雷暴雷达回波特征与闪电活动的相关关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闪电活动的发生、发展和演变与雷暴的微物理以及动力条件有着密切的关系,然而它们关系到目前为止还不十分明确,因此进一步深入开展这方面的研究是十分必要的,这对闪电活动预警预报技术的发展具有重要意义。
     本研究基于多普勒雷达和闪电探测资料,利用北京以及上海地区多个雷暴个例,分析讨论了雷暴的雷达回波特征参数与闪电活动的相关关系,给出了参数化方案。并在此基础上结合先前研究,提出了对闪电活动结束的预警方案。通过这些分析,本文得到了
     以下主要结论:
     1、闪电活动与雷暴的雷达回波特征参数的相关关系
     北京与上海地区的雷暴雷达回波特征参数与闪电活动都具有较好的相关性。其中北京地区的雷暴,相比超过40dBZ和50dBZ的回波体积,超过30dBZ的回波体积与总闪频次的相关性更好,其中相关系数最高的为-15℃层以上的超过30dBZ回波体积。两个地区的地闪活动也表现出与北京地区全闪活动较为相似的性质。
     对北京地区雷暴的全闪频次以及地闪频次与各回波体积参数做线性拟合和指数拟合,从拟合结果来看,所有回归方程指数拟合的效果要优于线性拟合。从两个地区的拟合结果可以看出,这两个地区的雷暴在相同层结高度以上的起电过程有一定程度的相似。
     通过双多普勒雷达反演风场,反演了上海地区4个雷暴个例,对这些个例进行统计发现,雷暴的动力参数与地闪活动有着较好的相关关系。从选取的动力参数来看,较强回波区的上升气流体积与地闪频次的相关性比超过5m/s的上升气流体积以及超过10m/s的上升气流体积高。对雷暴雷达回波参数进行验证,-15℃层以上超过30dBZ的回波体积与0℃层以上的超过30dBZ区域的上升气流体积、超过5m/s的上升气流体积以及超过10m/s的上升气流体积的相关性达到了0.93、0.90和0.86,显示了很高的相关性,从而说明了雷达回波特征参数能较好的表征雷暴的动力条件。
     2、闪电活动与雷暴动力场的时空关系
     从上海地区8月25日个例分析来看,将地闪按频次分为三个阶段,在初始发展阶段和成熟阶段,其位置与强回波中心有较好的对应,而在地闪衰减期,其发生位置并不在强回波中心,而是发生在较强回波中心;三个时期的地闪位置都发生在水平风场风速辐合,且风速较小区域,这可能是由于携带电荷的冰相粒子在起电后被风场带入这一地区并“堆积”所致;三个时期的地闪位置都分布在上升气流较强区,并非分布在最强上升区域;三个时期的地闪都分布在雷暴的水平散度的负值区域;在雷暴的发展成熟期,地闪并不分布在强涡度的中心。
     地闪活动与雷暴的回波以及动力特征有着较好的相关性,在地闪发展初期,雷暴中无强回波(超过50dBZ)体积与强上升气流(超过10m/s)体积以及低层的低散度(小于-10~(-2)s~(-1))体积;在地闪发展活跃期,各参数的体积同地闪频次都具有较高的水平,表现出较好的一致性,这一时期,雷暴的强涡度(大于10~(-2)s~(-1))体积最大值与地闪频次最大有着较好的对应;在地闪衰减期,各参数变化较为一致,雷暴中无强回波和强涡度体积,且强上升气流体积,尤其是0℃层以上的强上升气流体积明显减小,而这一时期开始的高层低散度体积有所增大,这也预示雷暴也开始减弱。
     3、对闪电活动结束的临近预警方案
     通过分析北京地区雷暴发现,不但可以使用40dBZ的回波顶高、-15℃层以上超过30dBZ的回波体积及其所占雷暴总体积的百分比可以作为预警参数,还可以使用VPF结合闪电频次来对闪电活动的结束进行预警。并且这两种方案都能取得较好的预警效果。
The current research results suggest that there is a close relationship, which is not yet clarified in detail, between lightning activity and thunderstorm’s micro-physics and dynamic conditions. Therefore, it is necessary to carry out further research on this relationship. And it is of vital significance for studying of lightning activity and improving the lightning warning and forecast system.
     The parameterization scheme between lightning activity with thunderstorm’s micro physics and dynamic conditions is given, according to the data of radar, lightning detection and air sounding for 23 thunderstorms in Beijing and Shanghai area. Based on this and combined with previous studies, a warning method of the end of lightning activity is also gained. The main conclusions are as follows:
     1. The lightning activity has a strong correlation with the micro-physics and dynamic conditions of thunderstorm in both areas. In Beijing area, the echo volume above -15℃level with reflectivity exceed 30dBZ (V30t-15) has the highest correlation coefficients with total lightning frequency in all temperature levels with reflectivity exceed 30dBZ, which is better than that with 40dBZ and 50dBZ. The feature between echo volume and CG lightning frequency in the two sites is similar to the relationship of echo volume and CG lightning frequency in Beijing site.
     The result of power fit of the echo volume as a function of total lightning frequency and CG lightning frequency is better than linear fit. Compared the results of data fitting , it shows that the thunderstorm’s Radar Echo Characteristics are similar in both sites.
     The statistic on 4 cases in Shanghai shows that the CG lightning activity has a good correlation with dynamic condition, in which the volume of updraft in strong echo area is the strongest. The correlation coefficients between V30t-15 and updraft volume, which include updraft volume in 30dBZ area above 0℃layer and above 0℃layer with speed exceed 5m/s and 10m/s updraft volume, are 0.93, 0.90 and 0.86. The result proves that the dynamic condition could be characterized by echo volume.
     2. Analyzing the case of Shanghai, it is found the following results. The CG lightning activity is divided into three periods, including initial period (P1), active period (P2) and decline period (P3). The CG lightning locates in the strongest echo area in P1 and P2, while in stronger echo place in P3. In three periods, the position of CG lightning locates in wind convergence region, in where the wind has lower speed. The CG lightning position does not locate in strongest updraft area but in stronger area.
     There is strong relationship between CG lightning activity and the features of echo and dynamic structure. There is no exceeding 50dBZ echo volume and faster than 10m/s updraft volume and no volume of lower than -10-2s-1 divergence in P1. In P2, the CG lightning frequency has a good consistency with all kinds of the volumes. In P3, there is no exceeding 50dBZ echo volume and no volume of more than 10-2s-1 vorticity existing, and the volume of updraft above 0℃layer has a dramatic decline.
     3. Through analyzing thunderstorms in Beijing site, two warning methods of the end of lightning activity are obtained. There are several parameters could be used as warning factor, which include 40dBZ echo top and V30t-15 with its percent of total thunderstorm volume and echo volume per flash.
引文
1. Reynolds, S. E., M. Brook, and M. F. Gourley (1957), Thunderstorm chargeseparation, J. Meteorol., 14(5), 163–178.
    2. Takahashi, T. (1978), Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., 35(8), 1536–1548.
    3. Jayaratne, E. R., C. P. R. Saunders, and J. Hallett (1983), Laboratory studies of the charging of soft hail during ice crystal interactions, Q. J. R.Meteorol. Soc., 109(461), 609– 630.
    4. Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva (1991), The effect of liquid water on thunderstorm charging, J. Geophys. Res., 96(D6), 11,007–11,017.
    5. Saunders, C. P. R., and S. L. Peck (1998), Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions, J. Geophys. Res., 103(D12), 13,949– 13,956.
    6. Takahashi, T., and K. Miyawaki (2002), Reexamination of riming electrification in a wind tunnel, J. Atmos. Sci., 59(5), 1018– 1025.
    7. Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka (2005),Charge structure and lightning sensitivity in a simulated multicell thunderstorm, J. Geophys. Res., 110, D12101, doi: 10.1029/2004JD005287.
    8. Deierling, W., W.A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics.– J. Geo-phys. Res. 113, D16210, doi:10.1029/2007JD009598
    9.张义军,周秀骥.雷电研究的回顾和进展[J].应用气象学报,2006,(6).
    10. Lang, T. J., and S. A. Rutledge (2002), Relationships between convective storm kinematics, precipitation, and lightning, Mon. Weather Rev., 130(10), 2492–2506.
    11. MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250.
    12. Knupp, K. R., Paech, S., and Goodman, S.: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee valley region, Mon. Weather Rev., 131(1), 172–188, 2003.
    13. Carey, L. D., Petersen, W. A., and Rutledge, S. A.: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998, Mon. Wea. Rev., 131, 1811–1831, 2003a.
    14.李南,魏鸣,姚叶青,.安徽闪电与雷达资料的相关分析以及机理初探[J].热带气象学报,2006,(3).
    15. Goodman, S. J., et al. (2005), The North Alabama lightning mapping array: Recent severe storm observations and future prospects, Atmos. Res., 76(1– 4), 423– 437.
    16. Zajac B A, Rut l edge S A. 2001. Cloud to ground lightning activity in the contiguous United States from 1995 to 1999 [J]. Mon. Wea. Rev., 129: 999- 1019.
    17.言穆弘,刘欣生,安学敏,张义军.雷暴非感应起电机制的模拟研究Ⅰ.云内因子影响[J].高原气象,1996a,(4).
    18. Workman, E. J., and S. E. Reynolds (1949), Electrical activity as related to thunderstorm cell growth, Bull. Am. Meteorol. Soc., 30, 142– 149.
    19. Williams, E. R., and R. M. Lhermitte (1983), Radar tests of the precipitation hypothesis for thunderstorm electrification, J. Geophys. Res., 88(C15), 10,984– 10,992.
    20. Dye, J. E., J. J. Jones, A. J. Weinheimer, and W. P. Winn (1989), Observationswithin two regions of charge during initial thunderstorm electrification. J. R. Meteorol. Soc., 114(483), 1271– 1290.
    21. Rutledge, S. A., E. R. Williams, and T. D. Keenan (1992), The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results, Bull. Am. Meteorol. Soc., 73(1), 3–16.
    22. Zipser, E. J., and K. R. Lutz (1994), The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?, Mon. Weather Rev., 122(8), 1751– 1759.
    23. Carey, L. D., and S. A. Rutledge (1996), A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm, J. Meteorol. Atmos. Phys., 59, 33–64.
    24. Petersen, W. A., S. A. Rutledge, and R. E. Orville (1996), Cloud-to-ground lightning observations to TOGA COARE, selected results and lightning location algorithm, Mon. Weather Rev., 124(4), 602–620.
    25. Petersen, W. A., S. A. Rutledge, R. C. Cifelli, B. S. Ferrier, and B. F. Smull (1999), Shipborne Dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification, Bull. Am. Meteorol. Soc., 80(1), 81–96.
    26. Boccippio, D. J. (2002), Lightning scaling relations revisited, J. Atmos. Sci.,59(6), 1086–1104.
    27. MacGorman, D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250.
    28. Williams, E.R., 1992. The Schumann resonance: a global tropical thermometer. Science 256, 1184– 1187.
    29. Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio. 2005.Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phasemicrophysics and lightning flash rate. Atmos. Res. 76:288–306.
    30. Baker, M.B., Blyth, A.M., Christian, H.J., Latham, J., Miller, K.L., Gadian, A.M., 1999.Relationships between lightning activity and various thundercloud parameters: satellite andmodeling studies. Atmos. Res. 51, 221–236.
    31.张义军,言穆弘,张翠华,王怀斌.甘肃平凉地区正地闪特征分析[J].高原气象,2003,(3).
    32. MacGorman, D. R., and C. D. Morgenstern, 1998: Some characteristics of cloud-to-groundlightning in mesoscale convective systems. J. Geophys. Res.,103 (D12), 14011–14023.
    33. Beasley, W., 1985: Positive cloud-to-ground lightning observations. J. Geophys. Res., 90((D4),) 6131–6138.
    34. Orville, R. E., and G. R. Huffines, 1999: Lightning ground flash measurements over thecontiguous United States: 1995–97. Mon. Wea. Rev.,127, 2693–2703.
    35. Qie Xiushu Guo Changming Liu Xinsheng;THE CHARACTERISTICS OF GROUNDFLASHES IN BEIJING AND LANZHOU REGIONS[J];Plateau Meteorology;1990-04.
    36. Williams, E. R and Coauthors, 1999: The behavior of total lightning activity in severeFlorida thunderstorms. Atmos. Res., 51, 245–265.
    37. MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning intornadic storms and hailstorms. Mon. Wea. Rev., 122, 1671–1697.
    38. Billingsley, D. B., and M. I. Biggerstaff, 1994: Evolution of cloudto-ground lightningcharacteristics in the convective region of a mesoscale convective region. Preprints, FifthSymp. on Global Change Studies: Symposium on Global Electrical Circuit, Global Change,and the Meteorological Applications of Lightning, Nashville, TN, Amer. Meteor. Soc.,340–344.
    39. Maddox, R. A., K. W. Howard, and C. L. Dempsey, 1997: Intense convective storms withlittle or no lightning over central Arizona: A case of inadvertent weather modification? J.Appl. Meteor., 36, 302–314.
    40. McCaul, E. W., D. E. Buechler, S. Hodanish, and S. J. Goodman, 2002: The Almena,Kansas, tornadic storm of 3 June 1999: A long-lived supercell with very littlecloud-to-ground lightning. Mon. Wea. Rev., 130, 407–415.
    41. Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative tomodeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51,833–851.
    42. Stolzenburg, M, W. D. Rust and T. C. Marshall, 1998b: Electrical structure in thunderstormconvective regions. Part II: Isolated storms. J. Geophys. Res., 103, 14 079–14 096.
    43. Stolzenburg, M, W. D. Rust and T. C. Marshall, 1998c: Electrical structure in thunderstormconvective regions. Part III: Synthesis. J. Geophys. Res., 103, 14 097–14 108.
    44. Stolzenburg, M, W. D. Rust, B. F. Smull, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions. Part I: Mesoscale convective systems. J. Geophys. Res., 103, 14 059–14 078.
    45. Lang, T. J., S. A. Rutledge, J. E. Dye, M. Venticinque, P. Laroche, and E. Defer, 2000: Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon. Wea. Rev., 128, 160–173.
    46. Branick, M. L., and C. A. Doswell III, 1992: An observation of the relationship between supercell structure and lightning ground strike polarity. Wea. Forecasting, 7, 143–149.
    47. MacGorman, D. R., and K. E. Nielsen, 1991: Cloud-to-ground lightning in a tornadic storm on 8 May 1996. Mon. Wea. Rev., 119, 1557–1574.
    48. Solomon, R., and M. Baker, 1994: Electrification of New Mexico thunderstorms. Mon. Wea. Rev.,122, 1878–1886.
    49. Willams E. R., Geotis S. G.,Rennp N., Rutledge S. A., Rasmussen E., Tickenback T.,1990:”Hot Towers”in the tropics. Paper presented at 16th Conf. on Severe Storms and Conference on Atmospheric Electricity, Am. Meteor. Soc., Kananaskis Park, Alberta, Canada.
    50. Willams E. R., Rutledge S. A., Geotis S. G., RennóN. O., Rasmussen E., and Rickenbach T., 1992: A radar and electrical study of tropical“hot towers.”J. Atmos. Sci.,49, 1386–1395.
    51. Willams E. R., RennóN. O., 1991: Conditional instability, tropical lightning, ionospheric potential and global change. Paper presented at 19th Conf. On Hurricanes and Tropical Meteorology, Am. Meteor. Soc., Miami, Florida.
    52. Randell, S. C., S. A. Rutledge, R. D. Farley, and J. H. Helsdon Jr., 1994: A modeling study on the early electrical development of tropical convection: Continental and oceanic (monsoon) storms. Mon. Wea. Rev., 122, 1852–1877.
    53. Weisman, M. L. and J. B. Klemp. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev. 110:504–520.
    54. Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42, 1711–1732.
    55. Huntrieser, H., H. H. Schiesser, W. Schmid, and A. Waldvogel, 1997:Comparison of traditional and new developed thunderstorm indices for Switzerland. Wea. Forecasting,12, 108–125.
    56.郑栋,张义军,吕伟涛,孟青,何平.大气不稳定度参数与闪电活动的预报[J].高原气象,2005,(2).
    57. Zhang Yijun Meng Qing Ma Ming Dong Wansheng Lu Weitao;Development of Lightning Detection Technique with Application of Lightning Data[J];Journal of AppliedMeteorological Science;2006-05.
    58. J. Montanya, D. Aranguren, N. Pineda and G. Solà, Total lightning, electrostatic field and meteorological radar applied to lightning hazard warning, Intl. Lightning Detection Conf., Tucson, AZ, CD-ROM, 2008.
    59. Buechler, D. E., R. J. Blakeslee, and G. T. Stano, 2009: The North Alabama lightning warning product. 4th Conf. on the Meteorological Applications of Lightning Data, AMS, Phoenix, AZ.
    60. M. J. Murphy, and K. L. Cummins, Early detection and warning of cloud-to-ground lightning at a point of interest. 2nd Symp. on Enviromental Applications, Amer. Meteorol. Soc., Long Beach, CA, 172-177. 2000.
    61. M. J. Murphy, R. L. Holle, Nicholas and W. S. Demetriades, Cloud-to-ground lightning warnings using total lightning Mapping and electric field mill observations. Third Conference on Meteorological Applications of Lightning Data., Amer. Meteorol. Soc, 2008.
    62. Henry, S. G., and J. W. Wilson, 1995: The automatic thunderstorm nowcasting system. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 397–399.
    63. Kessinger, J., and C. K. Mueller, 1991: Background studies on nowcasting Florida thunderstorm activity in preparation for the CaPOW forecast experiment. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 416–419.
    64. Moncrieff, M. W., and M. J. Miller., and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting,8, 132–146.
    65. Roeder, W. P., and C. S. Pinder. Lightning Forecasting Empirical Techniques for Central Florida in Support of America’s Space Program. In 16th Conference on Weather Analysis and Forecasting, 1998, 475-477.
    66. Hondl, K. D., and M. D. Eilts. Doppler Radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground Lightning. Monthly Weather Review, 1994, 122: 1818-1836.
    67. Brandon R. Vincent, Lawrence D. Carey, Douglas Schneider, Kermit Keeter, Rod Gonski. Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central north Carolina study. National Weather Digest, Dec, 2003.
    68. BuechlerD E, Goodman S J. Echo size and asymmetry: Impact on NEXKAD storm identification. Journal of Applied Meteorology, 1990,(29):962-969.
    69. Gremillion, M., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D radar, Wea. Forecasting, 14, 640-649.
    70. Wolf, P., 2007: Anticipating the Initiation, Cessation, and Frequency of Cloud-to-GroundLightning, Utilizing WSR-88D Reflectivity Data, National Weather Association,http://www.nwas.org/ej/2007/2007.php.
    71.王飞,张义军,赵均壮,吕伟涛,孟青,.雷达资料在孤立单体雷电预警中的初步应用[J].应用气象学报,2008,(2).
    72.刘恒毅,董万胜,王涛,邱实,.闪电电场变化波形时域特征分析及放电类型识别[J].气象,2009,(3).
    73.孟青,葛润生,朱小燕. SAFIR闪电监测和预警系统[J].气象科技,2002,(3).
    74.肖艳姣,刘黎平,.新一代天气雷达网资料的三维格点化及拼图方法研究[J].气象学报,2006,(5).
    75.付双喜,安林,康凤琴,李宝梓,李照荣,何金梅. VIL在识别冰雹云中的应用及估测误差分析[J].高原气象,2004,(6).
    76. Montanya J, Pineda N, Soula S, et al. Total Lightning Activity and Electrostatic Field in a Hail-bearing Thunderstorm in Catalonia // 19th Int Lightning Detection Conf, Tucson, Arizona, USA, 2006
    77. Zheng D, Zhang Y, Meng Q, et al. Total Lightning characteristics and electric structure evolution in a hailstorm. Acta Meteorologica Sinica, 2009, 23(2); 233-249.
    78. Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130, 2349–2372.
    79. Maribel Martinez. The Relationship Between Radar Reflectivity and Lightning Activity at Initial Stages of Convective Storms.American Meteorological Society , 82nd Annual Meeting , First Annual Student Conference , Orlando , Florida , 2002.
    80. Wiebke Deierling , John Latham , Walter A Petersen , et al. On the relationship of the thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos Res , 2005 , 76 :1142126.
    81. P. Richard, A. Soulage, P. Laroche, and J. Appel, The SAFIR lightning monitoring and warning system: Application to aerospace activities, in Proc. Int. Aerospace and Ground Conf. on Lightning and Static Electricity, (pp. 383–390), Oklahoma City, OK: National Interagency Coordination Group, 1988.
    82. P. Richard, A. Soulage, and F. Broutet, The SAFIR lightning warning system, in Proc. 1989 Int. Conf. On Lightning and Static Electricity, Bath, England: Ministry of Defence Procurement Executive, (pp. 2 B.1.1–2 B.1.5), 1989.
    83. Wessels, H. R. A., 1998: Evaluation of a radio interferometry lightning positioning system. KNMI Scientific Rep. WR-98–04, De Bilt, Netherlands, 26 pp.
    84. Assink, J. D., L. G. Evers, I. Holleman, and H. Paulssen (2008), Characteristics of infrasound from lightning, Geophys. Res. Lett., 35, L15802, doi:10.1029/2008GL034193.
    85.张沛源,周海光,胡绍萍.双多普勒天气雷达风场探测的可靠性研究.应用气象学报,2002 , 13 (4) : 485-495.
    86.刘黎平,张沛源,梁海河,等.双多普勒雷达风场误差和资料的质量控制.应用气象学报,2003 ,14 (1) : 17-29.
    87. Ge Wenzhong, Zhang Weiping, Dang Renqing. A Study on the Non-uniform Structure of Meiyu Front Precipitation by Use of Radar Field Data , The Third GAME-HUBEX Workshop on Meso-scale Systems in Meiyu/ Baiyu Front and Its Hydrological Cycle , Kunming , 2001 : 50-53.
    88.周海光,王玉彬.双多普勒雷达对淮河流域特大暴雨的风场反演.气象,2002 ,30 (2) :17-20.
    89.刘黎平,邵爱梅,葛润生,等.一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测研究.大气科学,2004 ,28 ( 2) :278-283.
    90.刘黎平.用双多普勒雷达反演降水系统三维风场试验研究.应用气象学报,2003 ,14 (4) : 502-504.
    91. Shao Aimei, Qiu Chongjian, Liu Liping. Kinematic structure of a heavy rain event from dual-Doppler radar observations. Adv Atmos Sci , 2004 , 21 (4) : 609-616.
    92.庄薇,刘黎平,王楠,.新疆地区一次对流性降水的三维中尺度风场研究[J].应用气象学报,2006,(4).
    93. Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.
    94. Rust W D., Taylor W L., MacGorman D R., et al., 1981., Research on Elect rical Properties of Severe Thunderstorms in t he Great Plains [J] . Bull. Amer. Meteor. Soc., 62 : 1286-1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700