剪切作用下聚烯烃共混物的形态控制与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究高分子成型加工中的形态控制问题,在成型过程中引入特殊加工方法,
    改变聚合物的凝聚态结构,从而改变其性能是优化材料性能和用途的经济而实
    用的方法,是目前国际上高分子科学研究的热点之一,已成为我国高分子材料
    科学与工程的一个重要研究课题。本论文采用在注射成型过程中引入剪切应力
    场的作用,使聚合物及其共混物在往复剪切应力作用下逐渐冷却固化成型,通
    过剪切应力的作用控制基体和分散相在成型过程中的形态发展,相容与相分离、
    相转变、取向和结晶等凝聚态结构,并且通过熔体冷却固化将应力对共混物微
    观形态结构的影响冻结下来,进而研究微观形态结构变化对共混物材料宏观力
    学性能的影响。通过上述方法制备了几种聚烯烃共混物,系统研究了剪切应力
    作用下聚烯烃及其共混物取向和结晶,相容与相分离、相转变等形态结构的变
    化,以及共混体系性能的变化。本文还详细研究了剪切应力诱导橡胶粒子形变
    和取向,及其共混物 PP/EPDM 在冲击断裂过程中的断裂行为。主要研究结果如
    下:
    (1)研究了剪切对注射成型制品各向异性的影响。发现在剪切应力作用下,熔
    体经注塑机注射入模具型腔后,熔体遇到处于室温的模具,皮层首先快速冷却
    固化;随后施加的剪切应力推动熔体在型腔中往复流动,受到持续的剪切应力
    作用,熔体逐渐冷却固化成型,应力对形态结构的影响一并冻结下来,即形成
    剪切层;剪切停止后,试样进一步冷却,应力的影响可以通过聚合物分子链的
    松弛得以消除,形成明显的芯层结构。后续的实验证明,剪切作用下固化成型
    的动态试样不同区域表现出不同的形态结构。
    (2)对聚烯烃(HDPE、LDPE、LLDPE、PP 等)及其共混物(HDPE/LLDPE、
    HDPE/LDPE、PP/LLDPE 等)的研究表明,剪切应力作用下固化成型的聚合物
    及其共混物的拉伸强度、杨氏模量、缺口冲击强度等都有不同程度的提高,获
     1
    
    
    四川大学博士学位论文
    得了具有高拉伸强度和高冲击强度的超级聚烯烃共混物。HDPE 和 PP 的拉伸强
    度增加比较明显,而 LDPE 和 LLDPE 拉伸强度增加较弱,这主要是由于不同的
    聚合物在相同的剪切应力作用下分子链结构的差异导致其运动能力不同,从而
    导致不同的取向结果。2d-WAXD 研究结果表明,在相同的剪切应力条件下,
    HDPE 和 PP 具有明显的取向行为,其取向度较大,而 LLDPE 和 LDPE 的取向
    较弱。分散相对基体取向的影响不同,研究发现,在共混物 HDPE/LDPE 中,
    分散相 LDPE 的增加,基体 HDPE 的取向程度减弱。而 PP/LLDPE 共混物中,
    分散相 LLDPE 的增加,PP 的取向程度先增加而后降低。在 PP/EC 共混物中也
    发现加入低含量的 EC,可以显著改善基体的取向程度,从而改善共混物的拉伸
    性能。具有较低粘度和较好流动性的分散相的加入改善了共混物的熔体流动性
    是造成基体取向程度增加的主要原因。进一步证明,拉伸强度主要与剪切层的
    面积大小有关,即与共混物在熔体冷却过程中的取向程度的大小有关;而冲击
    强度主要与剪切层和芯层有关。在冲击断裂过程中,动态样品不同区域表现出
    不同的断裂模式,皮层和芯层产生的大量银纹和材料的拔出吸收大量能量,为
    典型的韧性断裂;而剪切层断面平整光滑,为脆性断裂模式。
    (3)采用半晶性聚合物研究了剪切应力对聚合物结晶形态和片晶取向的影响,
    DSC、SEM、2d-SAXD 等结果表明在应力作用下,共混物不同区域形成不同的
    结晶结构。HDPE 在应力作用下形成较多的 shish-kebab 结构,表现出力学性能
    的显著增加;PP 在皮层以 shish 结构为主,剪切层中形成 shish-kebab 结构,而
    芯层以 kebab 结构为主。共混物 PP/LLDPE 中,PP 在不同区域都形成 shish-kebab
    结构,而 LLDPE 除了生成片晶取向方向垂直于剪切流动方向以外,还沿剪切流
    动方向发生一定角度的偏转(450~500),这可能与片晶中晶块在剪切作用下沿
    流动方向滑移有关。剪切作用下,聚合物所形成的 shish 伸直链晶体,在熔融重
    结晶过程中,诱导基体在较低的过冷度下结晶。EC 的加入使 PP 在相同剪切条
    件下生成更多的 shish 伸直链晶体。
    (4)橡胶增韧塑料的研究由来已久,并在此基础上提出了许多增韧理论和判据,
    其中最著名的就是 Wu 氏增韧理论,认为临界基体层厚度Tc 是橡胶增韧塑料的
    唯一判据,即当橡胶粒子间距T Tc ,共
    混物表现为脆性断裂;当T =Tc 时,共混物发生脆韧转变。但需要注意的是,
     2
    
    
    四川大学博士学位论文
    Wu 氏增韧理论最重要的一个前提就是作为分散相的橡胶粒子在基体中呈球形
    简立方分布。因此为了进一步研究橡胶在塑料中的增韧行为,本文选择 EPDM
    作为分散相,PP 作为基体,在注射成型过程中施加动态剪切应力场,控制基体
    的取向、分散相的形变和取向、以及共混体系相分离行为。实验表明,随着橡
    胶含量的增加,其形变和取向的程度增加,当这种形变达到一定程度时,共混
    物的韧性明显降低,体系发生明显的韧-脆转变行为。通过对基体层厚度的测
    量和计算表明,当共混物中橡胶粒子发生形变和取向时,Wu 氏增韧理论的临界
    基体层厚度作为共混物韧性行为的判据不再适用,此时,当T     表现出明显的韧性降低
The morphology controlling of polymer blends during the process is one of the
    hottest research topics in polymer science and engineering at present. The aim of
    morphology controlling is to achieve the desired structure via special ways thus
    improve the properties of polymer blends. In this work, polyolefin and their blends
    were cooled and solidified under the shear stress condition via the introduction of
    shear stress field during the injection process. The morphology, miscibility and phase
    separation, phase inversion, orientation and crystallization of polymer blends were
    greatly affected under the effect of shear stress fields. The alteration of morphology
    was kept by the way of solidification of melt blends. And then, the correlation
    between the morphology and the mechanical properties could be established.
    The main results are:
     1.The effect of shear stress on anisotropic of injection-molded samples was studied.
    After the melt was injected into the mold, the specimen was forced to move
    repeatedly in a chamber by two pistons that moved reversibly with the same
    frequency as the solidification progressively occurred from the mold wall to the
    molding core part. During the cooling of the sample, three different structures were
    formed, namely, the skin, the shear layer and the core. The further experiments
    suggested that the morphologies among the three layers were different.
     2. The study of the polyolefin (such as HDPE, LDPE, LLDPE and PP) and their
    blends (such as HDPE/LLDPE, HDPE/LLDPE and PP/LLDPE) suggested that the
    tensile strength, the elastic module and the Izod notched impact strength could be
    improved at the different degree, depending on the molecular architecture and phase
    morphology. And the super polyolefin blends, which had higher tensile properties
     5
    
    
    四川大学博士学位论文
    and higher impact properties, were obtained. 2d-WAXD was adopted to study the
    effect of shear stress on orientation of the polymers and their blends. The results
    showed that different polymer had the different orientation behavior in the same
    shear condition, and the orientation of HDPE and PP was easier than that of LLDPE
    and LDPE. On the other hand, in the blends, the effect of dispersed phase on the
    orientation of matrix was different. In HDPE/LDPE blends, the degree of orientation
    of HDPE was decreased with the increasing of LDPE content, while in PP/LLDPE
    blends, the degree of orientation of PP was increased firstly and then was decreased
    with the increasing of LLDPE content. In PP/EC blends, the orientation ability of PP
    was improved greatly when a few EC was added into PP. Further experiments
    showed that the tensile strength was related to the area of shear layer, which further
    proved that the orientation of polymers is a key to improve the mechanical properties.
    On the other hand, the impact strength was related to the shear layer and the core
    layer. The skin and the core showed a typical ductile-fracture mode since the much
    craze was formed and some materials were pulled out during the fracture propagation.
    While for the shear layer, the fractured surface was very smooth, which is the typical
    character of brittle-fracture mode.
     3. The effect of shear stress on crystallization and lamellar orientation was studied
    in the work. The results of DSC, SEM and 2d-SAXD proved that different crystal
    structures were formed in the different zones of the prepared samples. Much more
    shish-kebab structure was formed in HDPE and the mechanical properties were
    proved greatly. While in PP, shish structure formed in the skin, shish-kebab structure
    formed in the shear layer and kebab structure formed in the core zone. But in
    PP/LLDPE blends, PP formed shish-kebab structure in each different zones, while a
    very unique crystal morphology and lamellar orientation of LLDPE were obtained,
    with the lamellar stack oriented either perpendicular or 45-500 away from the shear
    flow direction. And the further study suggested that shish structure formed in th
引文
[1] 瞿金平,胡汉杰,聚合物成型原理及成型技术,化学工业出版社,2001
    [2] Allan P.S., Bevis M.J., Multiple live-feed injection-molding, Plastics. Rubber.
    Process. Appl., 1987, 7, 3
    [3] Allan P.S., Bevis M.J., Composites Manufacturing, 1990, 1, 79
    [4] Allan P.S., Bevis M.J., British Patent 2170-140-B
    [5] Kalay G., Allan P.S., Bevis M.J., |?phase in injection moulded isotactic
    polypropylene, Polymer, 1994, 35, 2480
    [6] Kalay G., Allan P., Bevis M.J., in Proc. of The International Polypropylene
    Conference, The Institute of Materials, London, 24-25 October 1994, pp. 109
    [7] Kalay G., Allan P.S., Bevis M.J., Plastics, Rubber Compos. Process. Applicat.,
    1995, 23, 71
    [8] Ogbonna C.I., Kalay G., Allan P., Bevis M.J., The self-reinforcement of
    polyolefins produced by shear controlled orientation in injection molding, J. Appl.
    Polym. Sci., 1995, 58, 2131
    [9] Kalay G., Ogbonna C., Allan P.S., Bevis M.J., The management of microstructure
    in semicrystalline polymers, Trans. IchemE., Part A, 1995, 73, 798
    [10] Kalay G., Zhong Z., Allan P., Bevis M.J., The occurrence of the |?-phase in
    injection moulded polypropylene in relation to the processing conditions, Polymer,
    1996, 37, 2077
    [11] Kalay G., Allan P.S., Bevis M.J., Shear controlled orientation, Kunststoffe, 1997,
    87. 768
    [12] Kalay G., Bevis M.J., J. Polym. Sci. Part B: Polym. Phys., Processing and
    physical property relationships in injection-molded isotactic polypropylene. 1.
    mechanical properties, 1997, 35, 241
    [13] Kalay G., Bevis M.J., J. Polym. Sci. Part B: Polym. Phys., Processing and
    physical property relationships in injection-molded isotactic polypropylene. 2.
    morphology and crystallinity, 1997, 35, 265
    [14] Kalay G., Bevis M.J., J. Polym. Sci. Part B: Polym. Phys., The effect of shear
     44
    
    
    四川大学博士学位论文
    controlled orientation in injection moulding on the mechanical properties of an
    aliphatic polyketone, 1997, 35, 415
    [15] Kalay G., Sousa R.A., Reis T.R., Cunha A.M., Bevis M.J., The enhancement of
    the mechanical properties of a high-density polyethylene, J. Appl. Polym. Sci., 1999,
    73, 2473
    [16] Reis R.L., Cunha A.M., Oliveira M.J., Campos A.R., Bevis M.J., Relationship
    between processing and mechanical properties of injection molded high molecular
    mass polyethylene plus hydroxyapatite composites, Mat. Res. Innovat., 2001, 4, 263
    [17] Kalay G., Kalay C.R., J. Polym. Sci. Part B: Polym. Phys., Interlocking
    shish-kebab morphology in polybutene-1, 2002, 40, 1828
    [18] Sousa R.A., Reis R.L., Cunha A.M., Bevis M.J., Structure development and
    interfacial interactions in high-density polyethylene/hydroxyapatite (HDPE/HA)
    composites molded with preferred orientation, J. Appl. Polym. Sci., 2002, 86, 2873
    [19] Kalay G., Kalay C.R., Compounding and injection molding of
    polybutene-1/polypropylene blends, J. Appl. Polym. Sci., 2003, 88, 806
    [20] Guan Q., Shen K.Z., Li, J. and Zhu, J., Structure and properties of
    self-reinforced polyethylene prepared by oscillating packing injection molding under
    low pressure, J. Appl. Polym. Sci., 1995, 55, 1797
    [21] Guan Q., Zhu X., Chiu D., Shen K.Z., Self-reinforcement of polypropylene by
    oscillating packing injection molding under low pressure, J. Appl. Polym. Sci., 1996,
    62, 755
    [22] Guan Q.,Shen K.Z., Structure and properties of self-reinforced polypropylene
     oscillating stress field, Chem. J. Chin. Univ., 1996,17,378
    [23] Jiang L., Shen K.Z., Ji J.L., Guan Q., A mandrel-rotating die to produce
    high-hoop-strength HDPE pipe by self-reinforcement, J. Appl. Polym. Sci., 1998, 69,
    323
    [24] Zhang G., Fu Q., Shen K.Z., Jiang L., Wang Y., Studies on blends of high-density
    polyethylene and polypropylene produced by oscillating shear stress field, J. Appl.
    Polym. Sci., 2002, 86, 58
    [25] Zhang G., Fu Q., Shen K.Z., Jiang L., The morphology control and mechanical
     45
    
    
    四川大学博士学位论文
    properties of high density polyethylene and polypropylene blend under oscillating
    shear stress field, Chem. J. Chin. Univ.,2000,21,633
    [26] Van O.H., J. Coll. Interf. Sci., 1972, 40, 448
    [27] Heino M.T., Hietaja P.T., Effect of viscosity ratio and processing conditions on the
    morphology of blends of liquid crystalline polymer and polypropylene, J. Appl. Polym.
    Sci., 1984, 51, 259
    [28] Kiss G., Insitu composites - blends of isotropic polymers and thermotropic
    liquid-crystalline polymers, Polym. Engng. Sci., 1987, 27, 410
    [29] Taylor G.I., Proc. R. Soc. Lond, 1934, A146, 501
    [30] Cox R.G., J. Fluid. Mech., 1969, 37, 601
    [31] Janssen J.M.H., Meijer H.E.H., Droplet breakup mechanisms - stepwise
    equilibrium versus transient dispersion, J. Rheol., 1993, 37, 597
    [32] Huneault M.A., Shi Z.H., Utracki L.A., development of polymer blend
    morphology during compounding in a twin-screw extruder. part iv: a new
    computational model with coalescence, Polym. Engng. Sci., 1995, 35, 115
    [33] Champagne M.F., Dumoulin M.M., Utracki L.A., Szabo J.P., generation of
    fibrillar morphology in blends of block copolyetheresteramide and liquid crystal
    polyester, Polym. Engng. Sci., 1996, 36, 1636
    [34] Monticciolo A., Cassagnau P., Michel A., Fibrillar morphology development of
    PE/PBT blends: rheology and solvent permeability, Polym. Engng. Sci., 1998, 38,
    1882
    [35] Pesneau I., Ait Kadi A., Bousmina M., Cassagnau P., Michel A., SPE ANTEC
    Tech Papers (New York), 1999, 2661
    [36] Faisant J.B., Ait-Kadi A., Bousmina M., Deschenes L., Morphology,
    thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol
    blends, Polymer, 1998, 39, 533
    [37] Boyaud M.F., Ait-Kadi A., Bousmina M., Michel A., Cassagnau P., Organic short
    fibre/thermoplastic composites: morphology and thermorheological analysis, Polymer,
    2001, 42, 6515
    [38] Kamal M.R., Lohfink G., Arghyris L., Hozhabr-Ghilichi S., US patent, No 5, 1993,
     46
    
    
    四川大学博士学位论文
    188, 754
    [39] Kamal M.R., Hozhabr-Ghilichi S., Arghyris L., Lambla M., SPE ANTEC Tech
    Papers, 1992, 38, 2677
    [40] Kamal M.R., Garmabi H., Hozhabr-Ghelichi S., Arghyris L., The Development of
    Laminar Morphology During Extrusion of Polymer Blends, Polym. Engng. Sci., 1995,
    35, 41
    [41] Li J.X., Wu J., Chan C.M., Thermoplastic nanocomposites, Polymer, 2000, 41,
    6935
    [42] Lohfink G.W., Garmabi M., morphology and permeability in extruded
    polypropylene/ethylene vinyl-alcohol copolymer blends, Polym. Eng. Sci., 1993, 44,
    1404
    [43] Wu J., Schultz J., Samon J.M., Pangelinan A.B., Chuah H.H., In situ study of
    structure development during continuous hot-drawing of Poly(tirimethylene
    terephthalate) fibers by simultaneous synchrotron small- and wide-angle X-ray
    scattering, Polymer, 2001, 42, 7161
    [44] Salem D.R., Crystallization during hot-drawing of poly(ethylene terephthalate)
    film: influence of the deformation mode, Polymer, 1995, 36, 3605
    [45] Nunez R.G., Kee D.De., The influence of coalescence of the morphology of the
    minor phase in melt-drawn polyamide-6/HDPE blends, Polymer, 1996, 37, 4689
    [46] Sabol E.A. Handlos A.A., Barid D.G., Composites based on drawn-strands of
    thermotropic liquid crystalline polymer reinforced polypropylene, Polym. Comp., 1995,
    16, 330
    [47] Li Z.M., Yang M.B., Lu A., Feng J.M., Huang R., Tensile properties of
    poly(ethylene terephthalate) and polyethylene in-situ microfiber reinforced composite
    formed via slit die extrusion and hot-stretching, Materials Letters, 2002, 56, 756
    [48] Li Z.M., Yang M.B., Feng J.M., Yang W., Huang R., Morphology of in situ
    poly(ethylene terephthalate)/polyethylene microfiber reinforced composite formed via
    slit-die extrusion and hot-stretching, Mater. Research Bull., 2002, 37, 2185
    [49] Chen J.C., Harrison I.R., modification of nylon-polyethylene blends via in situ
    fiber formation, Polym. Eng. Sci., 1998, 38, 371
     47
    
    
    四川大学博士学位论文
    [50] Dutta D., Weiss R.A., Kristal K., liquid crystalline polymer/fluoropolymer
    blends:preparation and properties of unidirectional 'prepregs' and composite
    laminates, Polym. Eng. Sci., 1993, 33, 838
    [51] Mehta A., Isayev A.I., Rheology, morphology, and mechanical characteristics of
    Poly(etherether ketone)-Liquid crystal polymer blends, Polym. Engng. Sci., 1991, 31,
    971
    [52] Lee M.W., Hu X., Li L., Yue C.Y., Tam K.C., Cheong L.Y., PP/LCP composites:
    effects of shear flow, extensional flow and nanofillers, Composit. Sci. Tech., 2003, 63,
    1921
    [53] Wu S.J., Guo J.M., Shen K.Z., Chen L.M., Morphology control technologies for
    high performance injection moldings and extrudates, Polym. Mater. Sci. Eng., 2003,
    19, 58
    [54] Zhang J., Shen K.Z., Li Y.B., Liao Y.H., Study on the effect of the low frequency
    vibration on the mechanical property of HDPE, J. Appl. Eng. Plactic., 2002, 11, 50
    [55] Tang H.I., Hiltner A., Baer E.X., Polym. Eng., Sci., 1987, 27, 869
    [56] Peterlin A.J., Colloid Polymer Science, 1975, 253, 809
    [57] Kitagawa M., Isobe S., Asano H., Polymer, 1982, 23, 1830
    [58] Sun D.C., Berg E.M., Magil J.H., Polym. Eng. Sci., 1990, 30, 635
    [59] Cassagnau P., Michel A., French Patent, No.0004420, 6 April 2000
    [60] Cassagnau P., Michel A., New morphologies in immiscible polymer blends
    generated by a dynamic quenching process, Polymer, 2001, 42, 3139
    [61] Jeon H.K., Kim J.K., Morphological development with time for immiscible
    polymer blends with an in situ compatibilizer under controlled shear conditions,
    Polymer, 1998, 39, 6227
    [62] Xanthos M., interfacial agents for multiphase polymer systems: recent advances,
    Polym. Eng. Sci., 1988, 28, 1329
    [63] Xanthos M., Dagli S., Polym. Eng. Sci., 1991, 11, 249
    [64] Ide F., Hasegawa A., J. Appl. Polym. Sci., 1990, 30, 1073
    [65] Guegan P., Macosko C.W., Ishizone T., Hirao A., Nakahama S., Kinetics of chain
    coupling at melt interfaces, Macromolecules, 1994, 27, 4993
     48
    
    
    四川大学博士学位论文
    [66] Sundararaj U., Macosko C.W., Drop breakup and coalescence in polymer blends -
    the effects of concentration and compatibilization, Macromolecules, 1995, 28, 2647
    [67] Beck Tan N.C., Tai S.K., Briber R.M., Morphology control and interfacial
    reinforcement in reactive polystyrene/amorphous polyamide blends, Polymer, 1996, 37,
    3509
    [68] Sun Y.J., Willemse R.J.G., Liu T.M., Baker W.E., In situ compatibilization of
    polyolefin and polystyrene using Friedel-Craft alkylation through reactive extrusion,
    Polymer, 1998, 39, 2201
    [69] Kim J.K., Yi D.K., Jeon H.K., Park C.E., Effect of the functional group
    inhomogeneity of an in situ reactive compatibilizer on the morphology and rheological
    properties of immiscible polymer blends, Polymer, 1999, 40, 2737
    [70] Hu G.H., Kadri I., Modeling reactive blending: An experimental approach, J.
    Polym. Sci.: Part B, Polym. Phys., 1998, 36, 2153
    [71] Charoensirisomboon P., Inoue T., Weber M., Interfacial behavior of block
    copolymers in situ-formed in reactive blending of dissimilar polymers, Polymer, 2000,
    41, 4483
    [72] Charoensirisomboon P., Chiba T., Inoue T., Weber M., In situ formed copolymers
    as emulsifier and phase-inversion-aid in reactive polysulfone/polyamide blends,
    Polymer, 2000, 41, 5977
    [73] Charoensirisomboon P., Inoue T., Weber M., Pull-out of copolymer in situ-formed
    during reactive blending: effect of the copolymer architecture, Polymer, 2000, 41,
    6907
    [74] Park I., Barlow J.W., Paul D.R., In situ reactive compatibilization of
    nylon-6/polystyrene blends using anhydrid functionalized polystyrenes, J. Polym. Sci.:
    Part B, Polym. Phys., 1992, 30, 1021
    [75] Hu G.H., Cartier H., Reactive extrusion: Toward nanoblends, Macromolecules,
    1999, 32, 4713
    [76] Cartier H., Hu G.H., A novel reactive extrusion process for compatibilizing
    immiscible polymer blends, Polymer, 2001, 42, 8807
    [77] Litmanovich A.D., Plate N.A., Kudryavtsev Y.V., Reactions in polymer blends:
    interchain effects and theoretical problems, Prog. Polym. Sci., 2002, 27, 915
    [78] Koning C., Duin M.V., Pagnoulle C., Jerome R., Strategies for compatibilization
     49
    
    
    四川大学博士学位论文
    of polymer blends, Prog. Polym. Sci., 1998, 23, 707
    [79] Kikuchi Y., Fukui T., Okada T., Inoue T., Elastic-plastic analysis of the
    deformation mechanism of pp-epdm thermoplastic elastomer - origin of rubber
    elasticity, Polym. Eng. Sci., 1991, 31, 1029
    [80] Jain A., Nagpal A.K., Singhal R., Gupta N., Effect of dynamic crosslinking on
    impact strength and other mechanical properties of
    Polypropylene/Ethylene-Propylene-Diene rubber blends, J. Appl. Poly. Sci., 2000, 78,
    2089
    [81] Gupta N.K., Jain A.K., Singhal R., Nagpal A.K., Effect of dynamic crosslinking on
    tensile yield behavior of Polypropylene/Ethylene-Propylene-Diene rubber blends, J.
    Appl. Poly. Sci., 2000, 78, 2104
    [82] Inoue T., Suzuki T., Selective crosslinking reaction in polymer blends. III. The
    effect of the crosslinking of dispersed EPDM particles on the impact behavior of
    PP/EPDM blends, J. Appl. Poly. Sci., 1995, 56, 1113
    [83] Inoue T., Suzuki T., Selective corsslinking reaction in polymer blends. IV. The
    effects on the impact behavior of PP/EPDM blends (2), J. Appl. Poly. Sci., 1996, 59,
    1443
    [84] 聚合物共混改性,吴培熙、张留成编著,中国轻工业出版社,1996
    [85] Taylor G.I., Proc. R. Soc., 1932, A138, 41
    [86] Taylor G.I., Proc. 11th Int. Cong. Appl. Mech. Munich. (1964)
    [87] Cox. R.G., J. Fluid. Mech., 1969, 37, 601
    [88] Acrivos A., Lo T.S., Deformation and breakup of a single slender drop in an
    extensional flow, J. Fluid. Mech., 1978, 83, 641
    [89] Chin H.B., Han C.D., Studies on droplet deformation and breakup .1. Droplet
    deformation in extensional flow, J. Rheol., 1979, 23, 557
    [90] Gauthier F., Goldsmith H.L., Mason S.G., Rheol. Acta. 1971, 10, 344
    [91] Elmendorp J.J., Maalcke R.J., study on polymer blending microrheology: part 1.,
    Polym. Eng. Sci., 1985, 25, 11
    [92] Bartram E., Goldsmith H.L., Mason S.G., Particle motions in non-newtonian
    media .3. Further observations in elastoviscous fluids, Rheol. Acta, 1975, 14, 776
     50
    
    
    四川大学博士学位论文
    [93] Chio S.J., Schowalter W.R., Physics Fluids, 1975, 18, 420
    [94] Serpe G., Jarrin J., Dawans F., morphology-processing relationships in
    polyethlene-polyamide blends, Polym. Eng. Sci., 1990, 30, 553
    [95] Min K., White J.L., Development of phase morphology in incompatible polymer
    blends during mixing and its variation in extrusion, Polym. Eng. Sci., 1984, 24, 1327
    [96] Wu S., Polym. Eng. Sci., 1987, 27, 335
    [97] Van O.H., J. Colloid. Interf. Sci., 1972, 40, 448
    [98] Starita J.M., Trans. Sco. Rheol., 1972, 16, 339
    [99] Plochocki A.P., effect of rheological parameters on phase morphology of
    polyblends: a route to computer aided design and development of industrial
    polyblends., Polym. Eng. Sci., 1986, 26, 82
    [100] Dreval V.E., Vinogradov G.V., Zabugina M.P., Krasnikova N.P., Kotova E.V.,
    Pelzbauer Z., Deformation of melts of mixtures of incompatible polymers in a
    uniform shear field and the process of their fibrillation, Rheol. Acta., 1983, 22, 102
    [101] Favis B.D., The effect of processing parameters on the morphology of an
    immiscible binary blend, J. Appl. Polym. Sci., 1990, 39, 285
    [102] Chen C.C., Fantan E., Min K., White J.L., An investigation of instability of
    phase morphology of blends of nylons with polyethylenes and polystyrenes and
    effects of compatibilizing agents, Polym. Eng. Sci., 1988, 28, 69
    [103] Han C.D., Funatsu K., Experimental-study of droplet deformation and breakup
    in pressure-driven flows through converging and uniform channels, J. Rheol., 1978,
    22, 113
    [104] Chin H.B., Han C.D., Studies on droplet deformation and breakup .2. Breakup
    of a droplet in nonuniform shear-flow, J. Rheol., 1980, 24, 1
    [105] Huang D.C., Shroff R.N., Converging flow of polymer melts, J. Rheol., 1981,
    25, 605
    [106] Li H.X., Hu G.H., The early stage of the morphology development of
    immiscible polymer blends during melt blending: compabibilized vs.
    uncompatibilized blends, J. Polym. Sci., Part B: Polym. Physic., 2001, 39, 601
    [107] Macosko C.W., Morphology development and control in immiscible blends,
     51
    
    
    四川大学博士学位论文
    10th Anniversary issue of Japanese Society of Polymer Process, 1999
    [108] Zhou C.X., Yu W., A rheological model for the interface of immiscible polymer
    melts in blending process, Papers of Chinese Polymer Conference, Zheng Zhou,
    October 2001,g-12 (in China)
    [109] Zhang H.B., Zhou C.X., Variation of the dispersed phase morphology of
    polymer blends in flow field, Polym. Mater. Sci. Eng., 1999, 15, 4
    [110] Lee J.K., Han C.D., Evolution of polymer blend morphology during
    compounding in an internal mixer, Polymer, 1999, 40, 6277
    [111] Lee J.K., Han C.D., Evolution of polymer blend morphology during
    compounding in a twin-screw extruder, Polymer, 2000, 41, 1799
    [112] Taylor G.I., Proc. Rov. Soc., 1934, A146, 501
    [113] Danesi S., Plenum, New York, 1984, pp. 35
    [114] Tokita N., Analysis of morphology formation in elastomer blends, Rubber
    Chem. Technol., 1977, 50, 292
    [115] Forterlny, I., Kovar J., Droplet size of the minor component in the mixing of
    melts of immiscible polymers, Eur. Polym. J., 1989, 25, 317
    [116] Pukanszky B., Forterlny I., Kovar J., Tudos F., Plastics, Rubber Comp. Proc.
    Appl., 1991, 15, 31
    [117] Grace H.P., Dispersion phenomena in high-viscosity immiscible fluid systems
    and application of static mixers as dispersion devices in such systems, Chem. Engng.
    Commun., 1982, 14, 225
    [118] Heino M.T., Hietaja P.T., Effect of viscosity ratio and processing conditions on
    the morphology of blends of liquid crystalline polymer and polypropylene, J. Appl.
    Polym. Sci., 1984, 51, 259
    [119] Bentley B.J., Leal L.G., An experimental investigation of drop deformation and
    breakup in steady, two-dimensional linear flows, J. Fluid. Mech., 1986, 167, 241
    [120] Acrivos A., The breakup of small drops and bubbles in shear flows, Ann. NY.
    Acad. Sci., 1983, 404, 1
    [121] Rallison J.M., The deformation of small viscous drops and bubbles in shear
    flows, Annu. Rev. Fluid. Mech., 1984, 16, 46
     52
    
    
    四川大学博士学位论文
    [122] Elmendrop J.J., PhD Thesis, The Netherlands: Delft University of Technology,
    1986
    [123] Janssen J.M.H., PhD Thesis, The Netherlands: Eindhoven University of
    Technology, 1993
    [124] Baird D.G., Collias D.I., Polymer processing: Butterworth-Heinemann, 1995, p.
    135
    [125] Tomotika S., Proc. R. Soc., 1935, A150, 322
    [126] Kuhn W., Kolloid Z., 1953, 132, 84
    [127] Mikami T., Cox R.G., Mason S.G., Int. J. Multiphase Flow, 1975, 2, 113
    [128] Deyrail Y., Fulchiron R., Cassagnau P., Morphology development in immiscible
    polymer blends during crystallization of the dispersed phase under shear flow,
    Polymer, 2003, 43, 3311
    [129] Plochocki A.P., Dagli S.S., Andrews R.D., interface in binary mixtures of
    polymers containing a corresponding block copolymer. effects of industrial mixing
    processes and of coalescence, Polym. Engng. Sci., 1990, 30, 741
    [130] Shih C.K., Mixing and morphological transformations in the compounding
    process for polymer blends - the phase inversion mechanism, Polym. Engng. Sci.,
    1995, 36, 1685
    [131] Lindt J.T., Ghosh A.K., Fluid-mechanics of the formation of polymer blends .1.
    Formation of lamellar structures, Polym. Engng. Sci., 1992, 32, 1802
    [132] Sundararaj U., Macosko C.W., Rolando R.J., Chan H.T., Morphology
    development in polymer blends, Polym. Engng. Sci., 1992, 32, 1814
    [133] Scott C.E., Macosko C.W., Morphology development during the initial stages
    of polymer-polymer blending, Polymer, 1995, 36, 461
    [134] Sundararaj U., Dori Y., Macosko C.W., Sheet formation in immiscible polymer
    blends: model experiments on initial blend morphology, Polymer, 1995, 36, 1957
    [135] Mazich K.A., Carr S.H., The effect of flow on the miscibility of a polymer blend,
    J. Appl. Phys., 1983, 54, 5511
    [136] Rector L.P., Mazich K.A., Carr S.H., Analysis of flow-induced miscibility of
    polymer blends, J. Macromol. Sci., Phys., 1988, B27, 421
     53
    
    
    四川大学博士学位论文
    [137] Katsaros J.D., Malone M.F., Winter H.H., Extensional flow induced miscibility
    in a polymer blend, Polym. Bull., 1986, 16, 83
    [138] Katsaros J.D., Malone M.F., Winter H.H., The effects of flow on miscibility in a
    blend of polystyrene and polyvinyl methyl-ether, Polym. Bull., 1989, 29, 1434
    [139] Lyngaae-Jorgenson J., Sondergaard K., phase transitions during shear flow of
    two-phase polymer blends: i. theory. transition to 'homogeneous' melt state, Polym.
    Eng. Sci., 1987, 27, 344
    [140] Lyngaae-Jorgenson J., Sondergaard K., Polym. Eng. Sci., 1987, 27, 351
    [141] Cheikh L.F.B., Malone M.F., Winter H.H., Halary J.J., Leviet M.H., Monnerie
    L., Fluorescence evidence of shear flow-induced miscibility in a blend of polystyrene
    and poly(vinyl methyl ether), Macromolecules, 1988, 21, 3532
    [142] Kammer H.W., Kummerloewe C., Kressler J. Meliot J.P., shear-induced phase
    changes in polymer blends, Polymer, 1991, 32, 1488
    [143] Mani S., Malone M.E., Winter H.H., Halary J.L., Monnerie L., Effects of shear
    on miscible polymer blends. In situ fluorescence studies, Macromolecules, 1991, 24,
    5451
    [144] Mani S., Malone M.E., Winter H.H., Shear-induced demixing in a
    polystyrene/poly(vinyl methyl ether) blend: in-situ fluorescence and rheometry,
    Macromolecules, 1992, 25, 5671
    [145] Hindawi I., Higgins J.S., Galambos A.F., Weiss R.A., Flow-induced mixing of
    blends of poly(ethylene-vinyl acetate) and solution chlorinated polyethylene,
    Macromolecules, 1990, 23, 670
    [146] Hindawi I., Higgins J.S., Weiss R.A., Flow-induced mixing and demixing in
    polymer blends, Polymer, 1992, 33, 2522
    [147] Fernandez M.L., Higgins J.S., Flow induced mixing and demixing in polymer
    blends, ACS Polym. Mater. Sci. Eng., 1994, 71, 39
    [148] Chopra D, Vlassopulos D., Hatzikiriakos S.G., Shear-induced mixing and
    demixing in poly(styrene-co-maleic anhydride)/poly(methyl-methacrylate) blends, J.
    Rheol., 1998, 42, 1227
    [149] Nakatani A.I., Kim H., Takahashi Y., Matsushita Y., Takano A., Bauer B.J., Han
     54
    
    
    四川大学博士学位论文
    C.C., Shear stabilization of critical fluctuation in bulk polymer blends studied by
    small angle neutron scattering, J. Chem. Phys., 1990, 93, 795
    [150] Fernandez M.L., Higgins J.S., Horst R., Wolf B.A., Complex miscibility
    behaviour for polymer blends in flow, Polymer, 1995, 36, 149
    [151] Fernandez M.L., Higgins J.S., Richardson S.M., Flow instabilities in polymer
    blends under shear, Polymer, 1995, 36, 931
    [152] Hong Z., Shaw M.T., Weiss R.A., Effect of shear flow on the morphology and
    phase behavior of a near-critical SAN/PMMA blend, Macromolecules, 1998, 31,
    6211
    [153] Hong Z., Shaw M.T., Weiss R.A., Structure evolution and phase behavior of
    polymer blends under the influence of shear, Polymer, 2000, 41, 5895
    [154] Rangel-Nafaile C., Metzner A., Wissbum K., Analysis of stress-induced phase
    separation in polymer solutions, Macromolecules, 1984, 17, 1187
    [155] Lee J.K., Han C.D., Evolution of polymer blend morphology during
    compounding in an internal mixer, Polymer, 1999, 40, 6277
    [156] Lee J.K., Han C.D., Evolution of polymer blend morphology during
    compounding in a twin-screw extruder, Polymer, 2000, 41, 1799
    [157] Shih C-K., SPE ANTEC, 1991, 37, 99
    [158] Ratnagiri R., Scott C.E., Effect of viscosity variation with temperature on the
    compounding behavior of immiscible blends, Polym. Engng. Sci., 1999, 39, 1823
    [159] Scott C.E., Joung S.K., Viscosity ratio effects in the compounding of low
    viscosity, immiscible fluids into polymeric matrices, Polym. Engng. Sci., 1996, 36,
    1666
    [160] Shih C-K., Adv. Polym. Technol., 1992, 11, 223
    [161] Sundararaj U., Inversion of phase continuity during polymer-polymer blending:
    effect of processing parameters, Macromol Symp., 1996, 112, 85
    [162] Sundararaj U., Macosko C.W., Shih C-K., Evidence for inversion of phase
    continuity during morphology development in polymer blending, Polym. Engng. Sci.,
    1996, 36, 1769
    [163] Shih C-K., Mixing and morphological transformations in the compounding
     55
    
    
    四川大学博士学位论文
    process for polymer blends - the phase inversion mechanism, Polym. Engng. Sci.,
    1995, 35, 1688
    [164] Fortelny I., Zivny A., Coalescence in molten quiescent polymer blends,
    Polymer 1995, 36, 4113
    [165] Paul D.R., Barlow J., Polymer blends (or alloys), J. Macromol. Sci., Rev.
    Macromol. Chem., 1980, C18, 109
    [166] Jordhamo G.M., Manson J.A., Sperling L.H., phase continuity and inversion in
    polymer blends and simultaneous interpenetrating networks, Polym. Eng. Sci., 1986,
    26, 517
    [167] Miles I.S., Zurek A., Preparation, structure, and properties of 2-phase
    co-continuous polymer blends, Polym. Eng. Sci., 1988, 28, 796
    [168] Avgeropoulos G.N., Weissert F.C., Biddison P.H., Bohm G.G.A., Heterogeneous
    blends of polymers. rheology and morphology, Rubber Chem. Technol., 1976, 49, 93
    [169] Ho R.M., Wu C.H., Su A.C., morphology of plastic/rubber blends, Polym.
    Engng. Sci., 1990, 30, 511
    [170] Metelkin V.I., Blekht V.S., Formation of a continuous phase in heterogeneous
    polymer mixtures, Colloid J. USSR., 1984, 46, 425
    [171] Tomotika S., Proc. Rov. Soc., London, 1935, A150, 322
    [172] Utracki L.A., On the viscosity-concentration dependence of immiscible
    polymer blends, J. Rheol., 1991, 35, 1615
    [173] de Gemmes P.G., Goldman A.M, Wolf S.A., NATO ASI Series B, Physics, Vol.
    109, Plenum Press, New York, 1984
    [174] Stauffer D., Introduction to Percolation, Taylor and Francis: London, 1985
    [175] Grimmett G., Percolation, Spring-Verlag, New York, 1989
    [176] Chapoy L.J., The applicability of a percolation model to photoconductivity in
    guest-host thermotropic nematic liquid crystal systems, J. Chem. Phys., 1986, 84,
    1530
    [177] Jeon H.S., Nakatani A.I., Hobbie E.K., Han C.C., Phase inversion of
    polybutadiene/polyisoprene blends under quiescent and shear conditions, Langmuir, 2001, 17,
    3087
     56
    
    
    四川大学博士学位论文
    [178] Lazo N.D.B., Scott C.E., Morphology development during phase inversion of a
    PS/PE blend in isothermal, steady shear flow, Polymer, 1999, 40, 5469
    [179] Lzao N.D.B., Scott C.E., Polymer, Morphology development during phase
    inversion in isothermal, model experiments: steady simple-shear and quiescent flow
    fields, 2001, 42, 4219
    [180] Willemse R.C., Posthuma de Boer A., Dam J.V., Gotsis A.D., Co-continuous
    morphologies in polymer blends: a new model, Polymer, 1998, 39, 5879
    [181] Janssen J.M.H., Ph.D. thesis, Eindhoven University of Technology, The
    Netherlands, 1993
    [182] Cross M.M., Kaye A., Stanford J.L. Stepto R.F.T., Polym. Mater. Sci. Engng.,
    Proceedings of the ACS, 1983, 49, 531
    [183] Keller A., Machin M.J., J.Macromol. Sci. Phys. Ed (B), 1967, 1, 41
    [184] Hay J.N., Keller A., J.Materials Sci., 1967, 2, 538
    [185] Peterlin A., Pure Appl. Chem., Macromol. Chem., 1973, 8, 277
    [186] Avrami M., J. Chem. Phys., 1939, 7, 1103
    [187] Avrami M., J. Chem. Phys., 1940, 8, 212
    [188] Avrami M., J. Chem. Phys., 1941, 9, 107
    [189] Fritzsche A.K., Price F.P., Disruptive processes in the shear crystallization of
    poly(ethylene oxide), Polym. Engin. Sci., 1976, 16, 182
    [190] Sherwood C.H., Price F.P., Stein R.S., J. Polym. Sci. Polym. Symp. 1978, 63,
    77
    [191] Tribout C., Monasse B., Haudin J.M., Experimental study of shear-induced
    crystallization of an impact polypropylene copolymer, Colloid Polym. Sci., 1996, 274,
    197
    [192] Masubuchi Y., Watanabe K., Nagatake W., Takinoto J., Koyama K., Thermal
    analysis of shear induced crystallization by the shear flow thermal rheometer:
    isothermal crystallization of polypropylene, Polymer, 2001, 42, 5023
    [193] Wolkowicz M., J. Polym. Sci. Polym. Symp., 1978, 63, 365
    [194] Flory P.J., J. Chem. Phys., 1947, 15, 397
    [195] Magill J., Rates of crystallization of polymers. In: J.Brandrup, E.Immergut,
     57
    
    
    四川大学博士学位论文
    E.Grulke, editors. Polymer handbook, 4th ed. New York: Wiley, 1999, p. 280. Chapter
    4
    [196] Monasse B., Nucleation and anisotropic crystalline growth of polyethylene
    under shear, J. Mater. Sci., 1995, 30, 5002
    [197] Ryan A.J., Terrill N.J., Fairclough J.P.A., in: P.Cebe, B.S.Hsiao, D.J.Lohse
    (Eds.), Scattering of Polymers, ACS Symposium Series 739, Oxfold, Washington
    D.C., 2000, 201
    [198] Imai M., Mori K., Mizukami T., Kaji K., Kanya T., Structural formation of
    poly(ethylene-terephthalate) during the induction period of crystallization .1.
    Ordered structure appearing before crystal nucleation, Polymer, 1992, 33, 4451
    [199] Imai M., Kaji K., Kanya T., Sakai Y., Ordering process in the induction period
    of crystallization of poly(ethylene-terephthalate), Pyhs, Rev. B,1995, 52, 12696
    [200] Imai M., Mori K., Mizukami T., Kaji K., Kanya T., Structural formation of
    poly(ethylene-terephthalate) during the induction period of crystallization .2.
    Kinetic-analysis based on the theories of phase-separation, Polymer, 1992, 33, 4457
    [201] Imai M., Kaji K., Kanya T., Sakai Y., Macromolecules, 1998, 31, 938
    [202] Ezquerra T.A., Lopez-Cabarcos E., Hsiao B.S., Balta-Calleja F.J., J. Phys. Rev.
    1996, E54, 989
    [203] Somani R.H., Yang L., Hsiao B.S., Precursors of primary nucleation induced
    by flow in isotactic polypropylene, Physica A, 2002, 304, 145
    [204] Somani R.H., Yang L., Hsiao B.S., Shear-induced precursor structures in
    isotactic polypropylene melt by in-situ rheo-saxs and rheo-waxd studies,
    Macromolecules, 2002, 35, 9096
    [205] Julie K. Role of melt dynamics in flow-induced formation of oriented nuclei in
    polymer crystallization, PC 2003-Celebrating 20 Years of Crystallization in Linz.
    [206] Pople J.A., Mitchell G.R., Sutton S.J., Vaughan A.S., Chai C.K., The
    development of organized structures in polyethylene crystallized from a sheared melt,
    analyzed by WAXS and TEM, Polymer, 1999, 40, 2767
    [207] Pople J.A., Mitchell G.R., Chai C.K., In-situ time-resolving wide-angle X-ray
    scattering study of crystallization from sheared polyethylene melts, Polymer, 1996,
     58
    
    
    四川大学博士学位论文
    37, 4187
    [208] Pogodina N.V., Lavrenko V.P., Srinivas S., Winter H.H., Rheology and
    structure of isotactic polypropylene near the gel point: quiescent and shear-induced
    crystallization, Polymer, 2001, 42, 9031
    [209] Nogales A., Hsiao B.S., Somani R.H., Srinivas S., Tsou A.H., Balta-Calleja F.J.,
    T.A.Ezquerra, Shear-induced crystallization of isotactic polypropylene with different
    molecular weight distributions: in situ small- and wide-angle X-ray scattering
    studies, Polymer, 2001, 42, 5247
    [210] Somani R.H., Hsiao B.S., Nogales A., Structure development during shear
    flow-induced crystallization of i-pp: in-situ small-angle x-ray scattering study,
    Macromolecules, 2000, 33, 9385
    [211] P.K.Agarwal, R.H.Somani, W.Q.Weng, A.Mehta, L.Yang, S.F.Ran, L.Z.Liu,
    B.S.Hsiao, Shear-induced crystallization in novel long chain branched
    polypropylenes by in situ rheo-saxs and –waxd, Macromolecules, 2003, 26, 5226
    [212] Somani R.H., Hsiao B.S., Nogales A., Structure development during shear flow
    induced crystallization of i-pp: in situ wide-angle x-ray diffraction study,
    Macromolecules, 2001, 34, 5902
    [213] G.Kumaraswamy, R.K.Varma, A.M.Issaian, J.A.Kornfield, F.Yeh, B.S.Hsiao,
    Shear-enhanced crystallization in isotactic polypropylenePart 2. Analysis of the
    formation of the oriented ?°skin?±, Polymer, 2000, 41, 8931
    [214] Kumaraswamy G., Issaian A.M., Kornfield J.A., Shear-enhanced
    crystallization in isotactic polypropylene. 1. Correspondence between in situ
    rheo-optics and ex situ structure determination, Macromolecules, 1999, 32, 7537

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700