面向起伏地表和缝洞储层的物理模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕油气勘探开发中复杂地表复杂储层的实际问题,从地震物理模型实验基础工作着手,深入细致地开展起伏地表、缝洞物理模型模拟实验技术方法等基础理论的研究,建立比较逼近实际的物理模型,探索和认识起伏地表及缝洞储层中地震波的传播规律,取得了一些新的成果和认识。
     通过对换能器特性分析研制,采用在探头上增加触点开关、压力传感器和相应测量电路的方法,实现了数据采集、压力测试与地表高程测量的同步进行。初步解决了起伏地表物理模型实验技术的瓶颈问题。
     根据互穿网络和共聚网络聚合物改性方法的原理,研究了环氧树脂、橡胶类等高分子材料的互穿网络和共聚网络过程,实现了不同材料的共混,改善了固化后共聚物的交联度。建立了比较完备的、速度从低到高的地震物理模型材料系列。利用原位复合技术实现材料显微缝洞结构设计。从而为进一步的碳酸盐岩缝洞型储层地震反射特征的研究提供有效的模型制作方法与途径。
     首次获得针对起伏地表和复杂地下地质体设计的地震物理模型模拟观测二维数据体,直观地了解起伏地表对地下地质体波场特征所产生的影响,更清楚地认识起伏地表条件下地震波的传播规律以及波场特征,并为速度分析、起伏地表直接偏移成像技术研究供试验数据。
     通过各种实验采集数据的分析,结合理论讨论了异常体的散射特征,认识不同缝、洞模型的地震波传播特征,缝洞的地震响应特征,裂缝的方位各项异性特征,裂缝密度随偏移距变化的地震响应特征等,为实际缝洞反射特征的识别和缝洞型储层预测提供了依据,对提高碳酸盐岩发育区地震资料解释的可靠性及提高碳酸盐岩缝洞型油气藏勘探成功率方面具有重要的参考价值,也为设计更加科学、经济、可行的采集观测系统提供了实验数据。
Taking the problems emerged from rugged topography and complex reservoirs, this article studied in detail the methodologies for modeling rugged topography, fractures, and caverns, as well as documented the propagation of waves traveling through rugged topography and karst-cavern reservoir. Some new insights have been reached.
     By adding contact switch, pressure sensor, and corresponding measuring circuit to the probe, we achieved data acquisition, pressure test, and elevation measurement simultaneously, which roughly overcomes the bottleneck in physical modeling for models with rugged topography.
     Based on the principles of interpenetrating polymer network and copolymerization, we studied the course of network interpenetrating and copolymerization of araldite with rubber and other polymers, and achieved blending of different polymers in line with the requirements of physical modeling materials. The resulted polymers are of good cross-linking level. It has been established a relatively integrated physical modeling material series that features velocities of low values through high values. The microscopic structures of fractures and caves are designed and realized by in-situ composite technology. The results provide an effective way for construction of fracture-cavern carbonate reservoir model.
     We acquired a 2-D seismic data of physical model with rugged topography and complex subsurface structures for the first time, vividly observed the effect of rugged topography on waves traveling in subsurface structures, and documented the propagation and characters of seismic waves under rugged topography. The resulted data provided test data for velocity analysis and migration directly from rugged topography.
     Combined experimental observations and theoretical analysis, I studied the scattering from anomalous bodies, seismic wave propagation in fracture-cavern models, seismic signatures of fracture and caverns, azimuthal anisotropy of fractures, and the seismic responses along with fracture density versus offset. The results provide bases for the identification of reflections of real fractures and caverns as well as prediction of fracture-cavern reservoirs. They are valuable information for decreasing the uncertainty of interpretation of data from carbonate rich areas and increasing the success rate of fracture-cavern carbonate reservoirs. The resulted data also provide test data for economic and feasible layout design.
引文
[1]贺振华,黄德济等著.复杂油气藏地震波场特征方法理论及应用[M].成都:四川科学技术出版社,1999.
    [2]贺振华,李亚林,张帆,黄德济.定向裂缝对地震波速度和振幅影响的比较-实验结果分析[J].物探化探技术,2001,23(1):667-672.
    [3]贺振华,黄德济.缝洞储层的地震检测和预测[J].勘探地球物理进展,2003,26(2):79-83.
    [4]贺振华,杜正聪,文晓涛.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测[J].地球科学进展,2004,19(3):399-402.
    [5]赵群,郭建,郝守玲,耿建华.模拟天然气水合物的岩石物理特性模型实验[J].地球物理学报,2005,48(3):649-655.
    [6]赵群.疏松砂岩储层物性参数敏感性物理模拟实验[J].石油学报,2006,27(4):93-96.
    [7]赵群,马国庆,宗遐龄.超声地震物理模型连续数据采集系统[J].地球物理学进展,2004,19(4):786-788.
    [8]赵群,郝守玲.煤样的超声速度和衰减各向异性测试[J].石油地球物理勘探,2005,40(6):708-710.
    [9]赵群,郝守玲.井间地震观测系统的物理模型研究[J].石油物探,2004,43(3):298-300
    [10]赵群,马国庆.地震物理模型高速数据采集系统[A].中国地球物理学会年刊[C].南京:南京师范大学出版社.2003,224p.
    [11]赵群,郝守玲,宗遐龄.井问地震定向接收的物理横型实验[J].石油物探,1998,37(1):57-69.
    [12]赵群,马国庆,宗遐龄.连续采集控制系统在地震物理模型实验中的应用[A].中国地球物理学会年刊[C].西安:西安地图出版社,2004,203p.
    [13]赵群,张明.溶洞绕射波特征的物理模型实验研究[A].中国地球物理学会年刊[C].青岛:中国海洋大学出版社,2007,522p.
    [14]赵群.天然气水合物的岩石物理模型研究[A].油气地球物理实用新技术[C],北京:石油工业出版社,2005:312-316.
    [15]蔡瑞,赵群,郝守玲,等.实验室缝洞物理模拟的地震响应特征分析[A].油气地球物理实用新技术[C],北京:石油工业出版社,2006:35-50.
    [16]曹均,等.储层孔(裂)隙的物理模拟与超声波实验研究[J].地球物理学进展,2004,19(2):386-391.
    [17]曹均,贺振华,黄德济,李琼.裂缝储层地震波特征响应的物理模型实验研究[J].勘探地球物理进展,2003,26(2):88-93.
    [18]迟新刚,贺振华,贺锡雷等.应用双谱进行裂缝储层检测[J].石油地球物理勘探, 2003,38(3):285-291.
    [32]迟新刚,贺振华,黄德济.基于熵算子的地震裂缝检测方法[J].矿物岩石,2003,23(6):117-119.
    [19]狄帮让,等.VXI总线产品在地震物理模拟多通道采集系统中的应用研究[J].计算机自动测量与控制,2001,9(2):7-8.
    [20]董渊,杨慧珠.利用P波层间时差确定裂缝性地层的各向异性参数[J].石油地球物理勘探,1999,34(5):520-525.
    [21]董良国.复杂地表条件地震波传播数值模拟[J].勘探地球物理进展,2005,28(3):187-194.
    [22]董良国,李培明.地震波传播数值模拟中的频散问题[J].天然气工业,2004,6:53-56.
    [23]杜正聪,贺振华,黄德济,李忠.基于弹性方程与声学方程的裂缝模型正演与偏移[J].物探化探计算技术,2005,27(1):1-5.
    [24]杜正聪,贺振华,黄德济.缝洞储层地震波场数值模拟[J].勘探地球物理进展,2003,26(2):101-108.
    [25]杜正聪,等.缝洞糢型波动方程正演与偏移[J].成都理工大学(自然科学版),2003,30(4):386-390.
    [26]杜启振,董渊,杨慧珠.HTI介质横波正常时差速度反演[J].石油大学学报(自然科学版),2002,26(2):26-30.
    [27]刁顺,杨慧珠.裂缝及介质非均匀散射[J].石油物探,1994,33(4):49-55.
    [28]冯若.超声手册.南京:南京大学出版社,1999.
    [29]范国章,牟永光.裂缝各向异性对纵波叠加地震资料的影响[J].石油地球物理勘探,2002,37(1):69-70.
    [30]付强.一种六通道高速数据采集系统的设计[J].国防大学科技学学报,2001,23(4):89-93.
    [31]方华,伍向阳.岩石中裂纹对弹性波速度的影响[J].地球物理学进展,1998,13(4):79-81.
    [32]甘其刚,高志平.宽方位AVA裂缝检测技术应用研究[J].天然气工业,2005,25(5):42-43.
    [33]甘其刚,高志平,宽方位AVA裂缝检测技术应用研究.天然气工业,2005,25(5):42-43.
    [34]桂志先,贺振华.两种类型裂隙介质的弹性常数分析[J].物探化探计算技术,2000,22(2):117-119.
    [35]桂志先,贺振华,黄德济.含垂直裂隙地层中弹性波相速度[J].石油地球物理勘探,2001,36(2):180-184.
    [36]桂志先,贺振华,张小庆.基于Hudson理论的裂隙参数对纵波的影响[J].江汉石油学院学报,2004,26(1):45-47.
    [37]黄捍东.碳酸盐岩裂缝油气预测的地球物理方法研究--任丘潜山碳酸盐岩裂缝油气 预测:[D].成都:成都理工大学博士论文,2000.
    [38]黄捍东,魏修成,叶连池,贺振华,李亚林.碳酸盐岩裂缝性储层研究的地质物理基础[J].石油地球物理勘探,2001,36(5):591-596.
    [39]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [40]韩立国,薛建,王者江.基于页面物理模拟的复杂介质地震波场特征分析[J].吉林大学学报(地球科学版),2003,33(2):222-236.
    [41]郝守玲,赵群.横向速度变化对构造成像影响的物理模拟研究[J].石油物探,2008,47(1):49-54.
    [42]郝守玲,赵群.裂缝介质对P波方位各向异性特征的影响-物理模型研究[J].勘探地球物理进展,2004,27(3):189-194.
    [43]郝守玲,赵群.地震物理模型技术的应用与发展[J].勘探地球物理进展,2002,(2):34-36.
    [44]郝守玲,赵群.利用物理模型模拟影响P波方位各项异性特征因素[A].油气地球物理实用新技术[C],北京:石油工业出版社,2005:81-87.
    [45]郝守玲,赵群.玄武岩物理模型实验及资料处理分析[A].中国地球物理学会年刊[C].西安:西安地图出版社,2004,203p.
    [46]郝守玲,赵群.新疆大龙口地区物理模型应用研究[A].中国地球物理学会年刊[C].青岛:中国海洋大学出版社,2007,125p.
    [47]郝守玲,赵群,周正仁.EDA介质的P波方位各向异性-物理模型研究[J].石油地球物理勘探,1998,33(增刊2):54-62.
    [48]何建军,贺振华,黄德济.致密砂岩储层裂缝发育带的检测和识别.成都理工大学学报(自然科学版),2004,31(6):713-16.
    [49]何樵登,张中杰.对各向异性介质中横波分裂现象的研究[J].世界地质,1990,9(2):11-18.
    [50]何樵登,等.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [51]候国章编著.测试与传感技术[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [52]胡光岷,贺振华.利用纵波资料反演裂缝发育密度和方向[J].成都理工学院学报,2000,27(2):145-150.
    [53]胡中平,李中杰,赵群.碳酸盐岩溶洞发育区高精度地震勘探效果[J].石油地球物理勘探,2008,43(1):83-87.
    [54]惠俊英,刘红,余华兵,等.声压振速联合信息处理及其物理基础初探[J].声学学报,2000,25(7):303-30.
    [55]江守一郎等著.模型实验的理论和应用[M].郭廷纬,李安定译.北京:科学出版社,1984.
    [56]吴俊峰,姚姚,撒利明.碳酸岩盐特殊孔洞构造地震响应特征分析[J].石油地球物理勘探,2007,42(2):180-185.
    [57]姜绍仁等.应用物理模型和数学模型研究逆掩断层地质构造[A].实验地球物理研究文集[M].北京:地震出版社,1989,101-107.
    [99]焦方正主编.塔河油气田开发研究论集[M].石油工业出版社,2006
    [58]李灿苹,刘学伟,李敏锋,王祥春.非均匀地质体散射波特征初探[J].石油物探,2006,45(2):134-140.
    [59]李剑峰,赵群,等.塔河油田碳酸盐岩储层缝洞系统的物理模拟研究[J].石油物探,2005,44(5):428-432.
    [60]李剑峰,赵群,等.油气勘探地震物理模型图集[M].石油工业出版社,2006
    [61]李亚林,贺振华,黄德济,等.露头砂岩纵横波衰减的各向异性实验研究[J].石油地球物理勘探,1999,34(6):658-664.
    [62]李琼,贺振华,黄德济,曹均.单孔洞缝模型超声波实验测试与分析[J].石油物探,2007,64(1):100-104.
    [63]李国治.关于地震物理模型相似比问题[J].石油物探,1989,28(4):96-103.
    [64]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004.
    [65]凌云研究小组.宽方位角地震勘探应用研究.石油地球物理勘探,2003;38(4):350-357.
    [66]林桦.多孔材料声衰减的实验研究[J].地球物理学报,1990,33(3):349-354.
    [67]练章华,康毅力,徐进,徐兴华.裂缝宽度预测的有限元数值模拟[J].天然气工业,2001,21(3):47-50.
    [68]刘国明,董敏煜,等.弱横向各向同性介质中P波旅行时反演及速度分析[J].石油大学学报(自然科学版),2000,24(1):73-76.
    [69]刘洋,李承楚,牟永光.具有倾斜对称轴的横向各向同性介质中的弹性波[J].石油地球物理勘探,1998,33(2):161-169.
    [70]刘斌,Kern H,等.围压作用下岩石样品中微裂纹的闭合[J].地球物理学报,2001,44(3):421-428.
    [71]刘其弘译.利用纵波地震资料确定方位各向异性的主方向[J].山地地震勘探,1998,22(1):51-55.
    [72]刘军迎,雍学善等.模型正演技术在碳酸盐岩油气藏地震资料解释中的应用[J].岩性油气藏,2007,19(1):109-112.
    [73]牟永光著.三维复杂介质地震物理模拟[M].北京:石油工业出版社,2003.
    [74]牟永光,裴正林著.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2005.
    [75]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    [76]曲寿利,季玉新,王鑫,等.全方位P波属性裂缝检测方法[J].石油地球物理勘探,2001,36(4):390-397.
    [77]沈上越,李珍编著.矿物岩石材料工艺学[M].武汉:中国地质大学出版社,2005
    [78]佘德平,李佩,等.复杂构造地区成像问题的模拟研究[A].油气地球物理实用新技术[C],北京:石油工业出版社,2006:11-18.
    [79]孙建国.2003年SEG年会地震勘探新技术介绍[J].勘探地球物理进展,2004,27(2):139-153.
    [80]孙进忠,郭铁拴,唐文榜.我国超声地震模型实验的理论研究与实践[J].地球物理 学报,1997,40(增刊):266-274.
    [81]孙建库.不同类型碳酸盐岩储层横向预测方法研究[D].成都:西南石油学院博士论文,2004.
    [82]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [83]宋惠珍,贾承造,欧阳健.裂缝性储层研究理论与方法-塔里木盆地碳酸盐岩储集层裂缝预测[M].北京,石油工业出版社,2001.
    [84]谭廷栋.裂缝性地层侧向测井解释新方程[J].地球物理学报,1983,26(6).
    [85]谭廷栋.裂缝性油气藏测井解释模型与评价方法[M].石油大学出版社,1987.
    [86]腾吉文,王光杰,张秉铭,等.地球各向异性介质中地震波动理论、检测与应用研究[J].地学前沿,1998,5(1-2):83-90.
    [87]腾吉文.地震波在直角断层模型介质中传播的动力学特征[J].地球物理学报,1963,12(1).
    [88]腾吉文.绕射波的动力学特征与介质物理参数间的关系[J].地球物理学报,1964,13(2):128-146.
    [89]滕佃波,邢春颖,王赘.基于地震横波分裂理论的火成岩裂缝检测,地球物理学进展,2005,20(2):513-517.
    [90]王昌明.传感与测试技术[M].北京:北京航空航天大学出版社,2005.
    [91]王兴建,曹俊兴,李学民,多尺度分形参数在裂缝检测中的应用研究,物探化探计算技术,2004,26(4):299-301.
    [92]王跃科,叶湘滨,黄芝平等编著.现代动态测试技术[M].北京:国防工业出版社,2003
    [93]王建,张红欣,等.SL-Ⅱ型油藏物理模型[J].石油学报,2003,24(6):77-80.
    [94]王德中.环氧树脂生产与应用[M].北京:化学工业出版社,2001.
    [95]王允诚,等.裂缝性致密油气储集层[M].北京:地质出版社,1992.
    [96]王世星,曹辉兰,等.碳酸盐岩缝洞系统地震响应特征分析和塔中卡1区缝洞储层预测[J].石油物探,2005,44(5):421-425.
    [97]魏建新.脉冲换能器及其在地震物理模型中的应用[J].石油物探,1987,26(2):98-103.
    [98]魏建新.不同裂缝密度的物理模型研究[J].石油物探,2002,41(4):433-438.
    [99]魏建新,狄帮让.起伏地表地震物理模型测试技术[J].石油地球物理勘探,2006,41(6):619-624.
    [100]魏建新,狄帮让.地震物理模型超声测试技术中的几个问题[J].勘探地球物理进展,2003,26(4):294-300.
    [101]魏建新,牟永光,狄帮让.三维地震物理模型的研究[J].石油地球物理勘探,2002,37(6).
    [102]魏建新,赵群.固体物理模型实验:换能器研究[J].石油地球物理勘探,1996,31(增2):128-137.
    [103]魏建新,赵群,等.各向异性介质中横波特征的实验研究[J].石油地球物理勘探, 1997,32(4):503-511.
    [104]魏建新,孟萍,赵群.固体物理模拟实验:波场观测[J].石油物探,1997,36(2):75-84.
    [105]伍向阳,陈祖安,魏建新.一种测量岩石声波速度和衰减谱的技术一种测量岩石声波速度和衰减谱的技术[J].岩石力学与工程学报,2000,19(增):895-898.
    [106]文小涛,贺振华,等.缝洞岩层反射波特征分析[J].勘探地球物理进展,2003,26(2):99-102.
    [107]文晓涛,贺振华,黄德济.基于置信度分析的多方法综合检测裂缝[J].石油地球物理勘探,2006,42(2):202-201.
    [108]文晓涛,贺振华,黄德济.基于置信度分析的碳酸盐岩裂缝综合检测[J].新疆石油地质,2006,27(1):42-44.
    [109]文晓涛.缝洞储层的地震检测及综合预测:[D].成都理工大学博士论文,2006.
    [110]席道瑛,张程远,刘小燕.储层砂岩的各向异性[J].石油地球物理勘探,2001,36(2):187-192.
    [111]熊晓军,贺振华,黄德济,等.一种新的裂缝储层的数值模拟方法[J].石油地球物理勘探,2006,41(6),52-56.
    [112]奚先,姚姚.二维弹性随机介质中的波场分特征[J].地球物理学进展,2005,20(1):147-154.
    [113]奚先,姚姚.二维横向各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
    [114]薛建,田钢,王者江,等.三维地震模型实验系统的研制[J].长春科技大学学报,1998,28(3):335-338.
    [115]薛建,曾昭发,王者江,韩立国.金属矿地震勘探物理模拟实验技术[J].吉林大学学报(地球科学版),2004,34(3):464-470.
    [116]薛东川,王尚旭,焦淑静.起伏地表复杂介质波动方程有限元数值模拟方法[J].地球物理学进展,2007,22(2):522-529.
    [117]杨慧珠等.裂缝检测方法的发展和现状.地震各项异性学术研讨会文摘要集[C].国家自然科学基金委员会等,北京,1998:36-39.
    [118]杨贵祥,贺振华,朱铉.中国南方海相地层下组合地震采集方法研究与实践[J].石油物探,2006,45(2):157-168.
    [119]杨贵祥.碳酸盐岩裸露区地震采集方法[J].地球物理学进展,2005,20(4):1108-1128.
    [120]应崇福主编.超声学[M].北京:科学出版社,1993.
    [121]杨勤勇,赵群,王世星,等.纵波方位各向异性及其在裂隙检测中的应用[J].石油物探,2006,45(2):177-181.
    [122]叶勇,等.碳酸盐岩溶洞数值模拟及地震识别[J].天然气工业,2007,27(3):43-45.
    [123]姚姚.菲涅尔带与洞缝型油气藏地震波场[J].石油物探,2005,44(5):491-494.
    [124]姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探,2004,43(1):1-7.
    [125]袁希光.传感器技术手册[M].国防工业出版社,1989.
    [126]翟晓先,漆立新.塔河油田勘探实践与面临的挑战。塔河油田勘探与评价文集[M].北京:石油工业出版社,2006,1-10.
    [127]宗遐龄,赵群.实验室超声波三维扫描检测系统设计[A].中国地球物理学会年刊[C].青岛:中国海洋大学出版社,2007,522p.
    [128]张中杰,何樵登.各向异性介质中折射波及其走时曲线研究[J].西安石油学院学报,1992,7(3):1-6.
    [129]张中杰,贺振华.EDA介质中地震波速度,衰减与品质因子方位异性研究[J].中国科学:E辑,1999,29(6):569-574.
    [130]张光莹,曾新吾.裂缝排列方向及界面对波的共同作用[J].石油地球物理勘探,2003,38(2):168-172.
    [131]张帆,贺振华,黄德济,等.储层裂隙波场特征物理模型实验研究[J].石油地球物理勘探,1999,34(6):676-681.
    [132]张永刚等编著.复杂介质地震波场模拟分析与应用[M].北京:石油工业出版社,2007
    [133]赵德仁.张慰盛.高聚物合成工艺学[M].北京:化学工业出版社,2004
    [134]赵鸿儒,唐文榜,郭铁拴.超声地震模型试验技术及应用[M].北京:石油工业出版社,1986.
    [135]赵鸿儒,王铁男,唐文榜.中国地球物理模型试验的发展[J].地球物理学报,1994,37增刊(1):269-276.
    [136]钟伟,杨宝俊,张智.复杂介质地震波场研究进展[J].世界地质,2005,24(4):402-406.
    [137]朱培民,王家映,於文辉,等.用纵波AVO数据反演储层裂隙密度参数[J].石油物探,2001,40(2):1-12.
    [138]朱成宏,胡建国,许雪峰.裂隙介质的运动学特征反演与应用[J].石油物探,2002,41(3):253-258.
    [139]朱梅生.国外浅部地震勘探技术的应用[J].物探化探译丛,1995,(3):1-10.
    [140]朱铉,杨贵祥,敬朋贵.二次创业与南方海相碳酸盐岩油气勘探的发现与展望[J].地球物理学进展,2007,22(4):1255-1268.
    [141]左其华主编.水波相似与模拟[M].北京:海洋出版社,2006.
    [142]A.H.Balch and H.Karazincir.利用井间地震对产油层绕射成像:物理弹性模型研究[A].第61届SEG年会论文集[C].石油工业出版社,255-259.
    [143]Andrew Shatilo,Glenn Pool.油田砂岩的超声P波衰减与孔隙度、渗透率和粘土含量的关系[A].第66届SEG年会论文集[c].石油工业出版社,296-298.
    [144]Assad J等.裂隙固体超声速度测定:实验与理论[A].第63届SEG年会论文集[C].石油工业出版社,1994:421-425.
    [145]C.H.Chang,等.根据层速度分析确定地下裂缝方向[A].美国勘探地球物理学家学会第62届年会论文集[C].北京:石油工业出版社,1992:402-406.
    [146]Cheadle S B,Brown R J,等.正交各向异性:多组分物理模型研究[A]:第60届SEG 年会论文集[C].北京:石油工业出版社,1992:587-592.
    [147]Daniel A.Ebrom,等.横波旅行时间各向异性效应的物理模拟[A].美国勘探地球物理学家学会第57届年会论文集[C].北京:石油工业出版社,1988:525-527.
    [148]E.M.斯麦霍夫.裂缝性油气储层勘探的基础原理与方法[M].石油工业出版社,
    [149]Hezhu Yin and Amos Nur.应力引起的岩石超声速度和衰减各向异性[A].第62届SEG 年会论文集[C].石油工业出版社,406-412.
    [150]Isaac,JH由倾斜的TI介质引起的成像位置偏差:一个物理地震模型的研究[J].石油物探译丛,2001(1):31-40.
    [151]James V.Johnson等.裂缝引起横波各向异性的物理模拟[A].美国勘探地球物理学家学会第59届年会论文集[C].北京:石油工业出版社,1989:430-434.
    [152]J.Helen Isaac等.由倾斜的TI介质引起的成像位置偏差:一个物理地震模型的研究[J].石油物探译丛,2000,(1).
    [153]Johnson J V,Tatham R H,等.裂缝引起横波各向异性的物理模拟[A].第59届SEG 年会论文集[C].北京:石油工业出版社,1991:430-433.
    [154]Mc Donald J A,Gardner G H F,Hilterman F J编,许大坤译.地震物理模拟[M].北京:石油工业出版社,1988.
    [155]Rana A I,Sekharan K K.地震声学实验室物理模型的新发展[A].第60届SEG年会论文集[C].北京:石油工业出版社,1991:183-185.
    [156]Robert H.Tatham,等.横波分裂和裂隙强度的一种物理模型研究[A].美国勘探地球物理学家学会第57届年会论文集[C].北京:石油工业出版社,1987:249-252.
    [157]Savic M,Ziolkowski A M,Cockram M.高压下实验室规模动态过程的声监控[A].第61届SEG年会论文集[C].北京:石油工业出版社,1992:286-290.
    [158]Tatham R H,Matthews M D,Sekharan K K.横波分裂和裂隙强度的一种物理模型研究[A].第57届SEG年会论文集[C].北京:石油工业出版社,1989:249-252.
    [159]Y.Xu,,等.定向裂隙的地震波研究[A].美国勘探地球物理学家学会第62届年会论文集[C].北京:石油工业出版社,1991:990-994.
    [160]A.Bakulin,V.Grechka,N.Karaev,A.Anisimov,E.Kozlov.Physical modeling and theoretical studies of seismic reflections from a fault zone[J].Expanded Abstracts of 74~(th)Annual Internat SEG Mtg,2004,1674-1677.
    [161]Adriansyah,George A.McMechan.AVA analysis and interpretation of a carbonate reservoir:northwest Java basin,Indonesia[J].Geophysics,2001,66(3):744-754.
    [162]AI-Dossary S,Simon Y.Marfurt K.J.Inter Azimuth Coherence Attribute for Fracture Detection[J].SEG Technical Program Expanded Abstracts,2004,23:183-186
    [163]Aminzadeh F,Future Geophysical Technology Trends[J].The Leading Edge,1996,15(6),739-742.
    [164]Ando M,Ishikawa Y.Observations of shear-wave velosity polarization anisotropy beneath Honshu,Japan:two masses different polarization in the upper mantle[J].Phys.Earth,1982,30:191-199.
    [165] Ando M, Ishikawa Y. and Wada H. S - wave anisotropy in the upper mantle under a volcanic area in Japan[J]. Nature, 1980, 286:43-46.
    
    [166] Andrey Bakulin, Vladimir Grechka, and Llya Tsvankin. Estimation of fracture parameters from reflection seismic data-Part I:HT1 model due to a single fracture set[J]. Geophyysics, 65(6): 2000.
    
    [167] Andrey Bakulin, Vladimir Grechka, and Llya Tsvankin. Estimation of fracture parameters from reflection seismic data-Part II:fracture models with orthorhombic symmetry[J]. Geophyysics, 65(6): 2000.
    
    [168] Andrey Bakulin, Vladimir Grechka, and Llya Tsvankin. Estimation of fracture parameters from reflection seismic data-Part III:fracture models with monoclimic symmetry[J]. Geophyysics, 65(6): 2000.
    
    [169] Andrey Bakulin, Vladimir Grechka, Ilya Tsvankin. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium[J]. Geophysics, 2002, 67(1): 292-299.
    
    [170] Assad JM, Tatham R H, McDonald J A. A physical model studyof microcrack - induced anisotropy [J]. Geophysics, 1992, 57(12): 1562-1570.
    
    [171] Bachrach R and Mukerji T, Portable dense geophone array for shallow and very shallow 3D seismic reflection surveying-Part l:Data acquisition , quality control , and processing[J]. Geophysics, 2004, 69(6), 1443-1455.
    
    [172] Baren G B, Mulder W A, Herman G C. Finite-difference modeling of scalar-wave propagation in cracked media[J]. Geophysics, 2001, 66(1), 267-276.
    
    [173] Beretta M M, Bernasconi G and Drufuca G. AVO and AVA inversion for fractured reservoir characterization[J]. Geophysics, 2002, 67(1): 300-306.
    
    [174] Beylkin G, Burridge R Linearized inverse scatteringproblems in acoustics and elasticity[J]. Wave Motion, 1990, 12: 15-52.
    
    [175] Blacquiere G, Volker A, Ongkiehong L. 3-D Physical Modelling for Acquisition Geometry Studies. Expanded Abstracts of 69th SEG Annual Internat Mtg, 1999, 665-668.
    
    [176] Bryan DeVault , Thomas L. Davis , Ilya Tsvankin , Richard Verm , Fred Hilterman. Multicomponent AVO analysis, Vacuum field, New Mexico[J]. Geophysics, 2002, 67(3): 701-710.
    
    [177] Brown R J, Stewart R R, Lawton D C. A proposed polarity standard for multicomponent seismic data[J]. Geophysics, 2002, 67: 1028-037.
    
    [178] Carcuz J R. A combined AVO analysis of P-P and P-S reflection data[J]. Expanded Abstracts of 71th Annual Internat SEG Mtg, 2001, 323-325.
    
    [179] Cary P, Seismic signal processing-A new millennium perspective [J]. Geophysics, 2001, 66(1), 18-20.
    
    [180]Carcione J M. Seismic modeling in viscoelastic media[J]. Geophysics, 1993, 58(1): 110-120.
    
    [181] Castagna J P. Sun S. Instantaneous spectral analysis:Dectection of low frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22:120-127.
    
    [182] Chapman, M. Frequency dependent anisotropy due to meso-scale fractures in the presence of equant porosity[J]. Geophysical, 2003, 51 (5), 369-379.
    
    [183] Chen Q, Sidney S. Seismic Attribute Technology for Reservoir Forecasting and Monitoring[J]. The Leading Edge, 1997, 16, 445-456.
    
    [184] Christensen N. I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites[J]. Geophys, 1984, 76:89-111.
    [185] Craft K L, Mallick S, Meister L J et al. Azimuthal anisot2ropy analysis f rom P wave seismic t raveltime data. Ex2panded Abst ract s of 67th Annual Internat SEG Mtg, 1997: 1214-1217.
    
    [186] Crampin, S, A review of Wave motion in anisotropy and cracked lastic-medium, Wave Motion, Vol. 3, 1981.
    
    [187] Crampin S, ChesnokovE. M. , HipkinR. G. Seismic anisotropy-the state of the art: II[J]. Geophys, 1984, 76(1): 1-16.
    
    [188] Crampin S. Booth D. C. , krasnova M. A. etal. Shear wave polarizations in the Peter First Range indicating crack - induced anisotropy in a thrust-fault regime [J]. Geophys, 1986, 84: 401-412.
    
    [189] Crampin S. Booth D. C. , Peacock S. and Fletcher J. Changes in shear wave splitting at Anza near the time of the North Palm Springs earthquake[J]. Geophys, 1990, 95:11197-11212.
    
    [190] Crampin S. , Evans R. and Atkinson B. K. Earthquake prediction:a new physical basis[J]. Geophys, 1984, 76(1): 147-156.
    
    [191] Crampin S, John H Lovell. A decade of shear-wave splitting in the earth's crust:what does it mean? what use can we make of it? and what should we do next? [J]. Geophysics, 1991,107: 387-417.
    
    [192] Crampin S. Effective anisotropic elastic contants for wave propagation through cracked solids[J]. Geophys, 1984, 76: 135-145.
    
    [193] Crampin S. and King D. W. Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of the higher mode seismic surface waves[J]. Geophys, 1977, 49(1): 59-85.
    
    [194] Crampin S. Booth D. C. , krasnova M. A. etal. Shear wave polarizations in the Peter First Range indicating crack - induced anisotropy in a thrust-fault regime [J]. Geophys, 1986. 84: 401-412.
    
    [195] Crampin S. Booth D. C. , Peacock S. and Fletcher J. Changes in shear wave splitting at Anza near the time of the North Palm Springs earthquake[J]. Geophys, 1990, 95: 11197-11212.
    [196] Diana Sava, Gary Mavko. Azimuthal analysis of reflectivity for fracture characterization: Rock physics modeling and field example[J]. Expanded Abstracts of 74th Annual Internat SEG Mtg, 2004, 1583-1586.
    [197]Dvorkin J, Berryman J, Nur A. Elastic moduli of cemented spherepacks[J]. Mechanics of Materials, 1991, 31(7): 461-469.
    [198] Eaton DW, Weak elastic-wave scattering from massive sulfide orebodies[J]. Geophysics, 1999, 64(1), 289-299.
    
    [199] Feng Shen. Jesus Siena, Daniel R. Burns, etc. Azimuthal offset-dependent attributes applied to fracture detection in a carbonate reservoir[J]. Geophysics, 2002, 67 (2): 355-364.
    
    [200] Feng Shen, Xiang Zhu, M. Nafi Toksoz. Effects of fractures on NMO velocities and P-wave azimuthal AVO response[J]. Geophysics, 2002, 67(3): 711-726.
    
    [201] Fritz D A and Belsher T W. New exploration concept for the Edwards and Sligo margins of cretaceous of onshore Texas. AAPG Bulletin, 2000, 84(7):905-922.
    
    [202] Gardner G H F and Harris M H. Velocity and attenuation of elastic waves in sands[A]. 9th Ann Log Sympos, Soc. Prof. Well Log Analysts, 1968. Paper 111.
    
    [203] G. Blacquiere, E. j. van veldhuizen, A. W. F. Volker Physical modeling as benchmark for numerical modeling, EAGE 66th Conference & Exhibition—Paris, France, June2004.
    
    [204] Gray SH. Seismic imaging[J]. Geophysics, 2001, 66(1), 15-17.
    
    [205] Gray D, Roberts G and Head K. Recent advances in determination of fracture strike and crack density from P-wave seismic data[J]. The Leading Edge, 2002(3): 280-285.
    
    [206] Greenhalgh SA, Zhou Bing, Surface seismic imaging by multi-frequency amplitude inversion[J]. Exploration Geophysics, 2003, 34(4), 217-224.
    
    [207] Hestholm S . Elastic wave modeling with free surfaces : stability of long simulations[J]. Geophysics, 2003, 68(1): 314-321.
    
    [208] Hirakachi H, Kajima R, Kawaguchi T. Application of a piston type absorping wave maker to irregular wave experiments [J]. Coastal Engineering in Japan, 1990, 33(1):12-24.
    
    [209] House L et al. Imaging and Modelling Seismic Data from a Physical Model of the SEG/EAGE Salt Structure. Expanded Abstracts of 69th SEG Annual Internat Mtg, 1999,1017-1019.
    
    [210] Hudson J A. Wave speeds and attenuation of elastic wavesin material containing cracks[J]. Geophys, 1981, 64: 133-150.
    
    [211] I saac J H, Lawton D C. Image Mispositioning Due to Dipping TI Media, A Physical Seismic Modeling Study[J]. Geophysics, 1999, 64(4), 1230-1238.
    
    [212] James J. Reeves, W. Hoxie Smith. A 3D seismic fracture interpretation method for exploration of Lower Dakota alluvial gas sands, San Juan Basin, New Mexico[J] . Expanded Abstracts of 74th Annual Interaat SEG Mtg, 2004, 421-424.
    
    [213] Jocelyn Dufour, Jason Squires et al. Integrated geological and geophysical interpretation case study,and Lamé rock parameter extractions using AVO analysis on the Blackfoot 3C-3D seismic data,southern Alberta,Canada.Geophysics,2002,67(1):27-31.
    [214]Khaidukov V,Landa E,and Moser T J,Diffraction imaging by focusing-defocusing:An outlook on seismic superresolution[J].Geophysics,2004,69(6),1478-1490.
    [215]Karajav N A.Physical modeling of seismi city problemsfor heterogeneous media[J].Earth Physics.1991,27(9):814-823.
    [216]Keen C.E.,Tramontini C.A seismic refraction survey on the mid-Atlantic ridge[J].Geophys,1969,20:473-491.
    [217]LI Yongyi,Xu Yong,Leong H.Azimuthal AVO inversion(AVOZI)in full elastic property determination(FEPD)of fractured reservoirs(HTI media)[J].Expanded Abstracts of 71th Annual Internat SEG Mtg,2001,265-268.
    [218]Li Xiangyang.Fracture detection using azimuthal varia-tion of P-wave moveout from orthogonal seismic urveylines[J].Geophysics,1999,64(4):1193-1201.
    [219]Li Yong - gang,Deng Da-liang and Henyey T.L.Shear-wave splitting observations in the northern Los Angeles basin,southern California.Bull.Seis.Soc.Am.,1994,84(2):307-323.
    [220]Liu,E.,Queen,J.H.,Li,X.Y.,Chapman,M.,S.Maultzsch,Lynn,H.B.and Chesnokov,E.M.,Observation and analysis of frequency-dependent seismic anisotropy from a multicomponent VSP at Bluebell-Altamont field[J].Journal of Applied Geophysics,2003,54(2),319-333.
    [221]LIU Diankui.L1N Hong.Antiplane of SH-waves above asub surfaceavity [J].Expkxsion and Shock Waves,2003,23(1):6-12.
    [222]Liu E,Crampin S,Hudson J A.Diffraction of seismicwaves by cracks with application to hydraulic fractu-ring[J].Geophysics,1997,62(1):253-265.
    [223]Lynn,H.B.,and Beckham,W.,P-wave azimuthal variations in attenuation,amplitude,and velocity in 3-D field data:Implications for mapping horizontal permeability anisotropy,68th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts,1998,193-196.
    [224]Lynn,H.B.,Simon,K.M.,Bates,C.R.,and Van Dork,R.Azimuthal anisotropy in P-wave 3-D(multiazimuth)data:TheLeading Edge,1996,No.15:923-928.
    [225]M.Hawkes.Acoustic Vector-sensor Processing in thePresence of Reflecting Boundary[J].IEEE Trans.onSP,2000,48(11):2981-2993.
    [226]Manika Prasad,Jack Dvorkin.Velocity and attenuation of compressional waves in brines[J].Expanded Abstracts of 74~(th)Annual Internat SEG Mtg,2004,1666-1669
    [227]Maria A.Pérez,Richard L.Gibson,and M.Nafi Toksoz.Detection of fracture orientation using azimuthal variation of P-wave AVO responses[J].Geophysics,1999,64(4):1253-1265.
    [228]Matin D et al,Cross-Well seismic modeling laser ultrasonics experiments versus finite difference simulation,Expanded Abstracts of 61~(st)SEG Mtg,1991,683-686.
    [229] Matin D et al, Some aspects of seismic modeling and imaging in anisotropic media using laser ultrasonics, Expanded Abstracts of 62~(st) SEG Mtg, 1992.
    
    [230] Matteo Mario Beretta; Giancarlo Bernasconi; Giuseppe Drufuca. AVO and AVA inversion for fractured reservoir characterization[J]. Geophysics, 2002, 67(1): 300-306.
    [231] McKenna J, Evans B. Repeatability of physical modelling time-lapse 3-D seismic data. Expanded Abstracts of SEG Annual Meeting, 2000.
    
    [232] Meadows M, W interstein n Se ismic detection of ahydraulic fracture from shea-wave VSP data at LostHills Field, California[J]. Geophyics, 1994, 57(1): 11-26.
    [233] Ming Yang, Maya Elkibbi and Jose A. Rial. An inversion scheme to model subsurface fracture systems using shear wave splitting polarization and delay time observations simultaneously [J]. Geophysical Journal International, 2005, 160 (3): 939-947.
    
    [234] Molyneux J B, Schmitt D R. Compressional-Wave Velecities in Attenuating Media, A Laboratory Physical Model Study[J]. Geophysics, 2000, 65(4), 1162-1167.
    
    [235] Muller T M, Shapiro S A. Scattering attenuation in randomly layered structures with finite lateral extent, a hybrid Q model[J]. Geophysics, 2004, 69(6), 1530-1534.
    
    [236] Mu Luo, Evans B J. Development of a fracture mapping technique using conventional one-boat multi-streamer seismic data: A physical modeling study. Expanded Abstracts of SEG Annual Meeting, 2001.
    
    [237] Neves F A, Zahrani M S, Bremkamp S W. Detection of Potential Fractures and Small Faults Using Seismic Attributes[J]. TLE, 2004, 23(9): 903-906.
    
    [238] Perez M A, Gibson R L, Toks M N. Detection of fracture orientation using azimuthal variation of P-wave AVO responses[J]. Geophysics, 1999, 64(4): 1253-1265.
    
    [239] Pratt R G. Seismic Wave form Inversion in the Frequency Domain, Part1:Theory and Verification in a Physical Scale Model[J]. Geophysics, 1999, 64(3), 888-901.
    [240] Qu Shouli,Ji Yuxin,Wang Xin,Wang Xiuling,Chen Xinrong,and Shen Guoqiang. Fracture detection by using full azimuth P wave attributes[J]. Applied Geophysics, 2007, 4 (3) , 238-243.
    [241] Rai C S and Hanson K E. Shear—wave velocityanisotropy in sedimentary rock: A laboratory study [J]. Geophysics, 1988, 53.
    
    [242] Shearer P., Orcutt J. Anisotropy in the oceanic lithosphere - theory and observations from the Ngendei seismic refraction experiment in the south - west Pacific[J]. Geophys, 1985, 80: 493-526.
    
    [243] Shen, F., and Toksoz, M. N., Scattering characteristics in heterogeneous fractured reservoirs from waveform estimation[J]. Geophys, Internat., 2000, 140(1): 251-266.
    [244] Shepherd T. J. Geological link between fluid inclusions, dilatant microcracks, and paleostress field[J]. Geophys, 1990, 95: 11115-11120.
    
    [245] Sherlock D H, McKenna J, Evans B J. Seismic physical modelling of immiscible fluid flow.Expanded Abstracts of SEG Annual Meeting,2000.
    [246]Shor G.G.,Raitt R.W.,Henry M.et al.Anisotropy and crustal structure of the Cocos Plate.Geofisica International,1973,13:337-362.
    [247]Spetzler J,Sivaji C,Nishizawa O,et al,A test of ray theory and scattering theory based on a laboratory experiment using ultrasonic waves and numerical simulation by finitedifference method[J].Geophysical.2002,148,165-178.
    [248]T.A.Johansen,M.Jakobsen,R.Agersborg,and B.O.Ruud,The P-P and P-S response of a fractured reservoir[J].Expanded Abstracts of 74~(th)Annual Interuat SEG Mtg,2004,199-202.
    [249]Thomsen L.WeakElasticAnisotropicMedia[J].Geophygics,1986,51:1954-1966.
    [250]Veldhuizen,E.J.van,Biacquière,G.,Numerical modelling using wave field extrapolation validated by physical modelling,In ECUA 2004.
    [251]William L.Soroka,Thomas J.Fitch,Kirk H et al.Successful production application of 3-D amplitude variation with offset:The lessons learned[J].Geophysics,2002,67(2):379-390.
    [252]Williams M,J enner E.Interpreting seismic data in thepresence of azimuthal anisot ropy or azimuthal anisot ropyin the presence of the seimic interpretation[J].The LeadingEdge,2002,21(8):771-774.
    [253]Winkler K W,Plona T J.Technique for measuring ultrasonic velocity and attenuation spectra in rocks under pressure[J].Geophys,1982,87(13):10776-10780.
    [254]Young-Fo Chang,Chih-Hsiung Chang,The line singularities of the body waves in anisotropic media:physical modeling results.Expanded Abstracts of SEG Annual Meeting,2000.
    [255]Yunsheng Wang,Xiaoxiong Chen,Jiaying Wang,The key technique and its application of virtual instrument based on sound card,Progress in Environmental and Engineering Geophysics,Science Press,Science Press USA Inc.2004,575-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700