养殖大菱鲆病原菌迟缓爱德华氏菌的分离鉴定及快速检测技术的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大菱鲆(Scophthalmus maximus L)是一个经济价值很高的养殖品种,它生长迅速并且味道十分鲜美,从而深受人们的喜爱。自从20世纪90年代从欧洲引入中国后,大菱鲆的养殖得到了很快的发展。然而,随着养殖环境的不断恶化,使得大菱鲆的细菌性疾病不断发生。爱德华氏菌病(edwardsiellosis)就是经常发生的一种。
     爱德华氏菌病是由迟缓爱德华氏菌(Edwardsiella tarda)引起的。迟缓爱德华氏菌,也被记为迟钝爱德华氏菌或缓慢爱德华氏菌,属肠杆菌科,是我国水产养殖中极具危害性的病原菌。在鱼类中,迟缓爱德华氏菌有着广谱的宿主范围,能够感染多种淡水和海水鱼类,包括牙鲆、鳗鲡、真鲷、虹鳟、鲻鱼和罗非鱼等,其感染造成鱼类出血性败血症以及内脏组织的坏死等病症,最终导致患鱼死亡,统称为爱德华氏菌病。另外,迟缓爱德华氏菌还可感染鸟类、哺乳动物及爬行动物等;也有造成人类胃和肠道感染的报道。
     2006年夏季和秋季,山东省胶南和昌邑一带的许多海水养殖场养殖大菱鲆发生暴发性传染病,肉眼能观察到的症状为眼睛肿胀、有炎症、有出血点、有腹水和粘性液体。经分离得到一株致病菌,命名为LTB-4。病原菌的主要特征是:革兰氏染色阴性,短棒状,大小(0.5~0.9)×(1.0~2.0)μm,无鞭毛,吲哚、硫化氢、赖氨酸脱羧酶、鸟氨酸脱羧酶和葡萄糖阳性,VP反应阴性,不能利用丙二酸、蔗糖、甘露醇、山梨醇、鼠李糖和蜜二糖。腹腔注射大菱鲆的半数致死量为3×103 cfu/mL。16Sr DNA序列比对和构建进化树表明LTB-4与迟缓爱德华氏菌相似度最高。结合其他的鉴定手段包括形态观察、生理生化指标,判定这株菌为鞭毛缺失型迟缓爱德华氏菌。这是国内首次报道鞭毛缺失型迟缓爱德华氏菌。使用gyrB基因的通用引物扩增了LTB-4和ET2034(迟缓爱德华氏菌标准菌株)的部分片段并测序,通过比对设计迟缓爱德华氏菌gyrB基因的特异性引物。PCR结果表明可以在3h内结束,除了迟缓爱德华氏菌LTB-4和ET2034能扩增出特异性片段,其他对照菌株都为阴性;PCR的检测阈值是4.0×104 cfu/mL。用迟缓爱德华氏菌WY28作为抗原,免疫新西兰兔,获得效价为1:2048的多克隆抗体;以此多克隆抗体作为一抗,山羊抗兔IgG-HRP作为酶标二抗,建立迟缓爱德华氏菌的间接ELISA快速检测法。采用棋盘滴定法确定抗原与一抗的最佳工作浓度分别为106 cfu/mL和1:10000;酶标二抗的最适工作浓度为1:1000。将该方法标准化后进行检测实验,交叉实验结果表明,此多克隆抗体与肠杆菌科的其它菌株交叉反应结果为阴性。研究结果表明,本研究建立的间接ELISA技术在6 h内即可检测出浓度为105 cfu/mL的迟缓爱德华氏菌,且与所检测的其它菌株均无交叉反应。
     本论文在国内首次报道了大菱鲆病原菌,鞭毛缺失型迟缓爱德华氏菌,并建立了两种迟缓爱德华氏菌的快速检测方法,为大菱鲆爱德华氏菌病的研究和防治提供了基础和保障。
Turbot (Scophthalmus maximus L) is an economically important marine fish species and is valued for its rapid growth and good taste. Since introduced into China from Europe in the 1990s, the commercial culture develops very rapidly. However, with the rapid development of the turbot culture in China, several diseases occurred and it suggestes that they resulted from high-intensive cultivation and improper management since 2001. Edwardsiellosis is very common now, there were several reports between 2006 and 2007.
     Edwardsiella tarda is the causative agent of edwardsiellosis in many commercially important freshwater and marine fish such as channel catfish, eels, mullet, chinook salmon, flounder, carp, tilapia and striped bass. It causes septicemia with extensive skin lesions, affecting internal organs and leads to extensive losses in both freshwater and marine aquaculture. It reported in humans as the cause of gastroenteritis and generalized infections mainly among individuals with impaired immune systems.
     During the spring and summer of 2006, an epizootic occurred among cultured turbot (Scophthalmus maximus L.) in several fish farms in Qingdao, China. Eye tumefaction, inflammation, haemorrhages, ascites and the presence of a purulent fluid were the main macroscopic lesions observed. A Gram-negative, rod shaped bacterium (designated as LTB-4) was isolated from the infected fish. Isolate LTB-4 was gram-negative rod-shaped bacteria, occurring singly or in pairs with round-ends, (0.5~0.9)μm×(1.0~2.0)μm in size. Biochemically the isolate was positive for indole, H2S production, lysine decarboxylase, ornithine decarboxylase and D-glucose utilization, meanwhile negative for V.P. (voges proskauer) test, and malonate, sucrose, D-mannitol, D-sorbitol, L-rhamnose, and melibiose utilization. The LD50 was established as 3×103 cfu/g by intraperitoneal (i.p.) injection. Isolate LTB-4 is identified as E. tarda by morphology, physiological and biochemical tests and 16S rDNA sequence analysis. Unlike those commonly described E. tarda strains reported in China, no flagellum was observed. Partial gyrB genes was amplified from E. tarda using the universal primers of gyrB genes and sequenced. The PCR primers for the gyrB gene specific to E. tarda were designed. It revealed positive amplification of the gyrB fragment in E. tarda, whereas other bacterial species were negative; with the detection limit of 4.0×104 cfu/mL. Moreover, the technique enabled the recognition of E. tarda from diseased fish. An indirect Enzyme Linked Immunosorbent Assay (ELISA) for the rapid diagnosis of E. tarda, the pathogen of edwardsiellosis, is developed. The best working concentration of antigen and antiserum were 106 cfu/mL and 1∶10000 separately, determined by using checkerboard titration. The working concentration of HRP-labeled goat anti-bovine IgG was 1∶1000. The sensitivity of the serum was tested, and the lowest E. tarda suspension was 105 cfu/mL. Cross-reactions of antisera with other bacteria were detected, all results were negative.
引文
[1]雷霁霖.大菱鲆养殖技术.上海科学技术出版社, 2005.
    [2]雷霁霖.大菱鲆引进及繁殖与养殖.养鱼世界(台湾) 2001; 25(3):19-22.
    [3]雷霁霖.海水养殖新品种介绍:大菱鲆.中国水产2000(4):38-39.
    [4]雷霁霖,马爱军,陈超,庄志猛.大菱鲆Scophthalmus maximus( L.)养殖现状与可持续发展.中国工程科学2005; 7(5):30-34.
    [5] Austin B, DA. Austin. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. Chichester: Praxis Publishing Ltd, 2007.
    [6] A. E. Toranzo, Santos Y., Lemos M. L., Ledo A., Bolinches J. Homology of Vibrio anguillarum strains causing epizootics in turbot, salmon and trout reared on the Atlantic coast of Spain. Aquaculture 1987; 67(1):41-52.
    [7] J. Bolinches, Lemos M. L., Fouz B., Cambra M., Larsen J. L., Toranzo A. E. Serological Relationships among Vibrio anguillarum Strains. Journal of Aquatic Animal Health 1990; 2(1):21-29.
    [8] A. E. Toranzo, Barja J. L. A review of the taxonomy and seroepizootiology of Vibrio anguillarum, with special reference to aquaculture in the Northwest of Spain. Diseases of Aquatic Organisms 1990; 9(1):73-82.
    [9] L. Angulo, Lopez J. E., Vicente J. A., Saborido A. M. Haemorrhagic areas in the mouth of farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 1994; 17(2):163-169.
    [10] B. Novoa, Nunez S., Fernandez-Puentes C., Figueras A. J., Toranzo A. E. Epizootic study in a turbot farm: bacteriology, virology, parasitology and histology. Aquaculture 1992; 107(2-3):253-258.
    [11] B. Fouz, Larsen J. L., Toranzo A. E. Vibrio damsela as a pathogenic agent causing mortalities in cultured turbot (Scophthalmus maximus). Bulletin of the European Association of Fish Pathologists 1991; 11(2):80-81.
    [12] S. Devesa, Barja J. L., Toranzo A. E. Ulcerative skin and fin lesions in reared turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 1989; 12(4):323-333.
    [13] J. Lamas, Anadon R., Devesa S., Toranzo A. E. Visceral neoplasia and epidermal papillomas in cultured turbot Scophthalmus maximus. Diseases of Aquatic Organisms1990; 8(3):179-187.
    [14] R. J. Roberts. Fish Pathology: Churchill Livingstone, 2001.
    [15] A. E. Toranzo, Devesa S., Heinen P., Riaza A., Nunez S., Barja J. L. Streptococcosis in cultured turbot caused by an Enterococcus-like bacterium. Bulletin of the European Association of Fish Pathologists 1994; 14(1):19-23.
    [16] A. Domeenech, Derenaaandez-Garayzabal J. F., Pascual C., Garcia J. A., Cutuli M. T., Moreno M. A., Collins M. D., Dominguez L. Streptococcosis in cultured turbot, Scopthalmus maximus (L.), associated with Streptococcus parauberis. Journal of Fish Diseases 1996; 19(1):33-38.
    [17] A. E. Toranzo, Barja J. L. First report of furunculosis in turbot reared in floating cages in Northwest of Spain. Bulletin of the European Association of Fish Pathologists 1992; 12(5):147-149.
    [18] K. Pedersen, Larsen J. L. First report on outbreak of furunculosis in turbot Scophthalmus maximus caused by Aeromonas salmonicida subsp. salmonicida in Denmark. Bulletin of the European Association of Fish Pathologists 1996; 16(4):129-133.
    [19] J. L. Larsen, Pedersen K. Atypical Aeromonas salmonicida isolated from diseased turbot (Scophtalmus maximus L.). Acta veterinaria Scandinavica 1996; 37(2):139-46.
    [20] M. Alsina, Blanch A. R. First isolation of Flexibacter maritimus from cultivated turbot (Scophthalmus maximus). Bulletin of the European Association of Fish Pathologists 1993; 13(5):157-160.
    [21] M. Vigneulle, Laurencin F. B. Serratia liquefaciens: a case report in turbot (Scophthalmus maximus) cultured in floating cages in France. Aquaculture 1995; 132(1-2):121-124.
    [22] N. M. S. Dos Santos, Do Vale A., Sousa M. J., Silva M. T. Mycobacterial infection in farmed turbot Scophthalmus maximus. Diseases of Aquatic Organisms 2002; 52(1):87-91.
    [23] J. S. Buchanan, Madeley C. R. Studies on Herpesvirus scophthalmi infection of turbot Scophthalmus maximus (L.) ultrastructural observations. Journal of Fish Diseases 1978; 1(4):283-295.
    [24] B. Bloch, Larsen J. L. A case of severe general edema in young farmed turbot associated with a herpes virus infection. Bulletin of the European Association of Fish Pathologists. 1993; 14:130-131.
    [25] W. S. Kim, Oh M. J., Jung S. J., Kim Y. J., Kitamura S. I. Characterization of an iridovirus detected from cultured turbot Scophthalmus maximus in Korea. Diseases of Aquatic Organisms 2005; 64:175-180.
    [26] B. Lupiani, Dopazo C. P., Ledo A., Fouz B., Barja J. L., Hetrick F. M., Toranzo A. E. New Syndrome of Mixed Bacterial and Viral Etiology in Cultured Turbot Scophthalmus maximus. Journal of Aquatic Animal Health 1989; 1(3):197-204.
    [27] S. H. Mortensen, Evensen O., Rodseth O. M., Hjeltnes B. K. The relevance of infectious pancreatic necrosis virus (IPNV) in farmed Norwegian turbot (Scophthalmus maximus). Aquaculture 1993; 115(3-4):243-252.
    [28] B. Bloch, Gravningen K., Larsen J. L. Encephalomyelitis among turbot associated with a picornavirus-like agent. Diseases of Aquatic Organisms 1991; 10(1):65-70.
    [29] H. J. Schlotfeldt, Ahne W., Vestergard-Jorgensen P. E., Glende W. Occurrence of viral haemorrhagic septicaemia in turbot (Scophthalmus maximus)-a natural outbreak. Bulletin of the European Association of Fish Pathologists 1991; 11(3):105-107.
    [30] E. Sterud, Hansen M. K., Mo T. A. Systemic infection with Uronema-like ciliates in farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 2000; 23(1):33-37.
    [31] R. Iglesias, ParamáA., Alvarez M. F., Leiro J., Fernández J., Sanmartín M. L. Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Diseases of Aquatic Organisms 2001; 46:47-55.
    [32] R. A. Matthews, Matthews B. F. Cell and tissue reactions of turbot Scophthalmus maximus (L.) to Tetramicra brevifilum gen. n., sp. n.(Microspora). Journal of Fish Diseases 1980; 3(6):495-515.
    [33] J. Leiro, Paniagua E., Ortega M., Parama A., Fernandez J., Sanmartin M. L. An amoeba associated with gill disease in turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 1998; 21(4):281-288.
    [34] O. Palenzuela, Redondo M. J.,áLvarez-Pellitero P. Description of Enteromyxum scophthalmi gen. nov., sp. nov.(Myxozoa), an intestinal parasite of turbot (Scophthalmus maximus L.) using morphological and ribosomal RNA sequence data. Parasitology 2002; 124(04):369-379.
    [35] P. Kirmse. Observations on the pathogenicity of Haemogregarina sachai Kirmse, 1978, in farmed turbot Scophthalmus maximus (L.). Journal of Fish Diseases 1980; 3(2):101-114.
    [36] H. W. Ferguson, Roberts R. J. Myeloid leucosis associated with sporozoan infection in clutured turbot (Scophthalmus maximus L.). J Comp Pathol 1975; 85(2):317-26.
    [37]邹玉霞,张培军,莫照兰,刘婷,徐永立.大菱鲆出血症病原菌的分离和鉴定.高技术通讯2004; 4:89-93.
    [38]张正,王印庚,韩文君,李秋芬.养殖大菱鲆烂鳍病病原菌的鉴定及系统发育学研究.海洋科学进展2004; 22(2):193-197.
    [39]陈吉祥,李彩风,颜显辉,李筠,池政豪,薛学温,王印庚.大菱鲆病原鳗弧菌生物学及分子特征研究.高技术通讯2005; 15(6):372-375.
    [40]范文辉,黄倢,王秀华,史成银,刘莉.养殖大菱鲆溃疡症病原菌的分离鉴定及系统发育分析.微生物学报2005(5):05.
    [41]李筠,颜显辉,陈吉祥,王印庚,李秋芬.养殖大菱鲆腹水病病原的研究.中国海洋大学学报(自然科学版) 2006:04.
    [42]王印庚,秦蕾,张正,马爱军,张立敬.养殖大菱鲆的爱德华氏菌病.水产学报2007:04.
    [43]薛淑霞,冯守明,孙金生.海水工厂化养殖大菱鲆(Scophthalmus maximus)和褐牙鲆(Paralichthys olivaceus)腹水病病原菌的分离与鉴定.海洋与湖沼2006; 37(6):548-554.
    [44]张晓君,战文斌,陈翠珍,房海.牙鲆迟钝爱德华氏菌感染症其病原的研究.水生生物学报2005; 29(1):31-37.
    [45]王印庚,陈洁君,秦蕾.养殖大菱鲆蟹栖异阿脑虫感染及其危害.中国水产科学2005; 12(5):594-601.
    [46]史成银,王印庚,秦蕾,张正,杨冰,杨少丽.我国养殖大菱鲆病毒性红体病及其流行情况调查.海洋水产研究2005; 26(1):1-6.
    [47]于大国,李新壮.大菱鲆刺激隐核虫病与防治.齐鲁渔业2002; 19(8):18-18.
    [48]杜佳垠.大菱鲆盾纤虫病研究简报.齐鲁渔业2002; 19(6):6-7.
    [49]雷霁霖,马爱军,王印庚,杨军勇.一种吻蛭类大鱼蛭在大菱鲆鱼体上的感染.海洋水产研究2003; 24(3):72-74.
    [50]唐永新,谭福伟.大菱鲆养殖技术之四:大菱鲆亲鱼海水小瓜虫病的防治方法.中国水产2002(5):57-57.
    [51] T. Hoshina. On a new bacterium Paracolobactrum anguillimortiferum n. sp. Bulletin of the Japanese Society of Scientific Fisheries 1962; 28:162-164.
    [52] H. Wakabayashi, Egusa S. Edwardsiella tarda (Paracolobactrum anguillimortiferum) associated with pond-cultured eel disease. Bulletin of the Japanese Society of Scientific Fisheries 1973; 39(9):931-936.
    [53] G. M. Garrity. Bergey's Manual of Systematic Bacteriology: Springer, 2005.
    [54] F. P. Meyer, Bullock G. L. Edwardsiella tarda, a New Pathogen of Channel Catfish (Ictalurus punctatus). Applied Microbiology 1973; 25(1):155.
    [55] S. Egusa. Some bacterial diseases of freshwater fishes in Japan. Fish Pathology 1976; 10:103-114.
    [56] R. Kusuda, Itami T., Munekiyo M., Nakajima H. Characteristics of an Edwardsiella sp from an epizootic of cultured crimson sea breams. Bulletin of the Japanese Society of Scientific Fisheries 1977; 43:129-134.
    [57] A. Amandi, Hiu S. F., Rohovec J. S., Fryer J. L. Isolation and characterization of Edwardsiella tarda from fall chinook salmon (Oncorhynchus tshawytscha). Applied and Environmental Microbiology 1982; 43(6):1380.
    [58] F. C. Uhland, Hélie P., Higgins R. Infections of Edwardsiella tarda among Brook Trout in Quebec. Journal of Aquatic Animal Health 2000; 12(1):74-77.
    [59] M. Sano, Minagowa M., Sugiyama Aand Nakajima K. Diseases of cultured marine fish in subtropical areas in Japan. Bulletin of National Research Institute of Aquaculture Supplement 2001; 5:15-18.
    [60] P. Nougayrede, Vuillaume A., Vigneulle M., Faivre B., Luengo S., Delprat J. First isolation of Edwardsiella tarda from diseased turbot (Scophthalmus maximus) reared in a sea farm in the Bay of Biscay. Bulletin of the European Association of Fish Pathologists 1994; 14(4):128-129.
    [61] P. K. Sahoo, Mukherjee S. C., Sahoo S. K. Aeromonas hydrophila versus Edwardsiella tarda: a pathoanatomical study in Clarias batrachus. Journal of Aquaculture 1998; 6:57-66.
    [62] P. K. Sahoo, Swain P., Sahoo S. K., Mukherjee S. C., Sahu A. K. Pathology caused by thebacterium Edwardsiella tarda in Anabas testudineus (Bloch). Asian Fisheries Science 2000; 13(4):357-362.
    [63] A. M. Clavijo, Conroy G., Conroy D. A., Santander J., Aponte F. First report of Edwardsiella tarda from tilapias in Venezuela. Bulletin of the European Association of Fish Pathologists 2002; 22(4):280-282.
    [64] S. Horenstein, Smolowitz R., Uhlinger K., Roberts S. Diagnosis of Edwardsiella tarda Infection in Oyster Toadfish (Opsanus tau) Held at the Marine Resources Center. The Biological Bulletin 2004; 207(2):171-171.
    [65] T. Matsuyama, Kamaishi T., Ooseko N., Kurohara K., Iida T. Pathogenicity of motile and non-motile Edwardsiella tarda to some marine fish. Fish Pathology 2005; 40(3):133-135.
    [66] J. Regalla. Isolation of Edwardsiella tarda from a seal. Pepos. Trab. Inst. Nac. Ver 1982; 14:93-96.
    [67]卢全章,朱心玲.鳗鲡肝病病原菌的研究.水生生物学报1994; 18(4):360-368.
    [68]周凯.欧洲鳗鲡红头病病原的研究.水生生物学报1999(4).
    [69]张超睿,高林.鲤鱼爱德华氏菌败血症的诊断和防治.内陆水产2002; 27(8):31-31.
    [70]孔繁德,陈琼,王生育,黄印尧,陈信忠,龚艳清.福建家养淡水鱼暴发传染病的细菌分离鉴定与防治.福建农业学报2004; 19(4):213-218.
    [71]张晓君,房海,陈翠珍,靳晓敏.大菱鲆爱德华氏菌病:病例报告.中国兽医学报2007:04.
    [72] R. L. Thune, Stanley L. A., Cooper R. K. Pathogenesis of gram-negative bacterial infections in warm water fish. Annual Review of Fish Diseases 1993; 3:37-68.
    [73] Plumb JA. Edwardsiella septicaemias. In Woo PTK, Bruno DW, eds. Fish Diseases and Disorders, Viral, Bacterial and Fungal Infections, Vol. 3: CAB Internationa, 1999. pp. 479-521.
    [74] P. S. S. Rao, Lim T. M., Leung K. Y. Opsonized Virulent Edwardsiella tarda Strains Are Able To Adhere to and Survive and Replicate within Fish Phagocytes but Fail To Stimulate Reactive Oxygen Intermediates. Infection and Immunity 2001; 69(9):5689.
    [75] C. Nucci, da Silveira W. D., da Silva Corrêa S., Nakazato G., Bando S. Y., Ribeiro M. A., Pestana de Castro A. F. Microbiological comparative study of isolates of Edwardsiella tarda isolated in different countries from fish and humans. Veterinary Microbiology 2002;89(1):29-39.
    [76] J. J. Watson, White F. H. Hemolysins of Edwardsiella tarda. Canadian Journal of Comparative Medicine 1979; 43(1):78.
    [77] T. Kokubo, Iida T., Wakabayashi H. Production of siderophore by Edwardsiella tarda. Fish Pathology 1990; 25:237-241.
    [78] J. M. Janda, Abbott S. L., Kroske-Bystrom S., Cheung W. K., Powers C., Kokka R. P., Tamura K. Pathogenic properties of Edwardsiella species. Journal of Clinical Microbiology 1991; 29(9):1997.
    [79] J. D. Chen, Huang S. L. Hemolysin from Edwardsiella tarda strain ET16 isolated from eel Anguilla japonica identified as a hole-forming toxin. Fish Science 1996; 62:538-542.
    [80] J. M. Janda, Abbott S. L. Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clinical Infectious Diseases 1993; 17(4):742-8.
    [81] A. J. Ainsworth, Chen D. X. Differences in the phagocytosis of four bacteria by channel catfish neutrophils. Developmental & Comparative Immunology 1990; 14(2):201-9.
    [82] Y. Yamada, Wakabayashi H. Identification of fish-pathogenic strains belonging to the genus Edwardsiella by sequence analysis of sodB. Fish Pathology 1999; 34:145–150.
    [83] J. A. Mathew, Tan Y. P., Srinivasa Rao P. S., Lim T. M., Leung K. Y. Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 2001; 147(2):449-57.
    [84] S. Rao, Putanae S., Lim T. M., Leung K. Y. Functional Genomics Approach to the Identification of Virulence Genes Involved in Edwardsiella tarda Pathogenesis. Infection and Immunity 2003; 71(3):1343.
    [85] H. Yasunobu, Arikawa Y., Fumtsuka-Uozumi K., Domo M., Iida T., Mahmoud M. M., Okuda J., Nakai T. Induction of Hemagglutinating Activity of Edwardsiella tarda by Sodium Chloride. Fish Pathology 2006; 41:29–34.
    [86] P. S. Srinivasa Rao, Yamada Y., Tan Y. P., Leung K. Y. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Molecular Microbiology 2004; 53(2):573-586.
    [87] Y. P. Tan, Zheng J., Tung S. L., Rosenshine I., Leung K. Y. Role of type III secretion in Edwardsiella tarda virulence. Society for General Microbiology 2005; 151(7):2301-2313.
    [88] J. Zheng, Tung S. L., Leung K. Y. Regulation of a Type III and a Putative Secretion System in Edwardsiella tarda by EsrC Is under the Control of a Two-Component System, EsrA-EsrB. Infection and Immunity 2005; 73(7):4127-4137.
    [89] J. Zheng, Leung K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Molecular Microbiology 2007; 66(5):1192-1206.
    [90] S. H. M. Ling, Wang X. H., Xie L., Lim T. M., Leung K. Y. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Society for General Microbiolog 2000; 146(1):7-19.
    [91] S. H. M. Ling, Wang X. H., Lim T. M., Leung K. Y. Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiology Letters 2001; 194(2):239-243.
    [92] L. Jin Jun, Bum Jeong J., Huh M. D., Chung J. K., Choi D., Lee C. H., Jeong H. D. Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea. Aquaculture 2004; 240(1-4):89-100.
    [93] F. Padros, Zarza C., Dopazo L., Cuadrado M., Crespo S. Pathology of Edwardsiella tarda infection in turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 2006; 29(2):87-94.
    [94] P. Swain, Mukherjee S. C., Sahoo P. K., Das B. K., Pattnaik P., Murjani G., Nayak S. K. Dot-Enzyme-Linked Immunosorbent Assay (Dot-ELISA) forthe Diagnosis of Edwardsiella tarda Infection in Fish. Asian Fisheries Science 2001; 14:89-93.
    [95] P. Swain, Nayak S. K. Comparative sensitivity of different serological tests for seromonitoring and surveillance of Edwardsiella tarda infection of Indian major carps. Fish and Shellfish Immunology 2003; 15(4):333-340.
    [96] R. Savan, Igarashi A., Matsuoka S., Sakai M. Sensitive and Rapid Detection of Edwardsiellosis in Fish by a Loop-Mediated Isothermal Amplification Method. Applied and Environmental Microbiology 2004; 70(1):621.
    [97]赵飞,邹为民. LAMP法在水产动物病原快速检测中的应用.南方水产2007; 2.
    [98] J. D. Chen, Lai S. Y. PCR for direct detection of Edwardsiella tarda from infected fish and environmental water by application of the hemolysin gene. Zoological Studies 1998;37(3):169-176.
    [99] S. Yamamoto, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology 1995; 61(3):1104-1109.
    [100] N. Larsen, Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Research 1993; 21(13):3021-3023.
    [101] S. Yamamoto, Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. International Journal of Systematic and Evolutionary Microbiology 1996; 46(2):506-511.
    [102] K. Tamura, Dudley J., Nei M., Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 2007; 24(8):1596.
    [103] Austin B, DA. Austin. Bacterial Fish Pathogens. Diseases of Farmed and Wild Fish 3rd ed (revised). Godalming: Springer-Praxis, 1999.
    [104] Austin B, DA. Austin. Bacterial Fish Pathogens: Disease in Farmed and Wild Fish: Taylor & Francis, 1993.
    [105] E. Stackebrandt, Goebel B. M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology 1994; 44(4):846-849.
    [106] M. Green, Austin B. The identification of Yersinia ruckeri and its relationship to other representatives of the Enterobacteriaceae. Aquaculture 1983; 34(3):185-192.
    [107] S. Yamamoto, Harayama S. Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. International Journal of Systematic and Evolutionary Microbiology 1998; 48(3):813-819.
    [108]张晓华.检测海洋弧菌的酶联免疫吸附试验研究.青岛海洋大学学报1997; 27(3):326-332.
    [109]焦奎,张书圣.酶联免疫分析技术及应用.北京:化学工业出版社, 2004.
    [110]王军,鄢庆枇.养殖大黄鱼副溶血弧菌的酶联免疫吸附法研究.台湾海峡2001(3):346-351.
    [111] A. Ullah, Arai T. Pathological activities of the naturally occurring strains of Edwardsiella tarda isolated from diseased eels and flounders. Fish Pathology 1983; 18(2):65-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700