NiTi合金亚稳态孔蚀行为的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用恒电位极化、动电位极化和交流阻抗等方法,研究了NiTi合金在模拟人体液中Em和Eb的分布;氯离子浓度,温度,电位对亚稳态孔蚀特征参数的影响;电位,氯离子浓度,表面粗糙度及pH值对NiTi合金阻抗普图的影响;并结合304不锈钢在含氯离子环境中的Em、Eb值,亚稳孔个数,亚稳孔生长速度,峰值电流等特征,对比NiTi合金的亚稳态孔蚀特征,进一步揭示NiTi合金亚稳态特征的内在原因。
     随着电位,氯离子浓度的不断升高,NiTi合金的Em、Eb均减小,亚稳孔形核数目和平均峰值均呈增大趋势。但随着温度的升高,NiTi合金在钝化区内形成的亚稳孔的数目呈现减弱的趋势。
     电位的升高,NiTi合金的阻抗值减小;当电位超过NiTi合金的点蚀电位时,电化学阻抗谱上出现Warburg阻抗。氯离子浓度的升高,NiTi合金的阻抗值减小。粗糙表面有利于亚稳态的形核并促进孔的生长。无论在酸性溶液还是碱性溶液中,随着溶液酸碱程度的增加,NiTi合金的钝化能力均呈减弱趋势。NiTi合金的蚀孔容易沿着划痕的方向生成。
     304不锈钢亚稳孔寿命随着电位提高有减小的趋势。一般情况下,304不锈钢亚稳态小孔的Ⅰ值和平均生长速度k值都比较小,孔半径和峰值电流都很小,二者没有明显的线性关系。孔平均生长速度与孔半径的分布满足正态分布。
     NiTi合金的钝化性和耐蚀能力均优于304不锈钢。在整个钝化区范围内304不锈钢的受电位的影响较大,电流较高,其亚稳孔更容易发展成稳定孔;NiTi合金则产生了多而密的亚稳态小孔,能在高电位下持续再钝化。
Potentiostatic and potentiodynamic polarization methods were employed to study the behavior of metastable pitting on NiTi alloy in PBS. This study contained the distribution of Em and Eb research; influence research of Cl" concentration, temperature and electode to metastable characters; influence research of electode, Cl" concentration, suface roughness and pH value to the impedence; and also studied the metastable pitting parameter of 304 stainless steel, such as Em, Eb, number, current, growth speed of metastable pitting, to compare with NiTi alloy's for the internal reasons of NiTi alloy metastable pitting.
     With the growth of electrode and Cl- concentration, the Em, Eb, number, peak current of the NiTi alloy reflected a diminish trend. But when the temperature went up, the number of metastable pitting had decreased.
     The electrode went up, the impedence of NiTi alloy went down. But when the potential had come across the Eb, there was Warburg impedence on the impendence curves. Rough suface was better for holes growing. Either in acid solution or in alkai liquid, the passivation capacity of NiTi alloy had weakened. Metastable pitting easily occurred along the direction of nick.
     The metastable pitting life of NiTi alloy diminished, while potential enhanced. Generally speaking, metastable I and k value were small, and there was no linear relationship between the two. The distribution of I and k value contented a normal distribution.
     The passivation and anticorrosion capacity of NiTi alloy were much better than 304 stainless steel's. During the passivation area of 304 steel, the electrode influence to the steel were bigger than NiTi alloy. Under high potential, plenty of metastable pitting were found on the suface of NiTi alloy and could repassivated, while the metastable pitting tent tobecome stable pitting.
引文
[1]刘欣杰NiTi形状记忆合金电化学抛光表面改性的研究[D].大连理工大学,2007,6
    [2]杨杰,吴月华.形状记忆合金及其应用[M].中国科学技术大学出版社,1993
    [3]Ryhanen J,et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures[J]. Journal of biomedical materials research,1997,35(2):451-457
    [4]Ryhanen J,et al. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness[J]. Journal of biomedical materials research,1998,41:481-488
    [5]Ryhanen J,et al. Bone healing and mineralization, implant corrosion, and trace metals after nickel-titanium shape memory metal intramedullary fixation [J]. Journal of biomedical materials research,1999,47:472-480 [6] Shih C C,et al. The cytotoxicity of corrosion products of nitinolstent wire on culturled smooth muscle cells[J].Journal of biomedical materials research,2000,52:395-403
    [7]Wever D J,et al. Electrochemical and surface characterization of a nickel-titanium alloy[J]. Biomaterials,1998,19:761-769
    [8]Hanawa T,et al. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid[J]. Journal of biomedical materials research,1998,40(4):530-538
    [9]刘亚,杨贤金,崔振铎,朱胜利,陈民芳.NiTi形状记忆合金的生物相容性及其表面生物活性化[J].金属热处理报,2002,27(10):1-3
    10] 华英杰,王崇太.NiTi形状记忆合金在医学领域中的应用[J].海南师范学院学报,2004,17(1):39-43
    [11]王虎.工业纯铁在NaNO2+NaCl溶液中的亚稳态孔蚀行为的研究[D].2004.5
    [12]J.Stewart,D.E. Williams. The Initiation of Pitting Corrosion on Austenitic Stainless Steel: on the Role and Importance of Sulphide in Clusions[J]. Corrosion Sci.,1992,vol.33,No.3,p:457-474
    [13]G.T.Burstein, P.C.Pistorius,S.P.Mattin. The Nucleation and Growth of Corrosion Pits on Stainless Steel[J]. Corrosion Sci.,1993,vol.35,No.l,p:57-62
    [14]R.Holliger, H.Boehni, Proc.Symp. Computer Alded Acquisition and Analytical Corms. Data, Electrochem[J]. Soc., Pennington, New Jersey,1984, vol.85, No.3,p.200
    [15]R.C.Newman, W.P.Wang, H.Ezuber, A.Gaarmer. Pitting of Stainless Steels by Thiosulfate Lons[J]. Corrosion,1989, vol.45, No.4, pL282-286
    [16]D.E.Williams, J.Stewart, D.H.Balkwill. The Nucleation, Growth and Stability of Micropits in Stainless Steel[J]. Corros. Sci.,1994, vol.36, No.7, p:1213-1235
    [17]GS.Frankel, L.Srockert, F.Hunkeler, H.Boehni. Metastable Pitting of Stainless Steel[J]. Corrosion,1987, vol.43, No.7, p:429-436
    [18]P.C.Pistorius, G.T.Burstein. Growth of Corrosion Pits on Stainless Steel in Chloride Solution Containing Dilute Sulphate[J]. Corrosion Sci.,1992, vol.33, No.12, p:1885-1898
    [19]左禹,符适.非晶态镍基合金表面亚稳孔蚀生长的动力学特征[J].中国腐蚀与防护学报,1997, vol.17, No.3,p:161-165
    [20]T.Hong, G.W.Walter, M.Nagumo. The observation of the early stages of pitting on passivated type 304 stainless steel in 0.5M NaCI solution at low potentials in the passive region by using the AC impedance method[J]. Corros. Sci.,1996, vol.38,p.1525-1532
    [21]H.J.Engell,N.D.Stolica, Z.Phys. Chem., NF,1958, vol.20, p.113-120
    [22]P.C.Pistorius, GT.Burstein. Aspects of The Effects of Electrolyte Composition on the Occurrence of Metastable Pitting on Stainless Steel[J]. Corms. Sci.,1994, vol.36,No.3, p:255-259
    [23]D.E.Williams, C.Westcott, M.Fleischmann. Corrosion Chemistry within Pits Crevices and Cracks[J]. HMSO, London,1987,p:61
    [24]H.Boehni and L.Stockert. Susceptibility to Crevice Corrosion and Metastable Pitting of Stainless Steels[J]. Mater. Sci. Forum,1988, p:44-45
    [25]E.Fujioka, H.Nishihara, K.Aramaki. Surface-enhanced Raman Scattering Spectroscopy Studies on the Inhibition Mechanism of Propargyl Alcohol for Iron Corrosion in Hydrochloric Acid[J]. Corros. Sci.,1996, vol.52, No.2, p:83-91
    [26]GS.Was, D.Choi. Effect of Boric Acid on Pit Growth in Ailoy 600 Steam Generator Tubing[J]. Corrosion,1992, vol.48, No.2, p:103-113
    [27]J.Stewart, D.E.Williams. The Initiation of Pitting Corrosion on Austenitic Stainless Steel: on the Role and Importance of Sulphide in Clusions[J]. Corrosion sci.,1992,vol.33, No.3, p:457-474
    [28]D.E.Williams, C.Westcott, M.Fleichmann. Studies of The Initiation of Pitting Corrosion o Stainless Steel[J]. Electronal.Chem.,1984, vol.180, p:549-564
    [29]GS.Frankel, L.Stockert, F.Hunkeler, H.Bohni. Metastable Pitting of Stainless Steel[J]. Corrosion,1987,vol.43,No.7,p:429-436
    [30]董泽华.基于恒电量的腐蚀测试系统研究[J].仪器仪表学报,2003,24(4),p:108-110
    [31]毛健鹏,唐聿明,左禹.X70钢在磷酸盐缓冲溶液中的孔蚀电化学行为研究[J].中国腐蚀与防护学报,2006,26(2):80-84
    [32]Rondelli G, Vicentini B, Cigada A. The corrosion behavior of nickel titanium shape memory alloy [J]. Corrosion Science.2000,30(8-9):805
    [33]张文娟,朱明,冯景苏.NiTi合金腐蚀性能研究[J].稀有金属,2003,6(27):714-717
    [34]Shi P., Cheng F.T., Man H.C. Improvement in corrosion resistance of NiTi by anodization in acetic acid[J]. Materials Letters 61(2007):2385-2388
    [35]崔振铎,杨贤金,朱胜利,文效忠.激光表面重熔NiTi形状记忆合金组织及腐蚀性能[J].材料热处理学报,2003,3(24):66-69
    [36]Meiton K N, Harrison J D. Corrosion of NiTi based shape memory alloys[A]. Pelton A, Hodgson D, Duerig T. Proceedings of the first international conference on shape memory and superelastic technologies[C]. Monterey: CA,2004,187
    [37]苏向东,郝维昌,王天民.医用NiTi形状记忆合金的腐蚀特性[J].材料研究学报,20075(21):454-458
    [38]隋解和,吴冶,王志学,蔡伟,赵连城.不同等离子源形成的DLC涂层对NiTi合金腐蚀行为的影响[J].功能材料,2006,9(15):66-72
    [39]刘敬肖、杨大智、蔡英骥.溶胶-凝胶法制备Ti02与SiO2-TiO2薄膜对医用NiTi合金的表面改性[J].材料研究学报,2001,15(4):445-450
    [40]Man H C, Cui Z D, Yue T M.Corrosion properties of laser surface melted NiTi shape memory alloy[J]. Scripta Materialia,2001,45:1447-1453
    [41]李波,李小侠,王天民.NiTi合金基TiN薄膜的血液相容性和耐腐蚀性研究[J].稀有金
    属材料与工程,2007,5(36):121-127
    [42]Villermaux F, Tabrizian M, Yahia L H, et al..Excimerlaser treatment of NiTi shape memory alloy biomaterials[J]. Applied Surface Science,1997,109-110:62-66
    [43]杨贤金,朱胜利,崔振铎.NiTi合金表面化学修饰钙磷层的表面特性[J].金属热处,2001,26(11):3-5
    [44]陈晓明,李志刚,闰玉华.钛合金人工关节柄烧结复合生物活性玻璃陶瓷涂层的研究[J].中国生物医学工程学报,2001,20(1):28-32
    [45]Trpanier C, Tabrizian M, Yahia L H, Bilodeau L C, Piron D L. Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance [J]. J Biomed Mater Res. (ApplBiomater), 1998,43:432-440
    [46]王虎.工业纯铁在NaNO2+NaCl溶液中的亚稳态孔蚀行为的研究[D].北京化工大学,2004,5
    [47]P.Shmuki, H.Bohni. Metastable Pitting and Semiconductive Properties of Passive Films[J]. Electrochem.Soc.,1992, vol.Ⅰ39, No.7,p:1908-1913
    [48]T.Shibata, T.Takeyama. Statistical Variation of Pitting Potentials for Stainless Steel Fac.Eng[J]. Hokkaido.Univ. Sapporo, Japan, Boshoku Gujutsu,1977, vol.26, No.1,p.25-30
    [49]E.J.Gumbel. Statistics of Extremes[M]. Columbia Univ. Press,1958
    [50]W. Weibull, J.Appl. Mech.,1958, vol.18, p:293-299[51] 张九渊,洪明庚,卢建树,蔡鹏.蚀统计规律的研究[J].中国腐蚀与防护学报,1994,vol. 14,No.2,p:161-167
    [52]T.Shibata, T.Takeyama. Stochastic Theory of Pitting Corrosion. Corrosion[J],1977,vol.33, No.7,p:243-251
    [53]肖娟.316L不锈钢亚稳态孔蚀行为的电化学研究[D].北京化工大学硕士研究生论文,2001
    [54]M.Keddam, M.Krarti, C.Pallatta. Some Aspects of The Fluctuations of The Passive Current on Stainless Steel in Presence of Chlorides-Their Relation to The Probalistic Approach of Pitting[J]. Corrosion,1987, vol.43, No.8, p:454-458
    [55]S.C.Srivastava. Dissolutions of inclusions in low-alloy steel exposed to chloride-containing environments[J]. Corrosion,1987 Vol.43, p:687-692
    [56]YZuo, H.T. Wang, J.P. Xiong. The Aspeca Ratio of Surface Grooves and Metastable Pitting of Stainless Steel[J]. Corros.Sci.,2001, vol.44, p:25-35
    [57]Cheng Y,Cai W,Zhao L C. Effects of Cl- ion concentration and pH on the corrosio properties of NiTi alloy in NaCl solution[J]. Mater. Sci. Let.,2003,22:p239-240
    [58]Huang H H. Corrosion resistance of stressed NiTi and stainless steel or thodontic wires in acid artificial saliva[j]. J. Biomed Mater. Res.,2003,66(4):p829-839
    [59]Darabara M, Bourithis L, Zinelis S,et al. Suscptibility to localized corrosion of stainless steel and NiTi endodontic instruments in irrigating solutions[J]. International Endodontic Journal,2004,37:p705-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700