一次华南暴雨过程的云分辨模拟及敏感性实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暴雨的发生不仅仅与宏观尺度的天气现象有关系,微观过程更为深入研究暴雨的机理和发生发展过程提供了一个好的研究角度。本文利用二维云分辨模式对2008年6月10日-15日的华南暴雨过程做了模拟,并设计了云辐射敏感性实验,与控制实验对比分析。
     控制实验中降水过程区域平均对流降水率大于层云降水率。初始阶段,区域平均降水率较小;成熟阶段区域平均降水强度最大;衰退阶段,区域平均降水率减小的原因主要在于水汽辐合率的减小和局地水汽增加抑制了降水的发展。在降水性层状云区,降水主要来自于水汽辐合,水汽的主要消耗项是局地水汽增加。对流云区,降水主要来自于水汽辐合与局地大气变干,水汽主要消耗项是水凝物生成。热量变化特征是,区域平均大气温度变化率主要受区域平均的热辐散率与区域平均的潜热释放影响,在成熟阶段区域平均大气冷却达到最强,初始阶段和衰退阶段的局地大气温度变化率相对较小,并且区域平均大气冷却主要来自于层状云区。对流云区的潜热释放率始终大于降水性层状云区,对增强区域平均潜热释放率起到了重要作用。区域平均热辐散主要来自于降水性层状云区和对流云区。
     云辐射敏感实验的降水特征是,无云辐射效应使得区域平均水汽辐合减小,但却通过使局地大气变干和局地水凝物减少率增强的方式来增加降水的水汽来源,使得区域平均降水强度大于控制实验。其中局地大气变干率和局地水凝物减少率均在降水的成熟阶段达到最大,在降水性层状云区和对流降水区,引起对流云区降水强度普遍增强,主要来自于局地水汽凝结大气变干过程;降水性层状云区的降水强度普遍减弱,主要原因在于水汽辐合率的减弱抑制了降水的发展。对流降水强度增加量大于层云降水强度的减弱量,因此无云辐射效应导致了区域平均降水强度的增加。云辐射敏感性实验的热量收支特征是,在初始阶段,平均局地大气冷却加强。成熟阶段,平均局地大气冷却率相对初始阶段增强,本阶段局地温度主要受辐射冷却和潜热释放减小的影响。衰退阶段,平均辐射冷却率仍然增强,平均潜热释放率减小程度相对于成熟阶段减小一个量级,平均热辐散率减弱程度小于成熟阶段。
Microphysical processes provide us a unique angle to have a better study of the mechanism and development process of heavy rains, which is more than just having a relationship with large-scale phenomenon. In this paper, heavy rainfall event occurred in 10-15 June 2008 in southern China is simulated with a two-dimensional cloud-resolving model. Besides, sensitivity experiment of cloud radiation is designed to be compared with control-experiment to show the results.
     Convective domain mean rain rate is larger than that of stratiform in control experiment. In onset phase, domain mean rain rate is small;in mature phase, domain mean rain rate reaches maximum; in decay phase domain mean rain rate is decreased mainly because the rainfall development process is depressed by the decreasing of vapor convergence rate and increasing of local vapor content. In raining stratiform regions, rainfall is mainly from vapor convergence and vapor sink is mainly from local vapor increasing. In convective regions, vapor convergence and local atmospheric drying are the major source for rainfall. Local hydrometeor gain is the major vapor sink. Feature of heat budget is that heat divergence and domain mean latent heat release are the main contributors to domain mean temperature change. Domain mean local atmospheric cooling reaches maximum in mature phase, and local atmosphere temperature change rate is relatively small in onset phase and decay phase. Local mean atmospheric cooling is mainly from stratiform regions (raining stratiform regions and non-raining stratiform regions). Latent heat release in convective regions is consistently large than that of raining stratiform regions, which plays an important role in enhancing local mean latent heat release. Domain mean heat divergence is mainly from raining stratiform regions and convective regions.
     Rainfall characteristics of the cloud radiation sensitivity experiment is that domain mean vapor convergence rate is decreased, but vapor source is increased by local atmospheric drying and local hydrometeor loss, as a result, the domain mean rain rate is larger than that in control experiment. Local atmospheric drying and local hydrometeor loss reach maximum in mature phase. In raining stratiform regions and convective regions, rain rate is generally increased in convective regions, which rainfall source is mainly from local hydrometeor loss, namely local atmospheric drying. Rain rate is generally decreased in raining stratiform regions, and the major reason is vapor convergence rate is depressed. Increasing of convective rain rate is more than decreasing of raining stratiform rain rate, therefore domain rain rate is enhanced in the sensitivity experiment of cloud radiation. Feature of heat budgets of cloud radiation sensitivity experiment is that local mean atmosphere cooling is increasing in onset phase. Domain mean local atmospheric cooling rate in mature phase is larger than that in onset phase, and local temperature is mainly affected by radiative cooling and decreasing of latent heat release. In decay phase, mean radiative cooling rate is still increasing, and the magnitude of mean latent heat release rate is one degree smaller than that in mature phase, mean heat divergence rate is smaller than that in mature phase.
引文
[1]朱乾根,林锦瑞,寿绍文等.天气学原理和方法(第三版)。北京:气象出版社。2005,319-320pp.
    [2]陶诗言.中国之暴雨.北京:科学出版社.1980.225pp.
    [3]周晓平,赵思雄,张宝严.梅雨锋上中尺度低压发生的数值模拟实验.大气科学,1984,8:353-361.
    [4]胡志晋,何观芳.积雨云微物理过程的数值模拟(一)微物理模式.气象学报,1987,45:23-30.
    [5]黄美元,洪延超,吴玉霞等.梅雨锋云系和降水的若干研究.大气科学1987,11:23-30.
    [6]丁一汇.1991年江淮流域持续性特大暴雨研究.北京:气象出版社.1993.
    [7]郭学良,黄美元,徐英华等.层状云降水微物理过程的雨滴分档数值模拟.大气科学,1999,23:745-752.
    [8]刘奇俊,胡志晋,周秀骥.显示云降水方案及其对暴雨和云的模拟(Ⅱ)暴雨和云的模拟.应用气象学报,2003,14:68-77.
    [9]胡朝霞,雷恒池,郭学良等.降水性层状云系结构和降水过程的观测个例与模拟研究.大气科学,2007,31:425-439.
    [10]高守亭,孙建华,崔晓鹏.暴雨中尺度系统数值模拟与动力诊断研究.大气科学,2008,32:854-866.
    [11]张立凤,查石祥,张铭.一次华南暴雨过程的数值模拟和实验.气象科学,2000,2:120-128.
    [12]史荟燕,潘晓滨,谢海军,等.一次华南暴雨过程中不同区域降水特征的模拟分析.气象科学,2009,1:58-63.
    [13]沈桐立,崔丽曼,陈海山.2002年6月14-15日暴雨的诊断分析和数值实验.大气科学学报,2009,4:483-489.
    [14]胡亮,何金海,高守亭.华南持续性暴雨的大尺度降水条件分析.南京气象学院学报,2007,3:345-351.
    [15]孙建,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响.气象学报,2002,3:333-342.
    [16]李向红,徐海明,何金海.对赤道两支越赤道气流于华南暴雨的关系讨论.气象科学,2004,2:161-167.
    [17]赵玉春,李泽椿,肖子牛.南半球冷空气爆发对华南连续性暴雨影响的个例分析.气象,2007,3:40-47.
    [18]王黎娟,管兆勇,何金海.2005年6月华南致洪暴雨的大尺度环流特征及成因讨论.南京气象学院学报,2007,30(2):146-152.
    [19]Xu, K M, D A Randall. Explicit simulation of cumulus ensembles with the Gate Phase Ⅲ data:Comparison with observation, J. Atmos. Sci.,1996,53: 3710-3736.
    [20]Grabowski, W W, X Wu, M W Moncrieff. Cloud-resolving model of tropical cloud systems during Phase Ⅲ of GATA. Part I:Two-dimensional experiments. J. Atmos. Sci.,1996,53:3684-3709.
    [21]Wu X, W W Grabowski, M W Moncrieff. Long-term evolution of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I:Two-dimensional cloud-resolving model, J. Atmos. SCI.,1998,55:2693-2714.
    [22]Xu K M, R T Cederwall L J Donner et al. An intercomparison of Cloud Resolving Models with the Atmospheric Radiation Measurement Summer 1997 Intensive Observation Period Data. Quart. J. Roy. Meteor. Soc.,2002,128:593-624.
    [23]Tao W K, C L Shine J Simpson, et al. Convective systems over the South China Sea:Cloud resolving model simulations. J. Atmos. Sci.,2003,60:2929-2955.
    [24]Gao Shouting, Cui Xiaopeng, Zhou Yushu et al. Surface rainfall processes as simulated in a cloud-resolving model.Geophys. Res.2005,110:D10202.
    [25]崔晓鹏.地面降水诊断方程对降水过程的定量诊断.大气科学,2009,33(2):375-387.
    [26]Wang Jian-Jian, Li Xiaofan, Lawrence D. Carey. Evolution, structure, cloud microphysical and surface rainfall processes of a monsoon convection during the South China Sea Monsoon Experiment. Atmos. Sci.,2007,64:360-380.
    [27]Gao Shouting, Li Xiaofan. Responses of tropical deep convective precipitation systems and their associated convective and stratiform regions to the large-scale forcing. Q. J. R. Meteorl. Soc.,2008,134:2127-2141.
    [28]Xu Xiaofeng, Xu Fengwen, Li Bai. A cloud-resolving modeling study of a torrential rainfall over China. Geophys. Res.,2007,112:D17204.
    [29]许凤雯,许小峰,刘文明等.2007年7月江淮流域降水过程云分辨尺度模拟研究--数值模拟及验证.第26届全国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集.2009.
    [30].Ping, Fan, Zhexian Luo, Xiaofan Li. Microphysical and Radiative Effects of Ice Clouds on Tropical Equilibrium States:A Two-Dimensional Cloud-Resolving Modeling Study. Mon. Wea. Rev.,2007,135,2794-2802.
    [31]Gao, Shouting, Lingkun Ran, Xiaofan Li. Impacts of Ice Microphysics on Rainfall and Thermodynamic Processes in the Tropical Deep Convective Regime:A 2D Cloud-Resolving Modeling Study. Mon. Wea. Rev.,2006,134,3015-3024. doi: 10.1175/MWR3220.
    [32]Wang Yi, Shen Xinyong, Li Xiaofan. Microphysical and radiative effects of ice clouds on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Atmospheric Research,2010, doi: 10.1016/j. atmosres.2010.03.005.
    [33]Cui X. A cloud-resolving modeling study of diurnal variation of tropical convective and stratiform rainfall. J Geophys Res,2008 doi:10.1029 /2007JD008990.
    [34]Chao J. One the nonlinear impacts of stratification and wind on development of small-scale disturbances. Acta Meteor Sinica,1962.32:164-176.
    [35]Chou, M.-D., D. P. Kratz, W. Ridgway. Infrared radiation parameterize--tion in numerical climate models. Journal of Climate,1991.4:424-437.
    [36]Chou, M.-D., M. J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo,1994. 3,85pp.
    [37]Chou, M.-D., M. J. Suarez, C.-H Ho, et al.. Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models. Atmos. Sci.,1998.55:201-214.
    [38]Krueger, S. K., Q. Fu, K. N. Liou, et al. Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Appl. Meteor.,1995.34:281-287.
    [39]Li, X., C.-H. Sui, K.-M. Lau, et al. Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. Atmos. Sci., 1999.56:3028-3402.
    [40]Li X, Sui CH, Lau KM, Tao WK. Tropical convective responses to microphysical and radiative processes:A2D cloud-resolving modeling study. Meteor Atmos Phys 2005,90:245-259.
    [41]Lin, Y.-L., R. D. Farley, H. D. Orville. Bulk parameterization of the snow field in a cloud model. Climate Appl. Meteor.,1983.22:1065-1092.
    [42]Rutledge, S. A., P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones part VIII:A model for the "seeder-feeder" process in warm-frontal rain.1983.
    [43]Rutledge, S. A., P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones part Ⅻ: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. Atmos. Sci.,1984.41:2949-2972.
    [44]Soong, S. T., and Y. Ogura. Response of tradewind cumuli to large-scale processes. J. Atmos. Sci.,1980,37:2035-2050.
    [45]Soong, S. T., and W.-K. Tao. Response of deep tropical cumulus clouds to Mesoscale processed. J. Atmos. Sci.,1980,37:2016-2034.
    [46]W.-K. Tao., and J. Simpson. The Goddard Cumulus Ensemble model Part I:Model description. Terr. Atmos. Oceanic Sci.,1993,4:35-72.
    [47]Sui, C.-H., K.-M. Lau, and W.-K. Tao, et al. The tropical water and energy cycles in a cumulus ensemble model Part I:Equilibrium climate. J. Atmos. Sci., 1994,51:711-728.
    [48]Sui, C.-H., X. Li, and K.-M. Lau. Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci.,1998,55: 2345-2357.
    [49]Li X., C.-H. Sui, and K.-M. Lau, et al. Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime, J. Atmos. Sci., 1999,56:3028-3042.
    [50]Lin, Y.-L., R. D. Farley, H. D. Orville. Bulk parameterization of the snow field in a cloud model. Climate Appl. Meteor.,1983,22:1065-1092.
    [51]Tao W.-K., J. Simpson, and M. McCmuber. An ice-water saturation adjustment, Mon. Wea. Rev.,1989,117:231-235.
    [52]Gao, S., and X. Li. Cloud-resolving modeling of convective processes. Springer, Dordrecht.2008,8pp.
    [53]Houghton HG. On precipitation mechanisms and their artificial modification. J. Appl. Meteor.,1968,7:851-859.
    [54]Chuichill DD, Houze RA Jr. Development and structure of winter monsoon cloud clusters on 10 Demcember 1978. J.Atoms. Sci.,1984,41:933-960.
    [55]Houze RA Jr.. A climatological study of vertical transport by cumulus-scale convection. J. Atmos. Sci.1973,30:1112-1123.
    [56]Steiner M. Houze RA Jr.. Three-dimensional validation at TRMM ground truth sites:Some early results from Darwin, Australia 26th International Conference on Radar Meteorology, Norman, OK.1993.
    [57]Steiner M. Houze RA Jr, Yuter SE. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge date. J. Appl. Meteor.1995,34:1978-2007.
    [58]Rosefeld D, Amitai E, Wolff DB. Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor.1995, 34:198-211.
    [59]Yuter SE, Housze RA Jr. Measurements of raindrop size distribution over the Pacific warm pool and implications for Z-R relation. J. Appl. Meteor.1997, 36:847-867.
    [60]Adler RF, Negri AJ. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor.1988,27:30-51.
    [61]Tao WK, Simpson J. Modeling study of a tropical squall-type convective line. J. Atmos. Sci.,1989,46:177-202.
    [62]Xu K M. Partitioning mass, heat, and moisture budgets of explicit simulated cumulus ensembles into convective and stratiform components. J. Atoms. Sci. 1995,52:1-23.
    [63]Lang S., Tao WK, Simpson J., Ferrier B. Modeling of convective-stratiform precipitation processes:Sensitivity to partition methods. J. Appl. Meteor.2003. 42:505-527.
    [64]Caniaux G., Redelsperger JL, Lafore JP. A numerical study of the stratiform region of a fast-moving squall line. Part Ⅰ:General description and water heat budgets. J. Atmos Sci.1994.51:2046-2074.
    [65]Tao W K, Simpson J., Lang S.., McCumber M., Adler R, Penc R. An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor. 1990.29:1232-1244.
    [66]Tao WK, Simpson J, Soong ST. Numerical simulation of a subtropical squall line over Taiwan Strait. Mon. Wea. Rev.1991.119:2699-2723.
    [67]Tao WK, Simpson J, Sui CH, Ferrier B., Lang S., Scala J., Chou MD, Pickering K. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atoms.Sci.1993. 50:673-690.
    [68]何编,孙照渤.“0806”华南持续性暴雨诊断分析与数值模拟.气象科学,2010,30:164-171.
    [69]Wang Donghai, Li Xiaofan, Tao Weiguo, Liu Ying, Zhou Haiguang. Torrential rainfall processes associated with a landfall of severe tropical storm Bilis (2006):A two-dimensional cloud-resolving modeling study. Atmospheric Research.2009.91:94-104.
    [70]Tao, W.-K., Simpson, J., Sui, C.-H., Ferrier, B., Chou, M.-D., Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci. 1996.53,2624-2651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700