浓雾过程中尺度数值模拟及能见度集合预报个例研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用中尺度数值模式3.2、NCEP 1°×1°再分析资料、常规气象观测资料以及南京信息工程大学雾外场观测资料,对2007年12月13日至14日发生在江苏、安徽区域内的一次浓雾过程进行数值模拟研究,分析了动力条件、水汽条件、辐射冷却等在雾过程中的作用。结果表明:这次浓雾过程形成的主要原因是大气层结稳定、水汽条件充沛;地面辐射冷却是雾形成的重要触发条件。在雾形成时,贴地层形成逆温结构,随后逆温层抬升;雾顶逆温结构是雾维持、发展的重要条件;在雾维持阶段,雾层内近似为等温结构,日出后,太阳辐射作用加强、温度随高度降低,稳定层结被破坏导致雾体消散。动力条件上,雾形成前低空为辐合区,雾维持期间950 hPa以上为辐合区,低空对应为下沉气流,有助于稳定层结的建立和维持。水汽条件分析表明:在整个雾过程中,从东南方向有持续的水汽输入;雾过程中200 m高度以上雾区为水汽辐合区,消散阶段为水汽辐散;雾维持阶段地表在地气交换过程中得到热量,地面对大气具有冷却作用,雾消散阶段地表亏损热量,地面对大气具有加热作用。
     利用WRF为一维辐射雾模式PAFOG提供扰动场,构建了一个有30个成员的辐射雾集合预报方案。对本次雾过程进行预报效果分析,结果表明:该方案在地面能见度预报及雾层垂直结构预报方面均好于实际探空作为初始场的单一预报结果;模式启动时刻对预报结果有较大影响,由于辐射雾多发生在夜间,且模式需要一定时间达到稳定,本个例中一维模式在14:00启动预报效果最好,集合预报成员与实测能见度的标准差平均值为0.516 km,集合平均值的平均预报误差为0.287 km。
A heavy fog event occurred in Anhui and Jiangsu province on 13-14 Dec.2007. In this study, a preliminary numerical simulation of this case was conducted by using the new generation Mesoscal model Weather Research and Forecast model (WRF), NCEP 1°×1°reanalysis data, routine observation data and the data from a comprehensive fog experiment carried out in Nanjing University of Information Science & Technology during the same period. The roles of dynamical factor, vapor factor and radiative cooling effect in the formation of a heavy fog were investigated by means of diagnostic analysis. The results show that the stable atmospheric stratification and abundant vapor supply led to the formation of fog. Long wave radiation cooling at the surface was of vital importance for the formation and the development of radiation fog. In fog formative stage the inversion was near surface and then got uplifted. Subsequent, the inversion layer was lifting, the existence of inversion at the top of fog layer played an important role in fog development and maintenance. The temperature profile in the fog layer changed slightly during the maintaining stage and after sunrise the inversion was destroyed since distinct solar radiation. Before fog formed, the lower layer was basically weak convergence region. There was downdraft under 950 hPa which was beneficial to the establishment and maintenance of stable stratification during fog episode. The water vapor budget for the fog was investigated based on simulated results of the WRF model. The research area was a rectangle contained Jiangsu and Anhui province, and the result showed that there was continuous water vapor import through the south and east boundary. During the fog there was convergence region of water vapor above 0.98a while divergence during the weakening period. The ground had a cooling effect on the surface layer because of receiving heat through radiation interchange, while it was reversed during the fog dissipation.
     An ensemble fog forecast system was designed based on WRF and a high resolution numerical 1-D model called PAFOG, initial perturbation conditions of PAFOG are obtained from the simulation of WRF. Comparison between prediction and observation was made during a typical radiation fog event that occurred in Nanjing during 13-14 December 2007. The results show the ensemble forecast system is better than single forecast. Using this method, the prediction for both visibility at surface and vertical structure of fog are better than those utilizing the model only initialized by radiosonde observation; the initial time of simulation played an important role on prediction, due to radiation fog mostly occurs at night, and the model will take some time to stabilize, the one-dimensional model started at 14:00 is the best choice, the standard deviation between ensemble member and observation is 0.417, and the absolute error of ensemble average is 0.228 km.
引文
[1]. Taylor, G. (1917). The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society.43(183):241-268.
    [2]. Roach, W., R. Brown, et al. (1976). The physics of radiation fog:Ⅰ-a field study. Quarterly Journal of the Royal Meteorological Society.102(432):313-333.
    [3]. Choularton, T. W., Fullarton, G., Latham (1981). A Field Study of Radiation Fog in Meppen. West Germany, Quart. J. Roy. Meteor. Soc.107:381-394.
    [4]. Meyer, M. B., G Garland Lala, et al. (1986). FOG-82:A cooperative field study of radiation fog. Bulletin of the American Meteorological Society.67:825-832.
    [5]. CEWCOM (1977). Cooperative experimental in West Coast oceanography and meteorology, Multi-platform marine fog study. Bull. Am. Meteor. Soc.58:1226-1227.
    [6]. Fuzzi, S., M. C. Facchini, et al. (1992). Seasonal trend of fog water chemical composition in the Po Valley. Environmental Pollution.75(1):75-80.
    [7]. Collett, J. L., Jr., D. E. Sherman, et al. (2001). Aerosol Particle Processing And Removal By Fogs:Observations In Chemically Heterogeneous Central California Radiation Fogs. Water, Air, and Soil Pollution Focus.1:303-312.
    [8]. Gultepe, I. and J. Milbrandt (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure and Applied Geophysics.164(6):1161-1178.
    [9]. Gultepe, I., S. Cober, et al. (2008). The fog remote sensing and modeling (FRAM) field project and preliminary results. Bulletin of the American Meteorological Society.
    [10].Bott, A. (1991). On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorology.56(1):1-31.
    [11].Bergot, T. and D. Guedalia (1994). Numerical forecasting of radiation fog. Part Ⅰ:Numerical model and sensitivity tests. Monthly Weather Review.122(6):1218-1230.
    [12].Bergot, T. and D. Carrer (2005). Improved site-specific numerical prediction of fog and low clouds:A feasibility study. Weather and forecasting.20(4):627-646.
    [13].Fisher and Caplan (1963). An experiment in numerical predication of fog and stratus. Atmos.Sci.: 425-437.
    [14].Zdunkowski, W. and B. Nielsen (1969). A preliminary prediction analysis of radiation fog. Pure and Applied Geophysics.75(1):278-299.
    [15].Zdunkowski, W. G. and A. E. Barr (1972). A radiative-conductive model for the prediction of radiation fog. Boundary-Layer Meteorology.3(2):152-177.
    [16].Brown, R. and W. Roach (1976). The physics of radiation fog:Ⅱ-a numerical study. Quarterly Journal of the Royal Meteorological Society.102(432):335-354.
    [17].Turton, J. and R. Brown (1987). A comparison of a numerical model of radiation fog with detailed observations. Quarterly Journal of the Royal Meteorological Society.113(475):37-54.
    [18].Musson-Genon, L. (1987). Numerical simulation of a fog event with a one-dimensional boundary layer model. Monthly Weather Review.115(2):592-607.
    [19].Duynkerke, P. (1991). Radiation fog:A comparison of model simulation with detailed observations. Monthly Weather Review.119(2):324-341.
    [20].Brown, R. (1980). A numerical study of radiation fog with an explicit formulation of the microphysics. Quarterly Journal of the Royal Meteorological Society.106(450):781-802.
    [21].Bott, A. and U. Sievers (1990). A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics. Journal of Atmospheric Sciences. 47:2153-2166.
    [22].Bott, A. (1991). On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorology.56(1):1-31.
    [23].Musson-Genon, L. (1987). Numerical simulation of a fog event with a one-dimensional boundary layer model. Monthly Weather Review.115(2):592-607.
    [24].Fitzjarrald and Lala (1989). Hudson Valley Fog Environments. J Appl. Meteor.28:1303-1328.
    [25].Guedalia, D. and T. Bergot (1994). Numerical forecasting of radiation fog. Part Ⅱ:A comparison of model simulation with several observed fog events. Monthly Weather Review.122(6): 1231-1246.
    [26].Bergot, T. and D. Carrer (2005). Improved site-specific numerical prediction of fog and low clouds:A feasibility study. Weather and forecasting.20(4):627-646.
    [27].Muller, M., C. Schmutz, et al. (2007). A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure appl. geophys.:1241-1264.
    [28].Ballard, S., B. Golding, et al. (1991). Mesoscale model experimental forecasts of the Haar of northern Scotland. Monthly Weather Review.119(9):2107-2123.
    [29].Golding, B. (1993). A study of the influence of terrain on fog development. Monthly Weather Review.121:2529-2541.
    [30].Siebert, J., A. Bott, et al. (1992). Influence of a vegetation-soil model on the simulation of radiation fog. Beitr. Phys. Atmos.65:93-106.
    [31].Siebert, J., U. Sievers, et al. (1992). A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorology.59(1):1-34.
    [32].Von Glasow, R. and A. Bott (1999). Interaction of radiation fog with tall vegetation. Atmospheric Environment.33(9):1333-1346.
    [33].Nakanishi, M. (2000). Large-eddy simulation of radiation fog. Boundary-Layer Meteorology. 94(3):461-493.
    [34].Nakanishi, M. and H. Niino (2004). An improved Mellor-Yamada level-3 model with condensation physics:Its design and verification. Boundary-Layer Meteorology.112(1):1-31.
    [35].Nakanishi, M. and H. Niino (2006). An improved Mellor-Yamada level-3 model:Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology. 119(2):397-407.
    [36].Pagowski, M., I. Gultepe, et al. (2004). Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor.43:3-16.
    [37].Hikari, S., L. S. Kundan, et al. (2008). Fog simulation using a mesoscale model in and around the Yodo River Basin, Japan. Journal of Environmental Sciences.20(7):838-845.
    [38]. van der Velde, I., G. Steeneveld, et al. (2010). Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Monthly Weather Review.138:4237-4253.
    [39].黄培强;郭岚(1986).辐射雾形成的数值模拟.气象科学.2:68-74.
    [40].周斌斌(1987).辐射雾的数值模拟.气象学报.45(1):21-29.
    [41].尹球,许绍祖.(1993).辐射雾生消的数值研究(Ⅰ)—数值模式.气象学报.51(003):351-360.
    [42].钱敏伟,雷孝恩.(1990).长江上空辐射雾的数值研究.大气科学.14(4):483-489.
    [43].张利民;李子华(1993).重庆雾的二维非定常数值模拟.大气科学.17(4):750-755.
    [44].孙旭东,徐华英,李桂忱等.(1991).二维平流辐射雾的数值模拟.大气科学.15(6):99-109.
    [45].石春娥,孙学金,杨军等.(1996)3D model study on fog over complex Terrain-Part Ⅰ:Numerical study. Acta Meteorologica Sinica.10(4):493-506.
    [46].李子华,石春娥,陆韬实(1997).3D model study on fog over complex Terrain-Part Ⅱ: Numerical experiment. Acta Meteorologica Sinica.11(1):88-94.
    [47].傅刚,张涛,周发琇.(2002).一次黄海海雾的三维数值模拟研究.青岛海洋大学学报.32(6):859-867.
    [48].樊琦,王安宇,范绍佳等.(2004).珠江三角洲一次辐射雾的数值模拟.气象科学.24(1):1-8.
    [49].石红艳,王洪芳,齐琳琳等.(2005).长江中下游地区一次辐射雾的数值模拟.解放军理工大学学报.6(4):404-408.
    [50].董剑希,雷恒池,胡朝霞等.(2006).北京及其周边地区一次大雾的数值模拟及诊断分析.气候与环境研究.11(2):175-184.
    [51].史月琴,邓雪娇,胡志晋等.(2006).一次山地浓雾的三维数值研究.热带气象学报.22(4):351-359.
    [52].李元平,梁爱民,张中锋等.(2007).北京地区一次冬季平流雾过程数值模拟分析.云南大学学报.29(2):167-172.
    [53].何晖,郭学良,刘建忠等.(2009).北京一次大雾天气边界层结构特征及生消机理观测与数值模拟研究.大气科学33(006):1174-1186.
    [54]. Shi, C., J. Yang, et al. (2010). Analysis of an extremely dense regional fog event in Eastern China using a mesoscale model. Atmospheric Research.95(4):428-440.
    [55].高山红,齐伊玲,张守宝等.(2010).利用循环3DVAR改进黄海海雾数值模拟初始场Ⅰ:WRF数值试验.中国海洋大学学报40(10):001-009.
    [56].高山红,张守宝,齐伊玲等.(2010).利用循环3DVAR改进黄海海雾数值模拟初始场Ⅱ:RAMS数值试验.中国海洋大学学报40(11):001-010.
    [57].Lorenz, E. N. (1965). A study of the predictability of a 28 variable atmospheric model. Tellus 17(3):321-333.
    [58].Epstein, E. (1969). Stochastic dynamic prediction. Tellus.21(6):739-759.
    [59].Leith, C. (1974). Theoretical skill of Monte Carlo forecasts. Monthly Weather Review.102(6): 409-418.
    [60].李泽椿,陈德辉(2002).国家气象中心集合数值预报业务系统的发展及应用.应用气象学报.13(1):001-015.
    [61].杨学胜,陈德辉,冷亭波等(2002).时间滞后与奇异向量初值生成方法的比较试验.应用气象学报.13(1):62-66.
    [62].Skamarock, W. C., et al.,A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STN.,2008.
    [63].Laprise, R. (1992). The euler equation of motion with hydrostatic pressure as an independent variable. Monthly Weather Review.120(1):197-207.
    [64].Lin, Y., R. D. Farley, et al. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology.22(6):1065-1092.
    [65].Hong, S. Y., J. Dudhia, et al. (2004). A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review.132(1):103-120.
    [66].Dudhia, J., S. Y. Hong, et al. (2008). A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Met. Soc. Japan.86(0):33-44.
    [67]. Hong, S. Y. and J. O. J. Lim (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.42(2):129-151.
    [68].Bott, A., TRAUTMANN, T., and ZDUNKOWSKI, W. (1989). A numerical model of the cloud topped planetary boundary layer:Radiation, turbulence and spectral microphysics in a marine stratus. Quart. J. Roy.Meteor. Soc.122:635-667.
    [69].Bott, A. and T. Trautmann (2002). PAFOG--a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research.64(1-4):191-203.
    [70].Mellor, G. L. and T. Yamada (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences.31(7):1791-1806.
    [71].Mellor, G. L. and T. Yamada (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of geophysics and space physics.20(4):851-875.
    [72].Zdunkowski, W., W. Panhans, et al. (1982). A radiation scheme for circulation and climate models. Beitr. Phys. Atmos.55:215-238.
    [73].Hale, G M. and M. R. Querry (1973). Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics.12(3):555-563.
    [74].Shettle, E. P. (1979). Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Project 7670 Air Force Geophysics Lab HANSCOM AFB MA.
    [75].Roach, W. (1976). On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quarterly Journal of the Royal Meteorological Society.102(432):361-372.
    [76].Barkstrom, B. R. (1978). Some Effects of 8-12 μm Radiant Energy Transfer on the Mass and Heat Budgets of Cloud Droplets. Journal of Atmospheric Sciences.35:665-673.
    [77].Guzzi, R. and R. Rizzi (1980). The effect of radiative exchange on the growth by condensation of a population of droplets. Beitraege zur Physik der Atmosphaere.53(3):351-365.
    [78].Pruppacher and klett (1980). Microphysics of Clouds and Precipitation. D.Reidel.:714.
    [79].Chaumerliac, N., E. Richard, et al. (1987). Sulfur scavenging in a mesoscale model with quasi-spectral microphysics:two-dimensional results for continental and maritime clouds. Journal of Geophysical Research.92(D3):3114-3126.
    [80].Sakakibara, H. (1979). A scheme for stable numerical computation of the condensation process with large time steps. J. Meteorol. Soc. Japan.57:349-353.
    [81].杨军,王蕾,刘端阳等(2010).一次深厚浓雾过程的边界层特征和生消物理机制.气象学报.68(6):998-1006.
    [82].李子华,杨军,石春娥等.(2008)地区性浓雾物理.气象出版社.P1
    [83].何立富,陈涛,毛卫星.华北平原一次持续性大雾过程的成因分析.热带气象学报.22(4):340-350
    [84].杜钧.2002.集合预报的现状和前景.应用气象学报.13(1):16-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700