally transferred p16INK/CDK2 and p53 genes cooperateto induce apoptotic tumor cell death. Narure Medicine. 1997, 3:313-319.
    37. 程金科,临晨。腺病毒介导 p16 基因转移及诱导黑色素瘤细胞凋亡。中华肿瘤杂志,1991,21(2):89-91。
    38. Saeki T, Mhashilker A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002, 21 (29):4558-4566.
    39. Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation associated gene-7/interleukin-24 is a novel ligand that regulates angiogenesis via IL-22 receptor. Cancer Res. 2003, 63(16):5105-5113.
    1. 韩锐。肿瘤化学预防及药物治疗。北京医科大学中国协和医科大学联合出版社。1991 年,第一版。359-366.
    2. 夏寿萱。放射生物学。军事医学科学出版社。1998;第一版:211。
    3. Yacoub A, Mitchell C, Lister A, et al. Melanoma differentiation associated gene-7 (interleukin-24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res. 2003, 9(9):3272-3281.
    4. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces groeth suppression, apoptosis and radiosentization in malignant gliomas in a p53-independent manner. Oncogene. 2003, 22(8):1164-1180.
    5. Yacoub A, Mitchell C, Lebedva IV, et al. mda-7 (IL-24) inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003, 2 (4):347-353.
    6. Gorski DH, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 1999, 59:3374 – 3378.
    7. Geng L, et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 2001, 61:2413 – 2419.
    8. Ning S, Laird D, Cherrington JM and Knox SJ. The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat. Res. 2002, 157:45 – 51.
    9. Shi, Q, Xiong, Q, Le, X., and Xie, K. Regulation of interleukin-8 expression by tumor-associated stress factors. J. Interferon Cytokine Res. 2001, 21:553 – 566.
    10. Camphausen K, Mose MA, Beecken WD, Khan MK, Folkman J, and O’Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 2001, 61:2207 – 2211.
    11. Mauceri H. J, et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature. 1998, 394:287 – 291.
    12. Gorski DH, et al. Blockage of the vascular endothelial growth factor stress responseincreases the antitumor effects of ionizing radiation. Cancer Res. 1999, 59:3374 – 3378.
    13. Hess C, et al. Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br. J. Cancer. 2001, 85:2010 – 2016.
    14. Gorski DH, et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 1998, 58:5686 – 5689.
    15. Lund EL, Bastholm L, and Kristjansen PE. Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin. Cancer Res. 2000, 6:971 – 978.
    16. Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, and Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiationinduced long-term control of human tumor xenografts. Cancer Res. 2001, 61:39 – 44.
    17. Wachsberger PR, Burd R, and Dicker AP. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin. Cancer Res. 2003, 9:1957 – 1971.
    18. Garcia-Barros M, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003, 300:1155 – 1160.
    19. Luca M, Xie S, Gutran M, et al. Abnormalities in the CDKN2 (p16INK4/MTS-1) gene in human melanoma cells: relevance to tumor growth and metastasis. Oncogene. 1995, 11:1399-1402.
    20. Fueyo J, Gomez-Manzano C, Yung WKA, et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene. 1996, 12:103-110.
    21. Jin X, Nguyen D, Zhang WW, et al. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res. 1995, 55:250-253.
    22. Luca M, Xie S, Gutran M, et al. Abnormalities in the CDKN2 (p16INK4/MTS-1) gene in human melanoma cells: relevance to tumor growth and metastasis. Oncogene. 1995,11:1399-1402.
    23. Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/ p16/ MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995, 55:4525-4530.
    1. Splinter TA. Introduction to the treatment of lung cancer. Semin Oncol.1997, 24(4 suppl 12): S12-1-S12-5.
    2. Kok K, Osinga J, Carritt B et al. Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer.Nature.1987,330(6148):578-581.
    3. Ihde DC, Minna JD. Non-small cell lung cancer. Part I: Biology, diagnosis, and staging. Curr Probl Cancer.1991, 15(2):61-104.
    4. Tsuchiya E, Nakamura Y, Weng SY et al. Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res.1992, 52(9):2478-2481.
    5. Yokoyama S, Yamakawa K, Tsuchiya E et al. Deletion mapping on the short arm of chromosome 3 in squamous cell carcinoma and adenocarcinoma of the lung.Cancer Res.1992, 52(4):873-877.
    6. Kovalchuk O , Naumnik W, Serwicka A , et al. K-ras codon 12 mutations may be detected in serumof patients suffering from adeno-and large cell lung carcinoma. A preliminary report. Folia Histochem Cytobiol, 2001, 39 Suppl 2:70-72.
    7. Westra WH , Baas IO , Hruban RH , et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res, 1996, 56 (9):2224-2228.
    8. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol ,1998 ,16(3) :1207-1217.
    9. 周清华,孙燕主编. 肺癌新理论新技术进展. 成都:四川大学出版社,2003. 20-37.
    10. Brennan J, O'Connor T, Makuch RW, et al. myc family DNA amplification in 107 tumors and tumor cell lines from patients with small cell lung cancer treated with different combination chemotherapy regimens. Cancer Res.1991, 51(6):1708-1712.
    11. Kern JA, Filderman AE, et al. Oncogenes and growth factors in human lung cancer. Clin Chest Med.1993, 14(1):31.
    12. Funa K, Steinholtz L, Nou E, Bergh J. Increased expression of N-myc in human small cell lung cancer biopsies predicts lack of response to chemotherapy and poor prognosis. Am J Clin Pathol. 1987, 88(2):216-20.
    13. Richardson GE, Johnson BE. The biology of lung cancer. Semin Oncol. 1993, 20(2):105-127.
    14. Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer.1994, 73(8):2013-2026.
    15. Tseng J E , Rodriguez M , Ro J , et al. Gender differences in p53 mutational status in small cell lung cancer. Cancer Res .1999, 59 (22) :5666-5670.
    16. Chen J T, Ho WL, Cheng YW, et al. Detection of p53 mutations in sputum smears precedes diagnosis of non2small cell lung carcinoma. Anticancer Res .2000, 20 (4):2687-2690.
    17. Gonzalez R, Silva JM, Sanchez A, et al. Microsatellite alterations and TP53 mutations in plasma DNA of small2 cell lung cancer patients: follow-up study and prognostic significance. Ann Oncol .2000, 11(9):1097-1104.
    18. Chung GT, Sundaresan V, Hasleton P, et al. Clonal evolution of lung tumors. Cancer Res. 1996, 56 (7):1609-1614.
    19. Brambilla E , Gazzeri S , Lantuejoul S , et al.p53 mutant immunophenotype and deregulation of p53 transcription pathway ( Bcl2 ,Bax , and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res .1998, 4(7):1609-1618.
    20. Nuorva K, Soini Y, Kamel D , et al. Concurrent p53 expression in bronchial dysplasias and squamous cell lung carcinomas. Am J Pathol. 1993, 142(3):725-732.
    21. Marx J. New tumor suppressor may rival p53. Science.1994, 264 (5157):344-345.
    22. 王洁,王曾礼,高洁. 癌基因蛋白在肺癌中的表达及其临床意义. 中华结核和呼吸杂志. 1997, 20 (5):317-321.
    23. Moriyama S, Nakashima Y, Yano M, et al. Ratio of expression of p16INK4a top14ARF correlates with the progression of non-small cell lung cancer. Jpn J Cancer Res. 2002, 93(7):783-788.
    24. Belinsky SA , Palmisano WA , Gilliland FD ,et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 2002, 62(8):2370-2377.
    25. Palmisano WA , Divine KK, Saccomanno G,et al. Predicting lung cancer by detecting aberrant promoter methylation in spu-tum.Cancer Res. 2000, 60 (21):5954-5958.
    26. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16 (INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A .1998, 95 (20):11891-11896.
    27. 叶玉坤. 肺癌发生发展中的分子事件与肺癌早期诊断. 中华外科杂志. 2000, 38 (7):485-487.
    28. Harbour JW, Lai SL, Wang PJ et al. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science.1988, 241(2):353-357.
    29. Yokota J, Akiyama T.Fung YKT et al. Altered expression of the retinoblastoma (RB) gene in small-cell carcinoma of the lung. Oncogene.1988, 3(2):471-475.
    30. Steel M. Cancer genes: complexes and complexities. Lancet. 1993, 342(8874);754-755.
    31. Cook RM, Miller YE, Bunn PA. Small cell lung cancer: etiology, biology, clinical features, staging, and treatment. Curr Probl Cancer.1993, 17(2):69-141.
    32. Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989, 59 (3):521-529.
    33. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997, 90(4):785-795.
    34. Misiti S, Nanni S, Fontemaggi G, et al. Induction of HTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol. 2000, 20 (11):3764-3771.
    35. Zhou W, Satorn K, Masahiro T, et al. Progesterone regulates human telomerase resverse transcriptase gene expressionvai activation of mitogen-activated protein kinase signaling pathway. Canncer Res, 2000, 60(19):5376-5381.
    36. Hiyama K, Hiyama E, Ishiokaa S, et al. Ttelomerase activity in small cell andnon-small-cell lung cancer. J Natl Cancer Inst. 1995, 87(12):895-901.
    37. Taga S, Osaki T, Ohami A, et al. Prognostic impact of teiomerase activity in non-small cell lung cancers. Ann Surg. 1999, 230(5):715-720.
    38. Dejmek A, Yahata N, Ohyashiki K, et al. Correlation between morphology and telomerase activity in cells from exfoliatire lung egtologlc specimens. Cancer.2000, 90(2):117-125.
    39. Yashima K, LitzkyLA, Kaiser L, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res. 1997, 57 (12):2373-2377.
    40. Albanell J, Lonardo F, Rusch Y, et al. High telomerase activity in primary lung cancer: association with increased cell prolifcration rates and advanced pathologic stage. J Natl Cancer Inst.1997, 89(21):1609-1615.
    41. Zhou J, Nong L, Wloch M, et al. Expression of early lung cancer detection marker:hnRNP2A2/ B1 and its relation to microsa-tellite alteration in non2small cell lung cancer. Lung Cancer. 2001, 34 (3):341-350.
    42. Wright GS, Gruidl ME. Early detection and prevention of lung cancer. Curr Opin Oncol. 2000, 12 (2):143-148.
    43. Satoh H, Kamma H, Ishikawa H, et al. Expression of hnRNP A2/ B1 proteins in human cancer cell lines. Int J Oncol. 2000, 16 (4):763-767.
    44. Zhou J , Allred DC , Avis I , et al. Differential expression of the early lung cancer detection marker , heterogeneous nuclear ribonucleoprotein-A2/ B1 ( hnRNP-A2/ B1 ) in normal breast and neoplastic breast cancer. Breast Cancer Res Treat. 2001, 66 (3) :217-224.
    45. Sueoka E , Sueoka N , Goto Y, et al. Heterogeneous nuclear ribonucleoprotein B1 as early cancer biomarker for occult cancer of human lungs and bronchial dysplasia. Cancer Res. 2001, 61(5):1896-1902.
    46. Fielding P, Turnbull L, Prime W, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens: a clinical marker of early lung cancer detection. Clin Cancer Res. 1999, 5 (12):4048-4052.
    47. Zochbauer2Muller S, Fong KM, Maitra A, et al. 5′CpGisland methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001, 61 (9):3581-3585.
    48. Esteller M, Sanchez2Cespedes M, Rosell R, et al. Detection of aberrant promoter hyper-methylation of tumor suppressor genes in serum DNA from non2small cell lung cancer patients. Cancer Res. 1999, 59(1):67-70.Erratum in: Cancer Res. 1999, 59 (15):3853.
    49. Usadel H , Brabender J , Danenberg KD , et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue , serum , and plasma DNA of patients with lung cancer. Cancer Res. 2002, 62 (2):371-375.
    50. 王允 , 周清华 . FHIT 基因及其产物的结构和功能 . 中国肺癌杂 . 2002, 5 (3):238-240.
    51. 王允,周清华,张尚福,等. 人肺癌中FHIT基因表达的临床病理生理意义及与预后的关系研究. 中国肺癌杂志. 2000, 5 (1):629.
    52. Sozzi G, Pastorino U, Moiraghi L, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res.1998, 58(22):5032-5037.
    53. Hayashi S, Watanabe J , Nakachi K, et al. Genetic linkage of lung cancer-associated Msp I polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem (Tokyo). 1991, 110(3):407-411.
    54. Nakachi K, Hayashi S, Kawajiri K, et al. Association of cigarette smoking and CYP1A1 polymorphisms with adenocarcinoma of the lung by grades of differentiation.Carcinogenesis. 1995, 16(9):2209-2213.
    55. Le Marchand L, Sivaraman L, Pierce L, et al. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res. 1998, 58 (21):4858-4863.
    56. Nakachi K, Imai K, Hayashi S , et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 1993, 53 (13):2994-2999.
    57. Uematsu F , Kikuchi H , Motomiya M , et al.Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn J Cancer Res. 1991, 82(3):254-256.
    58. Persson I, Johansson I, Bergling H, et al. Genetic polymorphism of cytochrome P4502E1 in a Swedish population. Relationship to incidence of lung cancer. FEBS Lett. 1993, 319 (3):207-211.
    59. Benhamou S , Lee WJ , Alexandrie AK, et al. Meta- and pooled analyses of the effectsof glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis. 2002, 23(8):1343-1350. Erratum in: Carcinogenesis. 2002, 23(10):1771.
    60. Wikman H , Thiel S , Jager B , et al. Relevance of N2acetyltransferase 1 and 2 (NAT1 ,NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics. 2001, 11(2):157-168.
    61. 王孟山,张广宇.癌基因和抑癌基因在肺癌研究中的应用和发展趋势.中华结核和呼吸杂志. 1998, 21(5):261-262.
    62. Roth JA , Nguyen D , Lawrence DD , et al .Ret rovirus-mediated wild-type p53 gene transfer to tumors of patient s wit h lung cancer . Nat Med. 1996, 2 (9):985-991.
    63. Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003, 3 (7):477-488.
    64. O’Malley BWJ r, Couch ME. Gene therapy principles and strategies for head and neck cancer. Adv Otorhinolaryngol .2000, 56:279-288.
    65. Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist ,2002 ,7 (1) ∶46-59.
    66. Roth JA, Cristiano RJ. Gene t herapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997, 89(1):21-39.
    67. Xing Z, Bracial T, Jordana M, et al. Adenovirus-mediated cytokine gene transfer at tissue sites. Overexpression of IL-6 induces lymphocytic hyperplasia in the lung. J Immunol. 1994, 153(9):4059-4069.
    68. Braciak TA, Mittal SK, Graham FL, et al. Construction of recombinant human type 5 adenoviruses expressing rodent IL-6 genes. An approach to investigate in vivo cytokine function. J Immunol.1993, 151(10):5145-5153.
    69. Zabner J, Petersen DM, Puga AP, et al. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat Genet. 1994, 6(1):75-83.
    70. Mastrangeli A, Danel C, Rosenfeld MA, et al. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J Clin Invest. 1993, 91(1):225-234.
    71. Ramesh R , Saeki T , Templeton NS , et al .Successful t reatment of primary and disseminated human lung cancer s by systemic delivery of tumor suppressor genes using an improved liposome vector . Mol Ther. 2001, 3 (3):337-350.
    72. 金惠铭,卢建,殷连华. 细胞分子病理生理学[M]. 第 1 版. 郑州:郑州大学出版社. 2002,362-365.
    73. 罗超权. 基因诊断与基因治疗进展[M]. 第 1 版. 河南:河南医科大学. 2000, 255-260.
    74. 朱世能,陆世伦. 肿瘤基础理论[M]. 第 2 版. 上海:上海医科大学出版社.2000,136-138.
    75. Pearson AS, Spitz FR, Swisher SG, et al. Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated WT-P53 gene transfer in lung cancer cells. Clin Cancer Res. 2000, 6(3):887-890.
    76. Nemunaitis J, Swisher SG, Timmons T, et al. Adenovirus-mediated WT-P53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol. 2000, 18(3): 609-622.
    77. Kamb A, Gruis NA, Weaver-Feldhaus, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994, 264: 436-440.
    78. Grana X, Reddy EP. Cell cycle control in mammalian cell: role of cyclin, cyclin-dependent kinase inhibitors(CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors(CKIs). Oncogene. 1995, 11:211-19.
    79. Jiang H, Lin J, Su Z, et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995, 11(12):2477–2486.
    80. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA.1996, 93(17):9160-9165.
    81. Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene-7, exhibits immunostimulatory activity and is designated IL-24. Immunol. 2002(168)6041–6046.
    82. Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene. 2001, 20(48):7051-7063.
    83. Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing geng mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 2002, 21(5): 708-718.
    84. Su ZZ, Madireddi MT, Lin JJ, et al. The cancer growth suppressor gene mda-7selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA. 1998, 95(24):14400-14405.
    85. Mhashilkar AM, Schrock RD, Hindi M, et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med. 2001, 7(4):271-282.
    86. Su ZZ, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA. 2001, 98(18):10332-10337.
    87. Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002, 21(29):4558-4566.
    88. Pataer A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene-7 (mda-7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res. 2002, 62(8):2239-2243.
    89. Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanism. Mol Ther. 2002, 6(5):637-644.
    90. Cao XX, Mohuiddin I, Chada S, et al. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over- expression of BCL-XL. Mol Med. 2002, 8(12):869-876.
    91. Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl-2 and Bcl-x (L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003, 22(54):8758-8773.
    92. Yacoub A, Mitchell C, Lebedeva IV, et al. mda-7 (IL-24) Inhibits growth and enhances radiosenisitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther. 2003, 2(4):347-353.
    93. Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosenitization in malignant gliomas in a p53-independent manner. Oncogene. 2003, 22(8):1164-1180.
    94. Sarkar D, Su ZZ, Lebedeva IV, et al. Mda-7/IL-24 mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADDfamily of genes by means of p38 MAPK. Proc Natl Acad Sci. 2002, 99(15): 10054-10059.
    95. Saeki T, Mhashilkar A, Chada S, et al. Tumor-suppressive effects by adenovirus- mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene therapy. 2000, 7(23):2051-2057.
    96. Ramesh R, Ito I, Gopalan B, Saito Y, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther. 2004, 9(4):510-518.
    97. Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation associated gene-7/ interleukin-24 is a novel ligand that regulates angiogenesis via IL-22 receptor. Cancer Res. 2003, 63 (16): 5105-5113.
    98. Fisher PB, Gopalkrishnan RV, Chada S, et al. mda-7/ IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2003, 2 (4 Suppl 1): S23-37.
    99. Poulsen TT, Pedersen N, Poulsen HS.Replacement and suicide gene therapy for targeted treatment of lung cancer. Clin Lung Cancer. 2005, 6(4):227-36.
    100. Moolten FL. Tumor chemosensitivity by inserted herpes thymidene kinase gene; Paradigm for a prospective cancer control strategy. Cancer Res. 1986, 46(10): 5276-5281.
    101. Nishino K, Osako T, Kumagai T, et al. Adenovirus-mediates gene therapy specific for small cell lung cancer cells using a Myc-Max binding motif. Int J Cancer. 2001, 91(6):851-856.
    102. Kwong YL, Chen SH, Kosai K, et al. Combination therapy with suicide and for hepatic metastasis of lung cancer. Chest. 1997, 112(5):1332-1337.
    103. Yamanishi Y, Hiyama K, Maeda H, et al. Specific growth inhibition of SCLC cells by adenovirus vector expressing antisense c-kit transcripts. Jpn Cancer Res. 1996, 87(5):534-540.
    104. Lee GT,Wu S, Gabrllovich D, et al. Antitumor effects of adenovirus expressing antisense insulin-like growth factor I on himan lung cancer cell lines. Cancer Res, 1996, 56(7):3038-3043.
    105. Gao Z, Gao Z, Fields J, et al. Co-transfection of MDR1 and MRP antisense RNAs abolishes the drug resistance in multidrug-resistant human lung cancer cells.Anticancer Res. 1998, 18(4c):3073-3076.
    106. Rappa G, Lorico A, Sartorelli AC, et al. Reversal of etoposide resistance in non-P-glycoprotein expressing multidrug resistant tumor cell lines by novobiocin. Cancer Res. 1993, 53(22): 5487-5493.
    107. Weill D, Mack M, Roth J, et al. Adenoviral-mediated TP-53 gene transfer to non-small cell lung cancer through endobronchial injection. Chest. 2000, 118(4): 966-970.
    108. Tanaka T, Cao Y, Folkmen J, et al. Viral vector-targeted antiangiogenic gene therpy utilizing an angioststin complementary DNA. Cancer Res. 1998, 58(12): 3362-3366.
    109. Park k H, Kim G, Jang S H, et al. Gene therapy with GM-CSF、interleukin-4 and herpes simplex virus thymidine kinase shows strong antitumor effect on lung cancer. Anticancer Res. 2003, 23(2): 1559-1564.
    110. Kinsey BM, Densmore CL, Orson FM. Non-viral gene delivery to the lungs. Curr Gene Ther. 2005, 5(2):181-94.
    111. Vattemi E, Claudio PP. Gene therapy for lung cancer: practice and promise. Ann Ital Chir. 2004, 75(3):279-89.
    112. Gautschi O, Betticher DC. Molecular therapy in lung cancer .Ther Umsch. 2004, 61(6):365-71.
    113. Modesit t SC, Ramirez P, Zu Z, et al. In vitro and in vivo adenovirus-mediated p53 and p16 tumor suppressor therapy in ovarian cancer . Clin Cancer Res. 2001, 7(6):1765-1772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700