利用星载云雷达资料研究青藏高原的云辐射强迫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云-辐射相互作用是气候变化研究中重要的不确定因素之一。获取不同垂直结构云的信息及其对辐射收支的影响,对于全球气候变化的研究至关重要。云卫星(Cloudsat)是世界上第一颗用于研究云的卫星,首次从太空中对全球云层的垂直结构和微物理特性进行了观测,因此,Cloudsat观测资料的分析和应用,将有助于进一步理解云-气候反馈作用,减小气候变化研究中的不确定性。
     本文利用Cloudsat提供的云类、云辐射强迫资料,以及CERES_SSF云量,分析了青藏高原夏季总云量的时空变化特征及云辐射强迫。研究结果表明:随着季风的到来,夏季青藏高原的总云量逐渐增加,并在8月份总达到最大;总云量总体呈现南高北低的空间分布特征,与地形分布配合较好;在云量的高值区,大气顶(TOA)和大气底(BOA)的云短波辐射强迫也较大。
     利用Cloudsat搭载的毫米波雷达提供的大气加热率资料,论文对比分析了青藏高原出现单层云、多层云以及多种类型云同时存在对大气加热率的影响。研究结果发现:1)存在单层云时,在云层内短波加热效应显著,而在云顶,长波冷却效应较为显著;2)存在多层云时,云顶和云内的大气加热率与单层云类似,而在云层之间,长波的冷却效应显著,云对大气的影响表现为冷却效应,其最高值接近于云顶对大气的冷却率;3)对于多种类型云同时存在的情况,大气加热率在数值上可以看作是不同单层云在垂直方向上的叠加。
Cloud-radiation interaction is an important factor of uncertainty in climate change research. Obtaining information of clouds with different heights and its impact on the radiation budget, is necessary to the study of global climate change. Cloudsat is the first satellite for the study of cloud. We can see the vertical structure of the global clouds and get microphysical characteristics of clouds by using it. Through this process, we can better understanding the cloud-climate feedback in climate change research and thus reduce uncertainty.
     In this paper, we analysed the total cloud amount and cloud radiative forcing, by using cloud type and cloud radiative forcing data provided by Cloudsat and cloud amount data from CERES_SSF. The conclusions suggest that, the clouds amount over Tibetan Plateau gradually increased carried on monsoon winds, and in August, the clouds amount reaches maximum. Due to the effect of landforms of Plateau, the clouds amount over Southern Plateau is much great then Northern. In the high cloud amount area, the absolute value of Short Wave cloud radiative forcing at TOA and BOA are also higher and low amount area.
     We also used atmosphere heating data from Cloudsat, and selected out three example of cloud over Tibetan Plateau, corresponding to single clouds, multi-layer clouds and various types of clouds. The results showed that:clouds heat the atmosphere via absorption of SW radiation inside the cloud. The single clouds cool the atmosphere by emission LW radiation near the top of cloud layers and heat the atmosphere due to the 'green house' effect. Multi-layer clouds have an obviously cooling effect on net heating rate and the maximum is close to cooling rate near the top of cloud. The heating rate of different kinds of cloud can be treated as the sum of these kinds of single-layer clouds in vertical distribution.
引文
[1 Ardanuy, P. E., H. L. Lee, and H. Chang, Evolution of the Southern Oscillation as Observed by Nimbus-7 ERB Experiment[J], Mon. Wea. Rew.,1987,115:2615-2625.
    [2]Arakawa, A. and W. H. Schubert, The interaction of a cumulus cloud ensemble with the large-scale environment, Part I[J], J. Atmos. Sci.,1974,31:674-701.
    [3]Arakawa, A., The Cumulus Parameterization Problem:Past,Present, and Future[J], J. Climate: 2004,17:2493-2525.
    [4]Bian, L., X. Xu, L. Lu, Z. Gao, M. Zhou, and H. Liu, Analyses of Turbulence Parameters in the Near-Surface Layer at Qamdo of the Southeastern Tibetan Plateau[J]. Adv. Atmos. Sci.,2003, 20(3):369-378.
    [5]Cess, R. D., M. H. Zhang, and P. Minnis, Absorption of Solar Radiation by Clouds:Observations Versus Models[J], Science,1995,267:496-499.
    [6]Chen, B., Vertical cloud structures over the Tibetan Plateau as revealed from cloudsat observations,2011:91st American Meteorological Society Annual Meeting.
    [7]cloudsat.atmos.colostate.edu/education/satellite.
    [8]Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, Comparision of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plain Site[J], J. Geophys. Res.,2008,113, D30204, doi:10.1029/2007JD008438.
    [9]Duchon, C. E. and M. S. O'Malley, Estimate Cloud Type from Pyranometer Observation[J]. J. Appl. Meteoro.,1999,38:132-141.
    [10]Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. Cess, and G. G. Gibson, Seasonal Variation of Cloud Radiative Forcing Derived from the Earth Radiation Budget Experiment[J], J. Geophys. Res.,1990,95(18):687-703.
    [11]He, J., J. Ju, Z. Wen, J. Lv, and Q. Jin, A Review of Recent Advances in Research on Asian Monsoon in China[J], Adv. Atmos. Sci.,2007,24(6):972-992.
    [12]Imre, D. G., E. H. Abramson and P. H. Daom, Quantifying Cloud-Induced Shortwave Absorption:An Examination of Uncertainties and of Recent Argument for Large Excess Absorption[J], J. Appl. Meteor.,1996,35:1991-2010.
    [13]L'Ecuyer, T. S., B. W. Norman, T. Haladay, G. L. Stephens, and P. W. Stackhouse, Impact of clouds on atmosphere heating based on the R04 Cloudsat fluxes and heating rates data set[J]. J. Geophy. Res.,2008.113:2008JD009951.
    [14]Level 2 Cloud Scenario Classification Product Process Description and Interface Control Document, www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=11.
    [15]Level 2 GEOPROF Product Process Description and Interface Control Document, Algorithm version 5.3,www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=9.
    [16]Level 2 Fluxes and Heating Rates Product Process Description and Interface Control Document, www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=4.
    [17]Level 2B Radar-only Cloud Water Content(2B-CWC-RO) Process Description Document, www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=70.
    [18]Level 2 Radar-lidar GEOPROF Product Version 1.0 Process Description and Interface Control Document, www.cloudsat.cira.colostate.edu/dataSpecs.php?prodid=11.
    [19]Li, Z. and L. Moreau, A New Approach for Remote Sensing of Canopy-Absorbed Photosynthetically Active Radiation, I:Total Surface Absorption[J], Remote Sens. Environ., 1996,55:175-191.
    [20]Liu, Y., Q. Bao, A. Duan, Z. Qian, and G. Wu, Recent Progress in the Impact of the Tibetan Plateau Climate in China[J], Adv. Atmos. Sci.,2007,24(6):1060-1076.
    [21]Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand. G. Stephens, C. Trepte, and D.Winke, A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data[J], J. Geophys. Res.,2007,114:D00A26, doi:10.1029/2007JD 009755.
    [22]Miller, S. D., and G. L. Stephens, CloudSat Instrument Requirementsas Determined from ECMWF Forecasts of Global Cloudiness[J], J. Geophys.Res.,2001.106:17713-17733.
    [23]Morcrette J. J., and J. Christian, The response of the ECMWF model to changes in the cloud overlap assumption[J], Mon. Wea. Rev.,2000,128:1707-1732.
    [24]Pilewskie, P., and F. P. J. Valero, Direct Observations of Excess Solar Absorption by Clouds[J], Science,1995,267:1616-1629.
    [25]Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, Cloud-Radiative Forcing and Climate:Results from the Earth Radiation Budget Experiment[J]. Science,1989,243(1):57-63.
    [26]Ramanathan, V., B., Subasuiar, and G. J. Zhang, Warm pool heat budget and shortwave cloud forcing:A missing physics?[J], Science,1995,267:499-503.
    [27]Raschike, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild, Cloud Effect on the Radiation Budget Based on ISCCP Data (1991 to 1995)[J], Int. J. Climatol.,2005,25:1103-1125.
    [28]Smith, E. A., and L.-Shi, Reducing Discrepancies in Atmospheric Heat Budget of Tibetan Plateau by Satellite-based Estimates of Radiative Cooling and Cloud-Radiation Feedback[J], Meteoral. Atmos. Phys.1995,56:229-260.
    [29]Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and the Cloudsat Science Team,The cloudsat Mission and the A-Train:A New Dimension of Space-Based Observations of Clouds and Precipitation[J], Bull. Amer. Meteor. Soc.,2002,83: 1771-1790.
    [30]Sun, Z., Comparison of Observed and Modelled Radiation Budget over the Tibetan Plaeau using Satellite Data[J], Int. J. Climatol,1995,15:423-445.
    [31]www.Cloudsat.cira.colostate.edu/datahome.php.
    [32]Yamanouchi, T., Radiation in the Antarctic., IRS'96:Current Problems in Atmospheric Radiation. Proceedings of the Internation Radiation Symposium[M],1996, Fairbanks, Alaska, August 19-24.
    [33]Yang, K., T. Koike, and D. Yang, Surface Flux Parameterization in the Tibetan Plateau[J], Boundary-Layer Meteor.,2003,106:245-262.
    [34]Yu, R., B. Wang, T. Zhou, Climate Effects of the Deep Continental Stratus Clouds Generated by the Tibetan Plateau[J], J. Climate,2004,17:2702-2713.
    [35]卞林根,陆龙骅,逯昌贵,陈彦杰,高志球,刘辉志,张宏升,陈家宜,1998年夏季青藏高原辐射平衡分量的特征[J],大气科学,2001,25(5):577-588.
    [36]陈葆德,梁萍,李跃清.青藏高原云的研究进展[J],高原山地气象研究,2008,28(1):66-71.
    [37]陈隆勋,宋玉宽,刘骥平,王文.从卫星资料揭示的青藏高原夏季对流云系的日变化[J],气象学报,1999,57(5):549-560.
    [38]陈少勇,董安祥,王丽萍,中国西北地区总云量的气候变化特征[J],成都信息工程学院学报,2006,21(3):423-428.
    [39]季国良,青藏高原能量收支观测实验的新进展[J],高原气象,1999,18(3):333-340
    [40]季国良,1982年8月-1983年7月青藏高原地区的辐射和气候[J],高原气象,1985,4(4):Suppl.10-21.
    [41]李国平.青藏高原动力气象学[M],北京:气象出版社,2002:22-23
    [42]李积明,黄建平,衣育红,吕达仁,利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J],大气群学,2009,33(4):1-10.
    [43]李茂善,马耀明,孙方林.纳木错湖地区近地层微气象特征及地表通量交换分析[J],高原气象,2008,27(4):727-732
    [44]刘瑞霞,刘玉洁,杜秉玉.利用ISCCP资料分析青藏高原云气候特征[J],南京气象学院学,2002.25(2):226-234.
    [45]刘艳,翁笃鸣.青藏高原云对地气系统短波吸收辐射强迫的气候研究[J],南京气象学院学报,2000,23(1):124-129.
    [46]刘艳,翁笃鸣.青藏高原云对地气系统长波射出辐射(OLR)强迫的气候研究[J],南京气象学院学报,2000,23(2):270-276.
    [47]刘艳,翁笃鸣.青藏高原云对地气系统净辐射强迫的气候研究[J],南京气象学院学报,2000,23(4):569-575.
    [48]刘玉芝,石广玉,赵剑琦,—维辐射-对流模式对云辐射强迫的数值模拟研究[J],大气科学,2007,31(3):486-494.
    [49]马耀明,姚檀栋,王介民.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展[J],高原气象,2006,25(2):344-351.
    [50]马伟强,马耀明,胡泽勇,李茂善,王介民,钱泽雨.藏北高原地面辐射收支的初步分析[J], 高原气象,2004,23(3):348-352.
    [51]马伟强,马耀明,胡泽勇,李茂善,王介民.藏北高原地区辐射收支和季节变化与卫星遥感的对比分析[J],干旱区资源与环境,2005,19(1):109-115
    [52]马占山,刘奇俊,秦琰琰,谌芸,云探测卫星Cloudsat[J],气象,2008,34(8):104-112.
    [53]苏文颖,毛杰泰,纪飞.青藏高原出射长波辐射特征分析[J],大气科学,2000,24(3):313-323.
    [54]汪方,丁一汇,气候模式中云辐射反馈过程机理的评述[J],地球科学进展,2005,20(2):207-215.
    [55]汪宏七,赵高祥,云和辐射(Ⅰ)云气候学和云的辐射作用[J],大气科学,1994,18(增刊):1-22.
    [56]石广玉,大气辐射学[M],北京:科学出版社,2007.
    [57]王可丽,吴国雄,江灏,刘平,青藏高原云-辐射-加热效应和南亚夏季风——1985年与1987年对比分析[J],气象学报,2002,60(2):173-181
    [58]王可丽,钟强,青藏高原地气系统云辐射强迫的气候学特征[J],高原气象,1997,16(1):17-23.
    [59]王帅辉,韩志刚,姚志刚.基于CloudSat和ISCCP资料的中国及周边地区云量分布的对比分析[J],大气科学,2010,34(4):767-779.
    [60]魏丽,钟强.青藏高原云的气候学特征[J],高原气象,1997,16(1):10-15.
    [61]翁笃鸣,高庆先,刘艳,应用ISCCP云资料反演青藏高原地面总辐射场[J],南京气象学院学报,1997,20(1):41-46
    [62]吴国雄,刘屹岷,刘新,段安民,梁潇云,青藏高原加热如果影响亚洲夏季的气候格局[J],大气科学,2005,29(1):47-58
    [63]武荣盛,马耀明,青藏高原不同地区辐射特征对比分析[J],高原气象,2010,29(2):251-259.
    [64]杨喜峰,蒋尚城,青藏高原OLR场的季节变化特征[J],应用气象学报,1995,6(4):414-421
    [65]游庆龙,康世昌,田可明,刘景时,李潮流,张强弓.青藏高原念青唐古拉峰地区气候特征初步分析[J],山地学报,2007,25(4):497-504.
    [66]张海龙,刘高焕,叶宇,青藏高原短波辐射分布式模拟及其时空分布[J],自然资源学报,2010,24(5):811-821.
    [67]张华,荆现文,气候模式中云的垂直重叠假定对模拟的地-气辐射的影响研究[J],大气物理,2010,34(3),520-532
    [68]张雪芹,彭莉莉,郑度,陶杰.1971-2004年青藏高原总云量时空变化及其影响因[J],地理学报,2007,62(9):959-969.
    [69]周明煜,徐祥德,卞林根,青藏高原大气边界层观测分析与动力学研究[M],青藏高原大气科学试验,北京:气象出版社,2005:125.
    [70]卓嘎,徐祥德,陈联寿,青藏高原夏季降水的水汽分布特征[J],气象科学,2002,22(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700