二维液相色谱兼容性解决方案及系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科学研究所涉及的样品越来越复杂,也对分析化学提出更高的要求。通常的—维色谱方法能够提供的峰容量有限,通过偶联两种不同分离机理的色谱柱,构建成二维液相色谱分离系统,可以极大地提高系统对复杂样品的分离分析能力。随着蛋白质组研究、环境科学、天然产物研究的发展,二维液相色谱也得到了较快的发展,多种分离模式结合的多维液相色谱分离系统被构建,并发挥重要作用。
     正相(NP)、反相(RP)、体积排阻(SEC)、离子交换(IEX)等不同的液相色谱分离模式,依据的分离机理不同,分离选择性也有很大差异。采用不同分离模式,甚至同一种分离模式采用不同种类色谱分离介质构建的多维液相色谱分离系统,在正交性和分离能力方面皆可能存在很大差异。将不同的一维液相色谱分离系统结合,构建成多维分离系统的关键是选择性、分离速度、流动相和样品容量等兼容性的解决,只有进行合理的匹配,才可能实现最佳的分离效果。
     论文将具有不同选择性的色谱柱串联,构建了无需特殊设计接口的IEX-RP、RP-RP和ZIC-HILIC-RP连续二维液相色谱系统。通过对流动相兼容性的系统考察,以不同流动相交替进行洗脱,实现了复杂样品的二维分离。IEX-RP连续二维分离系统分离多肽样品时,以进样盐梯度和有机相梯度交替洗脱,峰容量为675;RP-RP连续二维液相色谱系统分离六味地黄丸时,比一维分离时出峰数目提高了60%,识别出86个色谱峰;ZIC-HILIC-RP连续二维液相色谱系统,可以应用到多肽、蛋白质和中药的分离分析。
     二维液相色谱分离中第二维的分离速度是影响整体分析时间的关键。快速梯度程序和高温是实现快速洗脱的有效方法。考察温度对反相色谱分离速度、柱效、选择性的影响,研究温度对保留时间和柱效的理论关系,并使用标准样品进行验证,进一步构建高温二维液相色谱系统。通过将第二维分离的柱温升高至80℃,样品的分离速度明显加快,峰形更尖锐,峰容量更高;相比较常温二维分离,峰容量提高了13%,达到了1840。
     由于流动相不匹配,亲水相互作用色谱和反相色谱在线联用难以实现。亲水相互作用色谱法(HILIC)洗脱液中含有较高浓度的有机溶剂,无法直接导入反相色谱进行二维分离。通过构建稀释接口,将馏分中有机溶剂比例降低,进而构建了在线HILIC/RP二维液相色谱系统。使用三种标准品评价系统,证明该系统可以将第一维馏分中的大多数组份转移到第二维进行分离,强极性的组份不能导入到第二维进行分离时,由接口处的检测器获得其信息。分离多肽样品时识别出208个色谱峰,峰容量达2323。在线HILIC/RP二维液相色谱系统也被应用于天然产物、发酵液和蛋白质的分离分析。
     第二维使用短柱可有效改善二维液相色谱系统分析速度的兼容性,但也会带来样品容量不兼容的问题。基于中心切割模式的二维液相色谱系统,可以灵活地对第一维分离中超柱容量馏分进行收集,有效降低导入到第二维中样品的复杂程度。采用构建的中心切割IEX/RP二维液相色谱系统分离多肽样品,分离度和检测灵敏度明显获得改善,多识别出21个色谱峰。提高第二维色谱柱的容量和分离能力是增加二维系统峰容量的有效方法。将平行柱接口后串联分析柱,有效增加第二维的分离空间,从而构建了IEX/RP二维液相色谱系统,分离多肽样品的峰容量达707,比常规平行柱接口提高了44%。该系统还可以应用于小鼠血清和天麻的分离分析。
Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. Two-dimensional liquid chromatography (2D-LC) which combining different separation mechanisms will generates extremely high peak capacity and ultra-high resolving power in separation of complex mixtures. It has received considerable attention in the separation complex samples from proteomics, environment, and natural products. Various 2D-LC system was developed through combining different separation modes.
     In particular, LC techniques offer a wide variety of separation mechanisms, such as normal phase (NP), reversed phase (RP), size exclusion (SEC) or ion exchange (IEX), characterized by different selectivity. Consequently,2D-LC can be theoretically employed in many multidimensional combinations, generating increased peak capacity, selectivity and resolution, especially in the comprehensive LC mode. However, the combination of certain LC modes can present a series of compatibility difficulties, if not impossibilities, such as, for example, selectivity, separation speed, mobile phase immiscibility and sample capacity. Systematic study of the compatibility of the two dimensions is necessary to construct a successful 2D-LC system.
     Directly couple of two columns with different separation selectivity is a simple way to construct 2D-LC. IEX-RP, RP-RP and HILIC-RP system was constructed through eluting by different mobile phase alternately. The compatibility of selectivity and mobile phase was investigated. Directly coupled columns IEX-RP system was developed for the separation of peptides. Step gradient of salt concentration for eluting components from weak anion exchange (SCX) column to RP column was followed by linear gradient of organic solvent proportion for eluting fractions on RP column. Total 2D-LC peak capacity of 675 was achieved through eluting of 11 fractions continuously. Directly coupled columns RP-RP system separated 60% more peaks than single column RP system, with 86 peaks was recognized in the separation of Liuwei Dihuang Pill. The developed HILIC-RP system was successful used in the separation of peptides, proteins and Traditional Chinese Medicine.
     The second dimensional separation speed had an important influence on the peak capacity of 2D-LC system. Higher modulation frequency could significantly decrease the affection of under-sampling on peak capacity. Running with fast gradient and elevated temperature was an effective way to increase the separation speed and increase the compatibility with first dimension. Investigation of the effect of temperature on the separation speed and selectivity were carried out and verified by reference sample. A high temperature two dimensional IEX/RP liquid chromatography system was constructed through elevating the 2nd column temperature to 80℃. Faster separation and narrower peaks were observed. Compared with separation under room temperature,13% more peak capacity was got which was 1840.
     The coupling of HILIC and NP is difficult to implement due to the mobile phase incompatibility. The high concentration of organic solvent in in HILIC disables the transfer between the two dimensions. On-line two-dimensional HILIC/RP liquid chromatography system was developed based on weakening of the mobile phase strength in the interface. Separation of three reference compounds shown that sample could be effectively introduced to the second dimension. A detector was used in the interface to detect the non-retained compounds. Mixture of tryptic digestion of four proteins was separated to test the performance of the system.208 peaks were recognized under the optimized condition and peak capacity reached 2323. Separations of rat liver protein, rhizome Gastrodiae and Cordyceps were also carried out to evaluate the performance of constructed on-line HILIC/RP system for analysis of real world sample.
     The use of short second dimensional column will benefit the separation speed compatibility but may result in incompatibility of sample volume. Based on heart-cut interface, the components gushed from first dimension column can be removed and collected in another column. The removing of fraction which will overload on second dimension column greatly increases the resolving power and detection sensitivity. An IEX/RP 2D-LC system was developed by addition of heart-cut unit. Tryptic digest of four proteins were separated on this system. Compared with that of traditional 2D-LC, another 21 peaks were identified and some low abundance components were identified after weak retained components were removed.
     The use of short second dimensional column will benefit the separation speed compatibility but may result in incompatibility of sample volume. Based on heart-cut interface, the components gushed from first dimension column can be removed and collected in another column. The removing of fraction which will overload on second dimension column greatly increases the resolving power and detection sensitivity. An IEX/RP 2D-LC system was developed by addition of heart-cut unit. Tryptic digest of four proteins were separated on this system. Compared with that of traditional 2D-LC, another 21 peaks were identified and some low abundance components were identified after weak retained components were removed. A tandem column connected to parallel second-dimensional separation column can help to improve the separation efficiency. An IEX/RP 2D-LC system has been developed based on a parallel-tandem column interface. The peak capacity of the 2D-LC system reached 707 under high temperature conditions. When compared with the traditional parallel column interface constructed in this paper, the new interface produced 44% higher peak capacity. Rat serum and rhizome gastrodiae were separated to evaluate the performance of constructed 2D-LC system for analysis of real world sample.
引文
[1]Chen, X. G.; Kong, L.; Su, X. Y.; Fu, H. J.; Ni, J. Y.; Zhao, R. H.; Zou, H. F. Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry[J]. J. Chromatogr. A,2004,1040: 169-178.
    [2]Tian, H. Z.; Xu, J.; Guan, Y. F. Comprehensive two-dimensional liquid chromatography (NPLC x RPLC) with vacuum-evaporation interface[J]. J. Sep. Sci.,2008,31:1677-1685.
    [3]Tian, H.; Xu, J.; Xu, Y.; Guan, Y. Multidimensional liquid chromatography system with an innovative solvent evaporation interface[J]. J. Chromatogr. A,2006,1137:42-48.
    [4]Murphy, R. E.; Schure, M. R.; Foley, J. P. Effect of Sampling Rate on Resolution in Comprehensive Two-Dimensional Liquid Chromatography[J]. Anal. Chem.,1998,70: 1585-1594.
    [5]Jiang, X. L.; van der Horst, A.; Lima, V.; Schoenmakers, P. J. Comprehensive two-dimensional liquid chromatography for the characterization of functional acrylate polymers[J]. J. Chromatogr. A,2005,1076:51-61.
    [6]Shellie, R. A.; Haddad, P. R. Comprehensive two-dimensional liquid chromatography[J]. Anal. Bioanal.Chem,2006,386:405-415.
    [7]Stoll, D. R.; Cohen, J. D.; Carr, P. W. Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography [J]. J. Chromatogr. A,2006,1122:123-137.
    [8]Dugo, P.; Skerikova, V.; Kumm, T.; Trozzi, A.; Jandera, P.; Mondello, L. Elucidation of carotenoid patterns in citrus products by means of comprehensive normal-phase x reversed-phase liquid chromatography [J]. Anal. Chem.,2006,78:7743-7750.
    [9]Jandera, P. Column selectivity for two-dimensional liquid chromatography [J]. J. Sep. Sci., 2006,29:1763-1783.
    [10]Guiochon, G.; Marchetti, N.; Mriziq, K.; Shalliker, R. A. Implementations of two-dimensional liquid chromatography [J]. J. Chromatogr. A,2008,1189:109-168.
    [11]Davis, J.; Giddings, J. Statistical theory of component overlap in multicomponent chromatograms[J]. Anal. Chem.,1983,55:418-424.
    [12]Giddings, J. C. Sample dimensionality:a predictor of order-disorder in component peak distribution in multidimensional separation [J]. J. Chromatogr. A,1995,703:3-15.
    [13]兰韬;焦丰龙;唐涛;王风云;李彤;张维冰.正相模式-反相模式的二维液相色谱系统的构建与应用[J].色谱,2008,26:374-377.
    [14]Guiochon, G. The limits of the separation power of unidimensional column liquid chromatography [J]. J. Chromatogr. A,20061126:6-49.
    [15]R. Consden, A. H. G., A. J. P. Martin. Qualitative Analysis of Proteins:a Partition Chromatographic Method Using Paper[J]. Biochem J 1944,38:224-232.
    [16]Erni, F.; Frei, R. W. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures[J]. J. Chromatogr. A,1978,149:561-569.
    [17]Bushey, M. M.; Jorgenson, J. W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins[J]. Anal. Chem.,1990, 62:161-167.
    [18]Cohen, S.; Schure, M. Multidimensional liquid chromatography:theory and applications in industrial chemistry and the life sciences[M]; Wiley-Interscience,2008.
    [19]Opiteck, G. J.; Lewis, K. C; Jorgenson, J. W.; Anderegg, R. J. Comprehensive On-Line LC/LC/MS of Proteins[J]. Anal. Chem.,1997,69:1518-1524.
    [20]Opiteck, G. J.; Jorgenson, J. W.; Anderegg, R. J. Two-Dimensional SEC/RPLC Coupled to Mass Spectrometry for the Analysis of Peptides[J]. Anal. Chem.,1997,69:2283-2291.
    [21]Dugo, P.; Favoino, O.; Luppino, R.; Dugo, G.; Mondello, L. Comprehensive two-dimensional normal-phase (adsorption)-Reversed-phase liquid chromatography [J]. Anal. Chem.,2004,76:2525-2530.
    [22]Francois, I.; de Villiers, A.; Sandra, P. Considerations on the possibilities and limitations of comprehensive normal phase-reversed phase liquid chromatography (NPLC x RPLC)[J]. J. Sep. Sci.,2006,29:492-498.
    [23]Francois, I.; de Villiers, A.; Tienpont, B.; David, F.; Sandra, P. Comprehensive two-dimensional liquid chromatography applying two parallel columns in the second dimension[J]. J. Chromatogr. A,2008,1178:33-42.
    [24]Tian, H.; Xu, J.; Guan, Y. Comprehensive two-dimensional liquid chromatography (NPLC X RPLC) with vacuum-evaporation interface[J]. J. Sep. Sci.,2008,31:1677-1685.
    [25]Tian, H. Z.; Xu, J.; Guan, Y. F. Vacuum-evaporation interface of comprehensive two-dimensional liquid chromatography and its application[J]. Chinese J. Anal. Chem.,2008, 36:860-864.
    [26]Fran ois, I.; dos Santos Pereira, A.; Lynen, F.; Sandra, P. Construction of a new interface for comprehensive supercritical fluid chromatography x reversed phase liquid chromatography (SFC× RPLC)[J]. J. Sep. Sci.,2008,31:3473-3478.
    [27]Stoll, D. R.; Li, X.; Wang, X.; Carr, P. W.; Porter, S. E. G.; Rutan, S. C. Fast, comprehensive two-dimensional liquid chromatography [J]. J. Chromatogr. A,2007,1168: 3-43.
    [28]Stoll, D. R.; Carr, P. W. Fast, comprehensive two-dimensional HPLC separation of tryptic peptides based on high-temperature HPLC[J]. J. Am. Chem. Soc,2005,127: 5034-5035.
    [29]Tang, J.; Gao, M; Deng, C; Zhang, X. Recent development of multi-dimensional chromatography strategies in proteome research[J]. J. Chromatogr. B,2008,866:123-132.
    [30]Mondello, L.; Herrero, M.; Kumm, T.; Dugo, P.; Cortes, H.; Dugo, G. Quantification in comprehensive two-dimensional liquid chromatography [J]. Anal. Chem.,2008,80: 5418-5424.
    [31]Stoll, D. Recent progress in online, comprehensive two-dimensional high-performance liquid chromatography for non-proteomic applications[J]. Anal. Bioanal. Chem.,397: 979-986.
    [32]厉欣;陈学国;孔亮;邹汉法.多维液相色谱及其在生命科学中的应用[J].生命科学,2003,15:95-100.
    [33]高明霞;张祥民.多维液相色谱技术的进展[J].中国科学B辑,2009,39:670-677.
    [34]王智聪;张庆合;赵中一;张维冰;李彤.二维液相色谱切换技术及其应用[J].分析化学,2005,33.
    [35]王智聪;张庆合;李彤;赵中一;张维冰.蛋白质组研究中的多维液相色谱技术[J].分析测试学报,2005,24:130-135.
    [36]吴剑威;赵润怀;陈波;杨美华.多维液相色谱及其在中药研究中的应用[J].中草药:1020-1023.
    [37]朱贵杰;梁振;张丽华;张玉奎.多维液相色谱分离技术及其在蛋白质组研究中的应用[J].色谱,2009.
    [38]丁坤;吴大朋;关亚风.二维液相色谱接口技术[J].色谱,2009,28:1117-1122.
    [39]高明霞;关霞;洪广峰;张祥民.多维高效液相色谱技术在蛋白质分离研究中的进展[J].色谱,2009.
    [40]赵凯;杨大进;王竹天.柱切换高效液相色谱法及其在食品检验中的应用[J].CHINESE JOURNAL OF FOOD HYGIENE,2009,21.
    [41]高辉;温学森;马小军;陈迪华;斯建勇.二维液相色谱技术在药物分析中的应用[J].药物分析杂志,2007,27:616-620.
    [42]丛景香;林炳昌.多维液相柱色谱[J].化学进展,2007,19:1813-1819.
    [43]Zhang, X.; Fang, A.; Riley, C. P.; Wang, M.; Regnier, F. E.; Buck, C. Multi-dimensional liquid chromatography in proteomicsa review[J]. Anal. Chim. Acta,664:101-113.
    [44]Fran ois, I.; Sandra, K.; Sandra, P. Comprehensive liquid chromatography:Fundamental aspects and practical considerations--A review[J]. Anal. Chim. Acta,2009,641:14-31.
    [45]Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L. Comprehensive multidimensional liquid chromatography:Theory and applications[J]. J. Chromatogr. A,2008, 1184:353-368.
    [46]Dixon, S. P.; Pitfield, I. D.; Perrett, D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis:a review[J]. Biomed. Chromatogr.,2006,20:508-529.
    [47]Berek, D. Two-dimensional liquid chromatography of synthetic polymers[J]. Anal. Bioanal. Chem.,396:421-441.
    [48]Stoll, D. R.; Wang, X.; Carr, P. W. Comparison of the Practical Resolving Power of One-and Two-Dimensional High-Performance Liquid Chromatography Analysis of Metabolomic Samples[J]. Anal. Chem.,2007,80:268-278.
    [49]Cohen, S. A.; Schure, M. R. Multidimensional liquid chromatography:theory and applications in industrial chemistry and the life sciences[M]; LibreDigital,2008.
    [50]Pol, J.; Hyotylainen, T. Comprehensive two-dimensional liquid chromatography coupled with mass spectrometry[J]. Anal. Bioanal. Chem.,2008,391:21-31.
    [51]Murphy, R. E.; Schure, M. R. Instrumentation for Comprehensive Multidimensional Liquid Chromatography [J].2008.
    [52]Hu, L.; Ye, M.; Jiang, X.; Feng, S.; Zou, H. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis--A review[J]. Anal. Chim. Acta, 2007,598:193-204.
    [53]Gao, M.; Qi, D.; Zhang, P.; Deng, C; Zhang, X. Development of multidimensional liquid chromatography and application in proteomic analysis[J]. Expert Rev. Proteomics,7: 665-678.
    [54]Murphy, R. E.; Schure, M. R. Method Development in Comprehensive Multidimensional Liquid Chromatography [J].2008.
    [55]Dugo, P.; Kumm, T.; Cacciola, F.; Dugo, G.; Mondello, L. Multidimensional Liquid Chromatographic Separations Applied to the Analysis of Food Samples [J]. J. Liquid Chromatogr. Related Tech.,31,2008,11:1758-1807.
    [56]Malerod, H.; Lundanes, E.; Greibrokk, T. Recent advances in on-line multidimensional liquid chromatography [J]. Anal. Methods,2009,2:110-122.
    [57]Zhu, G.; Liang, Z.; Zhang, L.; Zhang, Y. Developments and applications of multidimensional liquid chromatography in proteomics] [J]色谱,2009,27:518.
    [58]Gao, M.; Guan, X.; Hong, G.; Zhang, X. Advances in multidimensional high performance liquid chromatography for separation technology in proteomic study] [J]色谱,2009,27:551.
    [59]Jandera, P. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts[J]. J. Sep. Sci.,2008,31:1421-1437.
    [60]Simpkins, S. W.; Bedard, J. W.; Groskreutz, S. R.; Swenson, M. M.; Liskutin, T. E.; Stoll, D. R. Targeted Three-Dimensional Liquid Chromatography-A Versatile Tool for Quantitative Trace Analysis in Complex Matrices[J]. J. Chromatogr. A.2010, 1217:7648-7660
    [61]Fairchild, J. N. Multidimensional Liquid Chromatography Separations[D].University of Tennessee,2010
    [62]Herrero, M.; Ibanez, E.; Cifuentes, A.; Bernal, J. Multidimensional chromatography in food analysis[J]. J. Chromatogr. A,2009,1216:7110-7129.
    [63]Mauri, P.; Scigelova, M. Multidimensional protein identification technology for clinical proteomic analysis[J]. Clinical chemistry and laboratory medicine:CCLM/FESCC,2009,47: 636.
    [64]Horvatovich, P.; Hoekman, B.; Govorukhina, N.; Bischoff, R. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples[J]. J. Sep. Sci.,33:1421-1437.
    [65]Toma, R.; Kleparnik, K.; Foret, F. Multidimensional liquid phase separations for mass spectrometry [J]. J. Sep. Sci.,2008,31:1964-1979.
    [66]Pierce, K. M.; Hoggard, J. C.; Mohler, R. E.; Synovec, R. E. Recent advancements in comprehensive two-dimensional separations with chemometrics[J]. J. Chromatogr. A,2008, 1184:341-352.
    [67]Sandra, K.; Moshir, M.; D'Hondt, F.; Tuytten, R.; Verleysen, K.; Kas, K.; Franis, I.; Sandra, P. Highly efficient peptide separations in proteomics:Part 2:Bi- and multidimensional liquid-based separation techniques[J]. J. Chromatogr. B,2009,877: 1019-1039.
    [68]Gao, M. Q., Dawei; Zhang, Peng; Deng, Chunhui; Zhang, Xiangmin. Development of multidimensional liquid chromatography and application in proteomic analysis[J]. Expert Rev. Proteomics,2010,7:665-678.
    [69]Giddings, J. C. Maximum number of components resolvable by gel filtration and other elution chromatographic methods[J]. Anal. Chem.,1967,39:1027-1028.
    [70]Cortes, H. Multidimensional chromatography:techniques and applications[M]; CRC, 1990.
    [71]Schoenmakers, P.; Marriott, P.; Beens, J. Nomenclature and conventions in comprehensive multidimensional chromatography [J]. Lc Gc Europe,2003,16:335-339.
    [72]Giddings, J. Unified separation science[M]; Wiley New York etc,1991.
    [73]Grushka, E. Chromatographic peak capacity and the factors influencing it[J]. Anal. Chem.,1970,42:1142-1147.
    [74]Horvath, C; Lipsky, S. Peak capacity in chromatography[J]. Anal. Chem.,1967,39: 1893-1893.
    [75]Dolan, J. W.; Snyder, L. R.; Djordjevic, N. M.; Hill, D. W.; Waeghe, T. J. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time Ⅱ. Two-run assay procedures [J]. J. Chromatogr. A,1999,857: 21-39.
    [76]Wang, X.; Stoll, D. R.; Schellinger, A. P.; Carr, P. W. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography:fixed column format[J]. Anal. Chem.,2006,78:3406-3416.
    [77]Wren, S. A. C. Peak capacity in gradient ultra performance liquid chromatography (UPLC)[J]. J. Pharmaceut Biomed.,2005,38:337-343.
    [78]Neue, U. D. Peak capacity in unidimensional chromatography [J]. J. Chromatogr. A, 2008,1184:107-130.
    [79]Guiochon, G.; Beaver, L.; Gonnord, M.; Siouffi, A.; Zakaria, M. Theoretical investigation of the potentialities of the use of a multidimensional column in chromatography[J]. J. Chromatogr. A,1983,255:415-437.
    [80]Giddings, J. C. Two-dimensional separations:concept and promise[J]. Anal. Chem., 1984,56:1258-1270.
    [81]Giddings, J. Concepts and comparisons in multidimensional separation[J]. J. High Res. Chrom.,1987,10:319-323.
    [82]Giddings, J. Two-dimensional separations:concept and promise[J]. Anal. Chem.,1984, 56:1258-1270.
    [83]Horie, K.; Kimura, H.; Ikegami, T.; Iwatsuka, A.; Saad, N.; Fiehn, O.; Tanaka, N. Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC[J]. Anal. Chem.,2007,79:3764-3770.
    [84]Grushka, E. Effect of high speed on peak capacity in liquid chromatography[J]. J. Chromatogr. A,1984,316:81-93.
    [85]Wang, X. L.; Stoll, D. R.; Carr, P. W.; Schoenmakers, P. J. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography [J]. J. Chromatogr. A,2006,1125:177-181.
    [86]Ruotolo, B.; Gillig, K.; Stone, E.; Russell, D. Peak capacity of ion mobility mass spectrometry:Separation of peptides in helium buffer gas[J]. J. Chromatogr. B,2002,782: 385-392.
    [87]Merenbloom, S.; Bohrer, B.; Koeniger, S.; Clemmer, D. Assessing the Peak Capacity of IMS-IMS Separations of Tryptic Peptide Ions in He at 300 K[J]. Anal. Chem,2007,79: 515-522.
    [88]Frahm, J.; Howard, B.; Heber, S.; Muddiman, D. Accessible proteomics space and its implications for peak capacity for zero-, one-and two-dimensional separations coupled with FT-ICR and TOF mass spectrometry[J]. J. Mass Spectrom.,2006,41:281-288.
    [89]Lewis, K.; Opiteck, G.; Jorgenson, J.; Sheeley, D. Comprehensive on-line RPLC-CZE-MS of peptides[J]. J. Am. Soc. Mass. Spectrom.,1997,8:495-500.
    [90]Shen, Y.; Toli, N.; Zhao, R.; Pa a-Toli, L.; Li, L.; Berger, S.; Harkewicz, R.; Anderson, G.; Belov, M.; Smith, R. High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry[J]. Anal. Chem,2001,73:3011-3021.
    [91]Valentine, S.; Kulchania, M.; Barnes, C; Clemmer, D. Multidimensional separations of complex peptide mixtures:a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach[J]. Int. J. Mass spectrom.,2001,212: 97-109.
    [92]Liu, Z.; Patterson Jr, D. G.; Lee, M. L. Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations[J]. Anal. Chem.,1995,67:3840-3845.
    [93]Slonecker, P. J.; Li, X.; Ridgway, T. H.; Dorsey, J. G. Informational orthogonality of two-dimensional chromatographic separations[J]. Anal. Chem.,1996,68:682-689.
    [94]Jandera, P. Column selection for two-dimensional LCXLC[J]. Lc Gc Europe,2007,20: 510-+.
    [95]Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions[J]. J. Sep. Sci.,2005,28:1694-1703.
    [96]Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C. Orthogonality of separation in two-dimensional liquid chromatography [J]. Anal. Chem.,2005,77:6426-6434.
    [97]Fran ois, I.; Cabooter, D.; Sandra, K.; Lynen, F.; Desmet, G.; Sandra, P. Tryptic digest analysis by comprehensive reversed phasex two reversed phase liquid chromatography (RP-LC× 2RP-LC) at different pH's[J]. J. Sep. Sci.,2009,32:1137-1144.
    [98]Detroyer, A.; Schoonjans, V.; Questier, F.; Vander Heyden, Y.; Borosy, A.; Guo, Q.; Massart, D. Exploratory chemometric analysis of the classification of pharmaceutical substances based on chromatographic data[J]. J. Chromatogr. A,2000,897:23-36.
    [99]Van Gyseghem, E.; Van Hemelryck, S.; Daszykowski, M.; Questier, F.; Massart, D.; Vander Heyden, Y. Determining orthogonal chromatographic systems prior to the development of methods to characterise impurities in drug substances[J]. J. Chromatogr. A, 2003,988:77-93.
    [100]Van Gyseghem, E.; Crosiers, I.; Gourvenec, S.; Massart, D.; Vander Heyden, Y. Determining orthogonal and similar chromatographic systems from the injection of mixtures in liquid chromatography-diode array detection and the interpretation of correlation coefficients color maps[J]. J. Chromatogr. A,2004,1026:117-128.
    [101]Van Gyseghem, E.; Jimidar, M.; Sneyers, R.; Redlich, D.; Verhoeven, E.; Massart, D.; Vander Heyden, Y. Selection of reversed-phase liquid chromatographic columns with diverse selectivity towards the potential separation of impurities in drugs[J]. J. Chromatogr. A,2004, 1042:69-80.
    [102]Liu, Z.; Patterson Jr, D.; Lee, M. Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations[J]. Anal. Chem.,1995,67:3840-3845.
    [103]Gilar, M.; Olivova, P.; Daly, A.; Gebler, J. Orthogonality of separation in two-dimensional liquid chromatography[J]. Anal. Chem,2005,77:6426-6434.
    [104]Slonecker, P.; Li, X.; Ridgway, T.; Dorsey, J. Informational orthogonality of two-dimensional chromatographic separations [J]. Anal. Chem,1996,68:682-689.
    [105]Erni, F.; Frei, R. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures[J]. J. Chromatogr. A,1978,149:561-569.
    [106]Steuer, W.; Grant, I.; Erni, F. Comparison of high-performance liquid chromatography, supercritical fluid chromatography and capillary zone electrophoresis in drug analysis[J]. J. Chromatogr. A,1990,507:125-140.
    [107]Gray, M. J.; Sweeney, A. P.; Dennis, G. R.; Slonecker, P. J.; Shalliker, R. A. Comprehensive coupled reversed-phase reversed-phase separations of a complex isomeric mixture[J]. Analyst,2003,128:598-604.
    [108]Gray, M. J.; Dennis, G. R.; Slonecker, P. J.; Shalliker, R. A. Evaluation of the two-dimensional reversed-phase-reversed-phase separations of low-molecular mass polystyrenes[J]. J. Chromatogr. A,2003,1015:89-98.
    [109]Gray, M. J.; Dennis, G. R.; Slonecker, P. J.; Shalliker, R. A. Comprehensive two-dimensional separations of complex mixtures using reversed-phase reversed-phase liquid chromatography [J]. J. Chromatogr. A,2004,1041:101-110.
    [110]Gray, M.; Dennis, G.; Wormell, P.; Andrew Shalliker, R.; Slonecker, P. Two dimensional reversed-phase-reversed-phase separations::Isomeric separations incorporating C18 and carbon clad zirconia stationary phases[J]. J. Chromatogr. A,2002,975:285-297.
    [111]Watson, N. E.; Davis, J. M.; Synovec, R. E. Observations on Orthogonality in Comprehensive Two-Dimensional Separations[J]. Anal. Chem.,2007,79:7924-7927.
    [112]Seeley, J. V. Theoretical study of incomplete sampling of the first dimension in comprehensive two-dimensional chromatography[J]. J. Chromatogr. A,2002,962:21-27.
    [113]Davis, J. M.; Stoll, D. R.; Carr, P. W. Effect of First-Dimension Undersampling on Effective Peak Capacity in Comprehensive Two-Dimensional Separations[J]. Anal. Chem., 2008,80:461-473.
    [114]Davis, J. M.; Stoll, D. R.; Carr, P. W. Dependence of Effective Peak Capacity in Comprehensive Two-Dimensional Separations on the Distribution of Peak Capacity between the Two Dimensions[J]. Anal. Chem.,2008,80:8122-8134.
    [115]X.Li; D.R.Stoll; P.W.Carr. Equation for Peak Capacity Estimation in Two-Dimensional Liquid Chromatography[J]. Anal. Chem.,2009,81:845-850.
    [116]Davis, J. M. Statistical-overlap theory for elliptical zones of high aspect ratio in comprehensive two-dimensional separations [J]. J. Sep. Sci.,2005,28:347-359.
    [117]van der Horst, A.; Schoenmakers, P. J. Comprehensive two-dimensional liquid chromatography of polymers[J]. J. Chromatogr. A,2003,1000:693-709.
    [118]Stoll, D.; Li, X.; Wang, X.; Carr, P.; Porter, S.; Rutan, S. Fast, comprehensive two-dimensional liquid chromatography [J]. J. Chromatogr. A,2007,1168:3-43.
    [119]Dixon, S.; Pitfield, I.; Perrett, D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis:a review[J]. Biomed. Chromatogr.,2006,20:508-529.
    [120]Dorsey, J.; Cooper, W.; Siles, B.; Foley, J.; Barth, H. Liquid Chromatography:Theory and Methodology[J]. Anal. Chem,1998,70:591-644.
    [121]Berridge, J. Techniques for the automated optimization of HPLC separations[M]; John Wiley & Sons,1985.
    [122]Schoenmakers, P.; Corporation, E. Optimization of chromatographic selectivity:a guide to method development[M]; Elsevier Amsterdam,1986.
    [123]Glajch, J.; Snyder, L. Computer-assisted method development for high-performance liquid chromatography[M]; Elsevier Amsterdam,1990.
    [124]Snyder, L.; Glajch, J.; Kirkland, J. Practical HPLC method development[M]; Wiley New York etc.,1997.
    [125]Schoenmakers, P.; Vivo-Truyols, G.; Decrop, W. A protocol for designing comprehensive two-dimensional liquid chromatography separation systems[J]. J. Chromatogr. A,2006,1120:282-290.
    [126]Murphy, R. E.; Schure. M. R.; Foley, J. P. One-and Two-Dimensional Chromatographic Analysis of Alcohol Ethoxylates[J]. Anal. Chem.,1998,70:4353-4360.
    [127]Francois, I.; Sandra, K.; Sandra, P. Comprehensive liquid chromatography: Fundamental aspects and practical considerations-A review[J]. Anal. Chim. Acta,2009,641: 14-31.
    [128]李笃信,宋.,张凌怡,杜一平,张维冰.在线HILIC-RP二维液相色谱系统的构建及其评价[J].分析化学,2009,37:277-277.
    [129]李笃信.高效、快速液相色谱系统的构建及评价[D].南京理工大学,南京,2007.
    [130]Lin, D.; Alpert, A.; Yates Ⅲ, J. Multidimensional protein identification technology as an effective tool for proteomics[J]. Am. Genomic/Proteomic Technol,2001,1:38-46.
    [131]Washburn, M; Wolters, D.; Yates, J. Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J]. Nat. Biotechnol.,2001,19:242-247.
    [132]Wolters, D. A.; Washburn, M. P.; Yates Ⅲ, J. R. An automated multidimensional protein identification technology for shotgun proteomics[J]. Anal. Chem.,2001,73: 5683-5690.
    [133]Mawuenyega, K. G.; Kaji, H.; Yamauchi, Y.; Shinkawa, T.; Saito, H.; Taoka, M.; Takahashi, N.; Isobe, T. Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-Tandem mass spectrometry[J]. J. Proteome Res., 2003,2:23-35.
    [134]Link, A.; Eng, J.; Schieltz, D.; Carmack, E.; Mize, G.; Morris, D.; Garvik, B.; Yates Ⅲ, J. Direct analysis of protein complexes using mass spectrometry[J]. Nat. Biotechnol.,1999, 17:676-682.
    [135]Kislinger, T.; Rahman, K.; Radulovic, D.; Cox, B.; Rossant, J.; Emili, A. PRISM, a generic large scale proteomic investigation strategy for mammals[J]. Mol. Cell. Proteomics, 2003,2:96.
    [136]Wenner, B. R.; Lovell, M. A.; Lynn, B. C. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS[J]. J. Proteome Res.,2004,3:97-103.
    [137]Koller, A.; Washburn, M.; Lange, B.; Andon, N.; Deciu, C; Haynes, P.; Hays, L.; Schieltz, D.; Ulaszek, R.; Wei, J. Proteomic survey of metabolic pathways in rice[J]. PNAS, 2002,99:11969.
    [138]Florens, L.; Washburn, M.; Raine, J.; Anthony, R.; Grainger, M.; Haynes, J.; Moch, J.; Muster, N.; Sacci, J.; Tabb, D. A proteomic view of the Plasmodium falciparum life cycle[J]. Nature,2002,419:520-526.
    [139]Elschenbroich, S.; Ignatchenko, V.; Sharma, P.; Schmitt-Ulms, G.; Gramolini, A. O.; Kislinger, T. Peptide Separations by On-Line MudPIT Compared to Isoelectric Focusing in an Off-Gel Format:Application to a Membrane-Enriched Fraction from C2C12 Mouse Skeletal Muscle Cells[J]. J. Proteome Res.,2009,8:4860-4869.
    [140]Drake, R. R.; Elschenbroich, S.; Lopez-Perez, O.; Kim, Y.; Ignatchenko, V. Ignatchenko, A.; Nyalwidhe, J. O.; Basu, G.; Wilkins, C. E.; Gjurich, B.; Lance, R. S.; Semmes, O. J.; Medin, J. A.; Kislinger, T. In-Depth Proteomic Analyses of Direct Expressed Prostatic Secretions[J]. J. Proteome Res.,2010,9:2109-2116.
    [141]McDonald, W.; Ohi, R.; Miyamoto, D.; Mitchison, T.; Yates, J. Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures:single-dimension LC-MS/MS,2-phase MudPIT, and 3-phase MudPIT[J]. Int. J. Mass spectrom.,2002,219:245-251.
    [142]Guzzetta, A. W.; Chien, A. S. A double-vented tetraphasic continuous column approach to MuDPIT analysis on long capillary columns demonstrates superior proteomic coverage[J]. J. Proteome Res.,2005,4:2412-2419.
    [143]Kang, D.; Nam, H.; Kim, Y. S.; Moon, M. H. Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics::Application to the human Jurkat T-cell proteome[J]. J. Chromatogr. A,2005,1070:193-200.
    [144]Taylor, P.; Nielsen, P. A.; Trelle, M. B.; Horning, O. B.; Andersen, M. B.; Vorm, O.; Moran, M. F.; Kislinger, T. Automated 2D Peptide Separation on a 1D Nano-LC-MS System[J]. J. Proteome Res.,2009,8:1610-1616.
    [145]Motoyama, A.; Venable, J. D.; Ruse, C. I.; Yates Ⅲ, J. R. Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples[J]. Anal. Chem.,2006,78:5109-5118.
    [146]Wang, F.; Dong, J.; Ye, M.; Jiang, X.; Wu, R.; Zou, H. Online Multidimensional Separation with Biphasic Monolithic Capillary Column for Shotgun Proteome Analysis[J]. J. Proteome Res.,2007,7:306-310.
    [147]Motoyama, A.; Xu, T.; Ruse, C. I.; Wohlschlegel, J. A.; Yates Ⅲ, J. R. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides[J]. Anal. Chem.,2007,79:3623-3634.
    [148]Tao, D. Y.; Qiao, X. Q.; Sun, L. L.; Hou, C. Y.; Gao, L. A.; Zhang, L. H.; Shan, Y. C.; Liang, Z.; Zhang, Y. K. Development of a Highly Efficient 2-D System with a Serially Coupled Long Column and Its Application in Identification of Rat Brain Integral Membrane Proteins with Ionic Liquids-Assisted Solubilization and Digestion[J]. J. Proteome Res.,2011, 10:732-738.
    [149]Garbis, S. D.; Roumeliotis, T. I.; Tyritzis, S. I.; Zorpas, K. M.; Pavlakis, K.; Constantinides, C. A. A Novel Multidimensional Protein Identification Technology Approach Combining, Protein Size Exclusion Prefractionation, Peptide Zwitterion-Ion Hydrophilic Interaction Chromatography, and Nano-Ultraperformance RP Chromatography/nESI-MS2 for the in-Depth Analysis of the Serum Proteome and Phosphoproteome:Application to Clinical Sera Derived from Humans with Benign Prostate Hyperplasia[J]. Anal. Chem.,2011, 83:708-718.
    [150]柯从玉;耿信笃.活性蛋白液相色谱快速分离新方法[J].科学通报,2008,53:614-616.
    [151]Geng, X.; Ke, C; Chen, G.; Liu, P.; Wang, F.; Zhang, H.; Sun, X. On-line separation of native proteins by two-dimensional liquid chromatography using a single column[J]. J. Chromatogr. A,2009,1216:3553-3562.
    [152]王军.单柱二维液相色谱复性变性溶菌酶及胰腺癌血清中肿瘤标志物的制备[D].西北大学,西安,2010.
    [153]张会强.在线蛋白二维液相色谱仪的构建及应用[D].西北大学,2009.
    [154]Jandera, P.; Fischer, J.; Lahovska, H.; Novotna, K.; Cesla, P.; Kolarova, L. Two-dimensional liquid chromatography normal-phase and reversed-phase separation of (co)oligomers[J]. J. Chromatogr. A,2006,1119:3-10.
    [155]Leitner, T.; Klampfl, C. W. Development of a simple instrumental setup for the separation of benzoic acids by comprehensive liquid chromatography with microbore columns and monolithic columns[J]. J. Liq. Chromatogr. R T,2008,31:169-178.
    [156]Pol, J.; Hohnova, B.; Jussila, M.; Hyoetylaeinen, T. Comprehensive two-dimensional liquid chromatography-time-of-flight mass spectrometry in the analysis of acidic compounds in atmospheric aerosols[J]. J. Chromatogr. A,2006,1130:64-71.
    [157]Mondello, L.; Tranchida, P. Q.; Stanek, V.; Jandera, P.; Dugo, G.; Dugo, P. Silver-ion reversed-phase comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in lipidic food analysis[J]. J. Chromatogr. A,2005,1086:91-98.
    [158]Schoenmakers Peter, J.; Vivo-Truyols, G.; Decrop Wim, M. C. A protocol for designing comprehensive two-dimensional liquid chromatography separation systems[J]. J. Chromatogr. A,2006,1120:282-290.
    [159]Dugo, P.; Kumm, T.; Crupi, M. L.; Cotroneo, A.; Mondello, L. Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes[J]. J. Chromatogr. A,2006,1112: 269-275.
    [160]Dugo, P.; Kumm, T.; Chiofalo, B.; Cotroneo, A.; Mondello, L. Separation of triacylglycerols in a complex lipidic matrix by using comprehensive two-dimensional high performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection [J]. J. Sep. Sci.,2006,29:1530-1530.
    [161]Zhang, J.; Tao, D.; Duan, J.; Liang, Z.; Zhang, W.; Zhang, L.; Huo, Y.; Zhang, Y. Separation and identification of compounds in Adinandra nitida by comprehensive two-dimensional liquid chromatography coupled to atmospheric pressure chemical ionization source ion trap tandem mass spectrometry[J]. Anal. Bioanal. Chem.,2006,386:586-593.
    [162]Cacciola, F.; Jandera, P.; Hajdu, Z.; Cesla, P.; Mondello, L. Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants[J]. J. Chromatogr. A,2007,1149:73-87.
    [163]Dugo, P.; Herrero, M.; Kumm, T.; Giuffrida, D.; Dugo, G.; Mondello, L. Comprehensive normal-phase x reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin[J]. J. Chromatogr. A,2008,1189:196-206.
    [164]Hu, L. H.; Chen, X. G.; Kong, L.; Su, X. Y.; Ye, M. L.; Zou, H. F. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights[J]. J. Chromatogr. A,2005,1092:191-198.
    [165]Ikegami, T.; Hara, T.; Kimura, H.; Kobayashi, H.; Hosoya, K.; Cabrera, K.; Tanaka, N. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions[J]. J. Chromatogr. A, 2006,1106:112-117.
    [166]Murahashi, T. Comprehensive two-dimensional high-performance liquid chromatography for the separation of polycyclic aromatic hydrocarbons[J]. Analyst,2003, 128:611-615.
    [167]Eeltink, S.; Gzil, P.; Kok, W. T.; Schoenmakers, P. J.; Desmet, G. Selection of comparison criteria and experimental conditions to evaluate the kinetic performance of monolithic and packed-bed columns[J]. J. Chromatogr. A,2006,1130:108-114.
    [168]Bushey, M.; Jorgenson, J. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins[J]. Anal. Chem.,1990, 62:161.
    [169]Opiteck, G.; Lewis, K.; Jorgenson, J.; Anderegg, R. Comprehensive on-line LC/LC/MS of proteins[J]. Anal. Chem,1997,69:1518-1524.
    [170]Chen, X.; Jiang, Z.; Zhu, Y.; Tan, J. Use of two-dimensional liquid chromatography combined with diode-array and mass spectrometric detection for analysis of compounds in Flos Lonicera[J]. Chromatographia,2007,65:141-147.
    [171]Gray, M. J.; Dennis, G. R.; Slonecker, P. J.; Shalliker, R. A. Utilising retention correlation for the separation of oligostyrenes by coupled-column liquid chromatography [J]. J. Chromatogr. A,2005,1073:3-9.
    [172]Pol, J.; Hyotylainen, T. Comprehensive two-dimensional liquid chromatography coupled with mass spectrometry [J]. Anal. Bioanal. Chem.,2008,391:21-31.
    [173]Schoenmakers, P. J.; Viv?Truyols, G.; Decrop, W. M. C. A protocol for designing comprehensive two-dimensional liquid chromatography separation systems[J]. J. Chromatogr. A,2006,1120:282-290.
    [174]Machtejevas, E.; John, H.; Wagner, K.; Standker, L.; Marko-Varga, G.; Forssmann, W. G.; Bischoff, R.; Unger, K. K. Automated multi-dimensional liquid chromatography:sample preparation and identification of peptides from human blood filtrate[J]. J. Chromatogr. B, 2004,803:121-130.
    [175]Opiteck, G. J.; Jorgenson, J. W.; Moseley Ⅲ, M. A.; Anderegg, R. J. Two-dimensional microcolumn HPLC coupled to a single-quadrupole mass spectrometer for the elucidation of sequence tags and peptide mapping[J]. J. Microcolumn Sep.,1998,10:365-375.
    [176]Fairchild, J. N.; Horvath, K.; Guiochon, G. Theoretical advantages and drawbacks of on-line, multidimensional liquid chromatography using multiple columns operated in parallel[J]. J. Chromatogr. A,2009,1216:6210-6217.
    [177]Haefliger, O. P. Universal two-dimensional HPLC technique for the chemical analysis of complex surfactant mixtures[J]. Anal. Chem.,2003,75:371-378.
    [178]Opiteck, G.; Jorgenson, J.; Anderegg, R. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides [J]. Anal. Chem,1997,69:2283-2291.
    [179]Murahashi, T.; Tsuruga, F.; Sasaki, S. An automatic method for the determination of carcinogenic 1-nitropyrene in extracts from automobile exhaust particulate matter [J]. Analyst, 2003,128:1346-1351.
    [180]Cacciola, F.; Jandera, P.; Blahova, E.; Mondello, L. Development of different comprehensive two dimensional systems for the separation of phenolic antioxidants[J]. J. Sep. Sci.,2006,29:2500-2513.
    [181]Wagner, K.; Racaityte, K.; Unger, K. K.; Miliotis, T.; Edholm, L. E.; Bischoff, R.; Marko-Varga, G. Protein mapping by two-dimensional high performance liquid chromatography [J]. J. Chromatogr. A,2000,893:293-305.
    [182]Opiteck, G. J.; Ramirez, S. M.; Jorgenson, J. W.; Moseley, M. A. Comprehensive Two-Dimensional High-Performance Liquid Chromatography for the Isolation of Overexpressed Proteins and Proteome Mapping[J]. Anal. Biochem.,1998,258:349-361.
    [183]Unger, K.; Racaityte, K.; Wagner, K.; Miliotis, T.; Edholm, L.; Bischoff, R.; Marko-Varga, G. Is Multidimensional High Performance Liquid Chromatography (HPLC) an Alternative in Protein Analysis to 2D Gel Electrophoresis?[J]. J. High. Resolut. Chromatogr., 2000,23:259-265.
    [184]Li, D. X.; Zhang, L. Y.; Wang, Z. C; Intisar, A.; Zhang, W. B. Development of a Parallel-Tandem Column Interface in a Two-Dimensional Liquid Chromatography System[J]. Chromatographia,2011:Inpress.
    [185]Wagner, K.; Miliotis, T.; Marko-Varga, G.; Bischoff, R.; Unger, K. K. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation[J]. Anal. Chem.,2002,74:809-820.
    [186]Liu, H.; Berger, S. J.; Chakraborty, A. B.; Plumb, R. S.; Cohen, S. A. Multidimensional chromatography coupled to electrospray ionization time-of-flight mass spectrometry as an alternative to two-dimensional gels for the identification and analysis of complex mixtures of intact proteins[J]. J. Chromatogr. B,2002,782:267-289.
    [187]Machtejevas, E.; John, H.; Wagner, K.; Stdker, L.; Marko-Varga, G.; Forssmann, W.-G.; Bischoff, R.; Unger, K. K. Automated multi-dimensional liquid chromatography: sample preparation and identification of peptides from human blood filtrate[J]. J. Chromatogr. B,2004,803:121-130.
    [188]Liu, C.; Zhang, X. Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high-throughput proteomic analysis[J]. J. Chromatogr. A,2007,1139:191-198.
    [189]Venkatramani, C. J.; Patel, A. Towards a comprehensive 2-D-LC-MS separation [J]. J. Sep. Sci.,2006,29:510-518.
    [190]Venkatramani, C. J.; Zelechonok, Y. An automated orthogonal two-dimensional liquid chromatograph[J]. Anal. Chem.,2003,75:3484-3494.
    [191]Venkatramani, C. J.; Zelechonok, Y. Two-dimensional liquid chromatography with mixed mode stationary phases[J]. J. Chromatogr. A,2005,1066:47-53.
    [192]Tanaka, N.; Kimura, H.; Tokuda, D.; Hosoya, K.; Ikegami, T.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Shintani, Y.; Furuno, M.; Cabrera, K. Simple and comprehensive two-dimensional reversed-phase HPLC using monolithic silica columns[J]. Anal. Chem., 2004,76:1273-1281.
    [193]Francois, I.; de Villiers, A.; Tienpont, B.; David, F.; Sandra, P. Comprehensive two-dimensional liquid chromatography applying two parallel columns in the second dimension[J]. J. Chromatogr. A,2008,1178:33-42.
    [194]兰韬;焦丰龙;唐涛;王风云;李彤;张维冰.正相模式x反相模式的二维液相色谱系统的构建与应用[J].色谱,2008,26:374-377.
    [195]Wei, Y.; Lan, T.; Tang, T.; Zhang, L.; Wang, F.; Li, T.; Du, Y.; Zhang, W. A comprehensive two-dimensional normal-phase x reversed-phase liquid chromatography based on the modification of mobile phases[J]. J. Chromatogr. A,2009,1216:7466-7471.
    [196]Bedani, F.; Kok, W. T.; Janssen, H. G. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography x liquid chromatography [J]. J. Chromatogr. A,2006,1133:126-134.
    [197]Kohne, A. P.; Welsch, T. Coupling of a microbore column with a column packed with non-porous particles for fast comprehensive two-dimensional high-performance liquid chromatography[J]. J. Chromatogr. A,1999,845:463-469.
    [198]Kohne, A. P.; Dornberger, U.; Welsch, T. Two-dimensional high performance liquid chromatography for the separation of complex mixtures of explosives and their by-products [J]. Chromatographia,1998,48:9-16.
    [199]Blahova, E.; Jandera, P.; Cacciola, F.; Mondello, L. Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-, polyethyleneglycol-, and pentafluorophenylpropyl-silica columns[J]. J. Sep. Sci.,2006,29: 555-566.
    [200]Millea, K. A.; Kass, I. J.; Cohen, S. A.; Krull, I. S.; Gebler, J. C.; Berger, S. J. Evaluation of multidimensional (ion-exchange/reversed-phase) protein separations using linear and step gradients in the first dimension[J]. J. Chromatogr. A,2005,1079:287-298.
    [201]Pepaj, M.; Wilson, S. R.; Novotna, K.; Lundanes, E.; Greibrokk, T. Two-dimensional capillary liquid chromatography:pH Gradient ion exchange and reversed phase chromatography for rapid separation of proteins [J]. J. Chromatogr., A,2006,1120:132-141.
    [202]Mihailova, A.; Malerod, H.; Wilson, S. R.; Karaszewski, B.; Hauser, R.; Lundanes, E.; Greibrokk, T. Improving the resolution of neuropeptides in rat brain with on-line HILIC-RP compared to on-line SCX-RP[J]. J. Sep. Sci.,2008,31:459-467.
    [203]Holm, A.; Storbraten, E.; Mihailova, A.; Karaszewski, B.; Lundanes, E.; Greibrokk, T. Combined solid-phase extraction and 2D LC-MS for characterization of the neuropeptides in rat-brain tissue[J]. Anal. Bioanal. Chem.,2005,382:751-759.
    [204]Pepaj, M.; Holm, A.; Fleckenstein, B.; Lundanes, E.; Greibrokk, T. Fractionation and separation of human salivary proteins by pH-gradient ion exchange and reversed phase chromatography coupled to mass spectrometry[J]. J. Sep. Sci.,2006,29:519-528.
    [205]李笃信;魏远隆;宋伦;李彤;杜一平;张维冰.高温二维液相色谱系统的构建及其评价[J].化学学报,2009,67:2481-2485.
    [206]Wilson, S. R.; Jankowski, M.; Pepaj, M.; Mihailova, A.; Boix, F.; Truyols, G. V. Lundanes, E.; Greibrokk, T.2D LC separation and determination of bradykinin in rat muscle tissue dialysate with on-line SPE-HILIC-SPE-RP-MS[J]. Chromatographia,2007,66: 469-474.
    [207]Gu, X.; Deng, C. H.; Yan, G. Q.; Zhang, X. M. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis[J]. J. Proteome Res., 2006,5:3186-3196.
    [208]Tian, H.; Xu, J.; Guan, Y. Comprehensive two-dimensional liquid chromatography (NPLC× RPLC) with vacuum-evaporation interface[J]. J. Sep. Sci.,2008,31:1677-1685.
    [209]Tian, H.; Xu, J.; Xu, Y.; Guan, Y. Multidimensional liquid chromatography system with an innovative solvent evaporation interface[J]. J. Chromatogr. A,2006,1137:42-48.
    [210]Ding, K..; Xu, Y.; Wang, H.; Duan, C; Guan, Y. A vacuum assisted dynamic evaporation interface for two-dimensional normal phase/reverse phase liquid chromatography[J]. J. Chromatogr. A,2010,1217:5477-5483.
    [211]Liu, A.; Tweed, J.; Wujcik, C. E. Investigation of an on-line two-dimensional chromatographic approach for peptide analysis in plasma by LC-MS-MS[J]. J. Chromatogr. B,2009,877:1873-1881.
    [212]Boersema, P. J.; Divecha, N.; Heck, A. J. R.; Mohammed, S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy[J]. J. Proteome Res.,2007, 6:937-946.
    [213]Pepaj, M.; Wilson, S. R.; Novotna, K.; Lundanes, E.; Greibrokk, T. Two-dimensional capillary liquid chromatography:pH Gradient ion exchange and reversed phase chromatography for rapid separation of proteins [J]. J. Chromatogr. A,2006,1120:132-141.
    [214]Pepaj, M.; Holm, A.; Fleckenstein, B.; Lundanes, E.; Grelbrokk, T. Fractionation and separation of human salivary proteins by pH-gradient ion exchange and reversed phase chromatography coupled to mass spectrometry[J]. J. Sep. Sci.,2006,29:519-528.
    [215]Pepaj, M.; Lundanes, E.; Greibrokk, T. Separation of apolipoprotein A-I from human plasma by on-line two dimensional liquid chromatography[J]. J. Liq. Chromatogr. R T,2007, 30:1879-1894.
    [216]Tran, B. Q.; Pepaj, M.; Lundanes, E.; Greibrokk, T. On-line method for identification of native proteins using pH-gradient SAX chromatography and reversed phase chromatography-mass spectrometry of tryptic peptides[J]. J. Liq. Chromatogr. R T,2008,31: 1387-1411.
    [217]Tran, B. Q.; Pepaj, M.; Lundanes, E.; Greibrokk, T. The behaviour of reduced, alkylated and native proteins in a pH-gradient LC system[J]. Chromatographia,2007,66: 709-715.
    [218]Malerod, H.; Lundanes, E.; Greibrokk, T. Recent advances in on-line multidimensional liquid chromatography [J]. Analytical Methods,2010,2:110-122.
    [219]Shan, L.; Anderson, D. J. Gradient chromatofocusing. Versatile pH gradient separation of proteins in ion-exchange HPLC:Characterization studies[J]. Anal. Chem.,2002,74: 5641-5649.
    [220]Gonzalez-Begne, M; Lu, B. W.; Han, X. M.; Hagen, F. K.; Hand, A. R.; Melvin, J. E.; Yates, J. R. ProteomicAnalysis of Human Parotid Gland Exosomes by Multidimensional Protein Identification Technology (MudPIT)[J]. J. Proteome Res.,2009,8:1304-1314.
    [221]Labenski, M. T.; Fisher, A. A.; Monks, T. J.; Lau, S. S. Identification of Chemical-Adducted Proteins in Urine by Multi-dimensional Protein Identification Technology (LC/LC-MS/MS)[J]. Methods in molecular biology (Clifton, NJ),2011,691: 339.
    [222]Gao, M. X.; Deng, C. H.; Yu, W. J.; Zhang, Y.; Yang, P. Y.; Zhang, X. M. Large scale depletion of the high-abundance proteins and analysis of middle-and low-abundance proteins in human liver proteome by multidimensional liquid chromatography[J]. Proteomics,2008,8: 939-947.
    [223]Hoffmann, C.; Lammerhofer, M.; Lindner, W. Separation of Cinchona alkaloids on a novel strong cation-exchange-type chiral stationary phase—comparison with commercially available strong cation exchanger and reversed-phase packing materials[J]. Anal. Bioanal. Chem.,2009,393:1257-1265.
    [224]唐涛张维冰李彤,王.六昧地黄丸组分的二维液相色谱分离[J].分析化学,2007,35:1767-1771.
    [225]Goldschmidt, R. J.; Wolf, W. R. Determination of niacin in food materials by liquid chromatography using isotope dilution mass spectrometry[J]. J. AOAC Int.,2007,90: 1084-1089.
    [226]Motoyama, A.; Yates, J. R. Multidimensional LC Separations in Shotgun Proteomics[J]. Anal. Chem.,2008,80:7187-7193.
    [227]Pepaj, M.; Lundanes, E.; Greibrokk, T. Separation of apolipoprotein A-I from human plasma by on-line two-dimensional liquid chromatography [J]. J. Liq. Chromatogr. Relat. Technol.,2007,30:1879-1894.
    [228]Tran, B. Q.; Pepaj, M.; Lundanes, E.; Greibrokk, T. The behaviour of reduced, alkylated and native proteins in a pH-gradient LC system[J]. Chromatographia,2007,66: 709-715.
    [229]Ren, D.; Ratnaswamy, G.; Beierle, J.; Treuheit, M. J.; Brems, D. N.; Bondarenko, P. V. Degradation products analysis of an Fc fusion protein using LC/MS methods[J]. Int. J. Biol. Macromol.,2009,44:81-85.
    [230]Sonnefeld, W.; Zoller, W.; May, W.; Wise, S. On-line multidimensional liquid chromatographic determination of polynuclear aromatic hydrocarbons in complex samples[J]. Anal. Chem.,1982,54:723-727.
    [231]田宏哲徐静,关.全二维液相色谱(Nplc×Rplc)接口及其应用[J].高等学校化学学报,2007,28:630-634.
    [232]田宏哲徐静,关.真空溶剂蒸发全二维液相色谱接口及其应用[J].分析化学,2008,36:860-864.
    [233]Tian, H.; Xu, J.; Xu, Y.; Guan, Y. Multidimensional liquid chromatography system with an innovative solvent evaporation interface[J]. J. Chromatogr. A,2006,1137:42-48.
    [234]Wei, Y.; Lan, T.; Tang, T.; Zhang, L.; Wang, F.; Li, T.; Du, Y.; Zhang, W. A comprehensive two-dimensional normal-phase x reversed-phase liquid chromatography based on the modification of mobile phases[J]. J. Chromatogr. A,2009,1216:7466-7471.
    [235]Tian, H.; Xu, J.; Guan, Y. Comprehensive two-dimensional liquid chromatography (NPLCxRPLC) with vacuum-evaporation interface[J]. J. Sep. Sci.,2008,31:1677-1685.
    [236]Dugo, P.; Fernandez, M. D.; Cotroneo, A.; Dugo, G.; Mondello, L. Optimization of a comprehensive two-dimensional normal-phase and reversed-phase liquid chromatography system[J]. J. Chromatogr. Sci.,2006,44:561-565.
    [237]Tian, H. Z.; Xu, J.; Guan, Y. F. Sample loops-valve interface of comprehensive two-dimensional liquid chromatography (NPLC x RPLC) and its application[J]高等学校化学学报,2007,28:630-634.
    [238]Dugo, P.; Kumm, T.; Crupi, M.; Cotroneo, A.; Mondello, L. Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes[J]. J. Chromatogr. A,2006,1112: 269-275.
    [239]Dugo, P.; Kumm, T.; Chiofalo, B.; Cotroneo, A.; Mondello, L. Separation of triacylglycerols in a complex lipidic matrix by using comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection[J]. J. Sep. Sci.,2006,29:1146-1154.
    [240]Wei, Y.; Lan, T.; Tang, T.; Zhang, L.; Wang, F.; Li, T.; Du, Y.; Zhang, W. A comprehensive two-dimensional normal-phase x eversed-phase liquid chromatography based on the modification of mobile phases[J]. J. Chromatogr. A, In Press, Corrected Proof.
    [241]Hemstrom, P.; Irgum, K. Hydrophilic interaction chromatography [J]. J. Sep. Sci.,2006, 29:1784-1821.
    [242]Liu, A.; Tweed, J.; Wujcik, C. E. Investigation of an on-line two-dimensional chromatographic approach for peptide analysis in plasma by LC-MS-MS[J]. J. Chromatogr. B.,2009,877:1873-1881.
    [243]van Platerink, C. J.; Janssen, H. G. M.; Haverkamp, J. Application of at-line two-dimensional liquid chromatography-mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates[J]. Anal. Bioanal. Chem., 2008,391:299-307.
    [244]Sandra, K.; Moshir, M.; D'hondt, F.; Verleysen, K.; Kas, K.; Sandra, P. Highly efficient peptide separations in proteomics-Part 1. Unidimensional high performance liquid chromatography[J]. J. Chromatogr. B.,2008,866:48-63.
    [245]Boersema, P. J.; Divecha, N.; Heck, A. J. R.; Mohammed, S. Evaluation and Optimization of ZIC-HILIC-RP as an Alternative MudPIT Strategy [J]. J. Proteome Res., 2007,6:937-946.
    [246]Louw, S.; Pereira, A. S.; Lynen, F.; Hanna-Brown, M.; Sandra, P. Serial coupling of reversed-phase and hydrophilic interaction liquid chromatography to broaden the elution window for the analysis of pharmaceutical compounds[J]. J. Chromatogr. A,2008,1208: 90-94.
    [247]Apostolou, C; Kousoulos, C; Dotsikas, Y.; Loukas, Y. L. Comparison of hydrophilic interaction and reversed-phase liquid chromatography coupled with tandem mass spectrometric detection for the determination of three pharmaceuticals in human plasma[J]. Biomed. Chromatogr.,2008,22:1393-1402.
    [248]王智聪张庆合张维冰李彤,赵.全二维液相色谱的初步构建及其在山羊血清分离中的应用[J].分析化学,2005,33:437-441.
    [249]Winther, B.; Reubsaet, J. L. E. Application of supplementary flow in comprehensive 2D liquid chromatography combining SEC and RPC[J]. J. Sep. Sci.,2005,28:477-482.
    [250]Julka, S.; Cortes, H.; Harfmann, R.; Bell, B.; Schweizer-Theobaldt, A.; Pursch, M.; Mondello, L.; Maynard, S.; West, D. Quantitative Characterization of Solid Epoxy Resins Using Comprehensive Two Dimensional Liquid Chromatography Coupled with Electrospray Ionization-Time of Flight Mass Spectrometry[J]. Anal. Chem.,2009,81:4271-4279.
    [251]Mass, V.; Bellas, V.; Pasch, H. Two-Dimensional Chromatography of Complex Polymers,7-Detailed Study of Polystyrene-block-Polyisoprene Diblock Copolymers Prepared by Sequential Anionic Polymerization and Coupling Chemistry [J]. Macromol. Chem. Phys.,2008,209:2026-2039.
    [252]Im, K.; Park, H. W.; Lee, S.; Chang, T. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature [J]. J. Chromatogr. A,2009,1216:4606-4610.
    [253]Hu, L.; Boos, K. S.; Ye, M.; Wu, R.; Zou, H. Selective on-line serum peptide extraction and multidimensional separation by coupling a restricted-access material-based capillary trap column with nanoliquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A, 2009,1216:5377-5384.
    [254]Francois, I.; Cabooter, D.; Sandra, K.; Lynen, F.; Desmet, G.; Sandra, P. Tryptic digest analysis by comprehensive reversed phase x two reversed phase liquid chromatography (RP-LC x 2RP-LC) at different pH's[J]. J. Sep. Sci.,2009,32:1137-1144.
    [255]Alexander, A. J.; Ma, L. J. Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual Fused-Core columns in the 2nd dimension[J]. J. Chromatogr. A,2009,1216:1338-1345.
    [256]Hajek, T.; Skerikova, V.; Cesla, P.; Vynuchalova, K.; Jandera, P. Multidimensional LC x LC analysis of phenolic and flavone natural antioxidants with UV-electrochemical coulometric and MS detection[J]. J. Sep. Sci.,2008,31:3309-3328.
    [257]Rogatsky, E.; Tomuta, V.; Jayatillake, H.; Cruikshank, G.; Vele, L.; Stein, D. T. Trace LC/MS quantitative analysis of polypeptide biomarkers:Impact of 1-D and 2-D chromatography on matrix effects and sensitivity [J]. J. Sep. Sci.,2007,30:226-233.
    [258]Jandera, P.; Vynuchalova, K.; Hajek, T.; esla, P.; Vohralík, G. Characterization of HPLC columns for two-dimensional LC×LC separations of phenolic acids and flavonoids[J]. J. Chemom.,2008,22:203-217.
    [259]Komaba, J.; Matsuda, D.; Shibakawa, K.; Nakade, S.; Hashimoto, Y.; Miyata, Y.; Ogawa, M. Development and validation of an on-line two-dimensional reversed-phase liquid chromatography-tandem mass spectrometry method for the simultaneous determination of prostaglandins E-2 and F-2 alpha and 13,14-dihydro-15-keto prostaglandin F-2 alpha levels in human plasma[J]. Biomed. Chromatogr.,2009,23:315-323.
    [260]Cong, J.; Lin, B. Study of separation conditions of active components in licorice with two-dimensional liquid chromatography [J]. J. Liq. Chromatogr. R T,2008,31:891-911.
    [261]Pol, J.; Hohnova, B.; Hyoetylaeinen, T. Characterization of Stevia Rebaudianaby comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry[J]. J. Chromatogr. A,2007,1150:85-92.
    [262]Ghassempour, A.; Rezadoost, H.; Ahmadi, M.; Aboul-Enein, H. Y. Seasons Study of Four Important Taxanes and Purification of 10-Deacetylbaccatin III from the Needles of Taxus baccata L. by Two-Dimensional Liquid Chromatography [J]. J. Liq. Chromatogr. R T, 2009,32:1434-1447.
    [263]Zhou, Y.; Wang, Y.; Wang, R.; Guo, F.; Yan, C. Two-dimensional liquid chromatography coupled with mass spectrometry for the analysis of Lobelia chinensis Lour. using an ESI/APCI multimode ion source[J]. J. Sep. Sci.,2008,31:2388-2394.
    [264]袁辉明;张丽华;张维冰;梁振;张玉奎.新型全二维微柱液相色谱分离平台的构建[J].分析测试学报,2008,27:227-230.
    [265]王瑗顾惠新路鑫,许.以亲水作用色谱为核心的液相色谱联用技术及其应用研究[J].色谱,2008,26:649-657.
    [266]Hemstr m, P.; Irgum, K. Hydrophilic interaction chromatography [J]. J. Sep. Sci.,2006, 29:1784-1821.
    [267]Yoshida, T. Peptide separation by hydrophilic-interaction chromatography:a review[J]. J. Biochem. Bioph. Methods,2004,60:265-280.
    [268]李笃信;宋伦;张凌怡;杜一平;张维冰.在线HILIC-RP二维液相色谱系统的构建及其评价[J].分析化学,2009,37:277-277.
    [269]Boersema, P. J.; Mohammed, S.; Heck, A. J. R. Hydrophilic interaction liquid chromatography (HILIC) in proteomics[J]. Anal. Bioanal. Chem.,2008,391:151-159.
    [270]Wohlgemuth, J.; Jiang, W.; Machtejevas, E.; Andrecht, S.; KGaA, M.; Merck SeQuant, A. Glycosylation Analysis by Dedicated Sample Preparation and Complementary nano-LC (HILIC/RP)/ESI-MS[J].LCGC,2010,9.
    [271]Zhu, C; Goodall, D.; Wren, S. Elevated temperature HPLC:Principles and applications to small molecules and biomolecules[J]. LC GC EUROPE,2004,17:530-540.
    [272]Hancock, W.; Chloupek, R. C; Kirkland, J.; Snyder, L. Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples::I. Optimizing the separation of a growth hormone tryptic digest[J]. J. Chromatogr. A,1994,686:31-43.
    [273]Li, J.; Carr, P. W. Effect of temperature on the thermodynamic properties, kinetic performance, and stability of polybutadiene-coated zirconia[J]. Anal. Chem.,1997,69: 837-843.
    [274]李笃信.高效、快速液相色谱系统的构建[D].南京理工大学,南京,2007.
    [275]赵新峰;孙毓庆.六味地黄丸的高效液相色谱/电喷雾电离-质谱分析[J].色谱,2003,21:500-502.
    [276]辛士刚;王莹;周忠威.中成药六味地黄丸中微量元素的分析[J].沈阳师范大学学报:自然科学版,2004,22:125-127.
    [277]王喜军;张宁;孙晖.六味地黄丸指纹图谱的研究[J].中国中药杂志,2004,29:1004-1005.
    [278]刘小平;陈笑宇;宋青;李宁.六味地黄丸的X-衍射指纹图谱鉴定研究[J].中药材,2005,28:184-186.
    [279]丁晴;徐德然HPLC法测定六味地黄丸及六味地黄胶囊中齐墩果酸,熊果酸的含量[J].中国中药杂志,2002,27:587-589.
    [280]李笃信;唐涛;王风云;李彤;张维冰.多柱串联高温hplc系统的构建及应用[J].化学通报,2008.
    [281]张维冰;张丽华;张玉奎.蛋白质组研究中分离新技术与新方法[J]Chinese Bulletin of Life Sciences,2007,19.
    [282]Issaq, H. J.; Chan, K. C; Janini, G. M.; Conrads, T. P.; Veenstra, T. D. Multidimensional separation of peptides for effective proteomic analysis[J]. J. Chromatogr. B.,2005,817:35-47.
    [283]Dugo, P.; Cacciola, F.; Herrero, M.; Donato, P.; Mondello, L. Use of partially porous column as second dimension in comprehensive two-dimensional system for analysis of polyphenollic antioxidants[J]. J. Sep. Sci.,2008,31:3297-3308.
    [284]Cesla, P.; Hajek, T.; Jandera, P. Optimization of two-dimensional gradient liquid chromatography separations[J]. J. Chromatogr. A,2009,1216:3443-3457.
    [285]Cacciola, F.; Jandera, P.; Mondello, L. Temperature effects on separation on zirconia columns:Applications to one-and two-dimensional LC separations of phenolic antioxidants[J]. J. Sep. Sci.,2007,30:462-474.
    [286]Im, K.; Park, H.-w.; Lee, S.; Chang, T. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature[J]. J. Chromatogr. A,2009,1216:4606-4610.
    [287]Moore, A. W.; Jorgenson, J. W. Comprehensive three-dimensional separation of peptides using size exclusion chromatography/reversed phase liquid chromatography/optically gated capillary zone electrophoresis[J]. Anal. Chem.,1995,67: 3456-3463.
    [288]Wang, X.; Li, W.; Rasmussen, H. T. Orthogonal method development using hydrophilic interaction chromatography and reversed-phase high-performance liquid chromatography for the determination of pharmaceuticals and impurities[J]. J. Chromatogr., A,2005,1083:58-62.
    [289]Jandera, P.; Fischer, J.; Lahovska, H.; Novotna, K.; Cesla, P.; Kolarova, L. Two-dimensional liquid chromatography normal-phase and reversed-phase separation of (co)oligomers[J]. J. Chromatogr. A,2006,1119:3-10.
    [290]Liu, Y. M.; Xue, X. Y.; Guo, Z. M.; Xu, Q.; Zhang, F. F.; Liang, X. M. Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis[J]. J. Chromatogr. A, 2008,1208:133-140.
    [291]Wang, Y. P.; Zhang, F. F.; Xue, X. Y.; Xiao, Y. S.; Feng, J. T.; Liang, X. M. Use of an Orthogonal System, RP-LC-HILIC, for Evaluation of Purity[J]. Chromatographia,2009,69: 1379-1384.
    [292]Schlichtherle-Cerny, H.; Affolter, M.; Cerny, C. Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis[J]. Anal. Chem.,2003,75:2349-2354.
    [293]Wang, N.; Xie, C; Young, J. B.; Li, L. Off-Line Two-Dimensional Liquid Chromatography with Maximized Sample Loading to Reversed-Phase Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry for Shotgun Proteome Analysis[J]. Anal. Chem.,2009,81:1049-1060.
    [294]Huidobro, A. L.; Pruim, P.; Schoenmakers, P.; Barbas, C. Ultra rapid liquid chromatography as second dimension in a comprehensive two-dimensional method for the screening of pharmaceutical samples in stability and stress studies[J]. J. Chromatogr. A,2008, 1190:182-190.
    [295]李笃信;唐涛;王风云;李彤;张维冰.超高压液相色谱仪的研究进展及超高压引起的相关问题[J].色谱,2008,26:105-109.
    [296]Shalliker, R. A.; Gray, M. J. Concepts and practice of multidimensional high-performance liquid chromatography [J]. Adv. Chromatogr.,2006,44:177-236.
    [297]王星;张薇;樊柳荫;曹成喜.毛细管电泳中移动反应界面法富集和检测尿样中的氧化苦参碱[J].色谱,2007.
    [298]Shalliker, R. A.; Catchpoole, H. J.; Dennis, G. R.; Guiochon, G. Visualising viscous fingering in chromatography columns:High viscosity solute plug[J]. J. Chromatogr. A,2007, 1142:48-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700