适用于高尔基染色和荧光标记鼠脑的跨脑区神经追踪方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑如此复杂的功能,从根本上依赖于数以亿计的神经元相互连接构成的神经网络。一般地,特定的脑功能依赖于特定的神经环路。神经环路包括局部连接和长程连接两种形式。电子显微镜或传统光学成像技术只能获取小范围内精细(纳米或亚微米级)的局部神经连接,而核磁共振成像等技术只能获取粗糙(百微米级)的长程神经连接。为获得对脑结构的整体认识,有必要在大尺度范围(厘米级)获取精细(亚微米级)的神经网络连接,而这一直是科学界的一大难题。直到近年来,一种显微光学切片断层成像技术首次在国际上取得了较大突破,先后报道了目前为止最为精细的高尔基染色和荧光标记小鼠全脑高分辨数据集,这为人们进行小鼠脑内跨脑区的精细神经环路研究,提供了重要的基础数据。然而,原始数据并不能直接为神经科学家所用,只有基于神经追踪技术从数据中提取出神经元网络结构,才能通过定量分析,深入揭示脑结构和功能的联系。
     近几十年来,神经追踪技术得到了长足发展,但大多数方法仅适用于特定的神经元图像而不具备通用性。上述高分辨小鼠全脑数据集有其显著的独特性,主要体现在高分辨全脑数据的海量性、高尔基染色数据中的空心胞体与密集突起、荧光数据中的长程神经元投射可延伸数毫米距离等。这些前所未有的问题,使得针对本文数据开发准确、高效的神经追踪算法变得十分重要。
     本文针对显微光学切片断层成像系统获取的小鼠全脑高分辨数据集,建立了有效的神经追踪方法,并结合生物学问题对追踪结果进行了定量分析。
     (1)局部神经追踪。对于高尔基染色数据集,本文通过改进2.5维(2.5D)形态学方法实现胞体定位;提出一种基于梯度判据的射线爆发算法,用于实现空心胞体不规则表面的形态检测;通过改进OpenSnake追踪算法的三维(3D)交互功能提高突起追踪准确性、基于神经元的物理连接关系优化追踪结果,并与上述胞体检测算法相集成,实现了针对高尔基染色数据的准确、半自动神经追踪方法。实验结果表明,胞体定位准确率超过93%;对于89%的定位准确的胞体,其表面检测准确率超过84%;突起全自动追踪准确率超过86%,中心线平均误差低至0.5μm。
     (2)长程神经追踪。对于荧光标记小鼠全脑数据集,通过将Amira软件提供的大数据处理模块与纤维追踪模块巧妙结合,首次提出了针对荧光标记数据中长程神经投射进行高效追踪的解决方案。对于单个数毫米距离的投射神经元追踪,相比传统、低效(数天)的分块追踪再拼接的思路,本文仅需耗时2到3小时。
     (3)不同脑区神经元形态的定量对比。基于上述局部神经追踪方法,追踪了皮层不同层的锥体神经元。对这些神经元的胞体表面积与体积、突起表面积变化规律等形态参数进行了初步定量比较,同时基于sholl分析计算了突起密度分布,结果表明皮层第2/3层、4层、5层的锥体神经元在上述形态参数方面具有一定的差异性,这种差异性有可能为神经元分类研究提供指导。
     (4)长程神经投射通路在核团水平的定位。本文基于稀疏标记的14天荧光鼠脑数据集进行长程神经追踪。由于至今尚无14天小鼠脑图谱,本文借助磁共振成像获取的14天与成年参考鼠脑数据集,将所有追踪的长程投射神经元分段配准到成年小鼠立体定位图谱,最终实现长程神经投射在核团水平的定位。部分定位结果不仅验证了已有的文献报道结果,如体感皮层与丘脑之间经典的双向投射;也发现了一些潜在的神经投射通路,如从DpG到RtTg的投射,这些新发现将为跨脑区信号处理通路的功能研究提供参考依据。
The complex functions of brain fundamentally depend on the neural networkconstructed by hundreds of millions of neurons. Generally, specific brain function dependson specific neural circuit, which contains local connections and long-distance connections.Electronic and traditional light microscopy can only acquire small, high-resolution localconnnections. Magnetic Resonance Imaging can only acquire coarse, long-distanceconnections. In order to get a overall understanding of brain structure, it’s necessary to getlarge-scale and precise neural network information, which has always been a majorchallenge in neuroscience community. Until recently, a new imaging technique calledMicro-Optical Sectioning Tomograpy made great breakthrough for the first time, reportingthe first high-resolution datasets of Golgi-staining and fluorescence-labeled whole mousebrain. These basic datsets make it possible for people to do research on precise neuralcircuit in whole brain. However, these datasets cann’t be used by neuroscientists directly.Quantitative anaysis cann't be used to reveal the relation between structure and functionuntil neural network structures are extracted from these datasets by neuron tracing.
     In the last decades, considerable progress has been made on neuron tracing technique.But most of them could be suitable only for their specific datset without generalapplication. The datasets above show their unique characteristics, such as large amount ofdataset, the hollow somas and dense dendrites in Golgi dataset, and the long-distanceneuron projection in fluorescence dataset. These unprecedented challenges make it urgentto develop accurate and efficient neuron tracing method for these new datasets.
     In this thesis, we establish effective neuron tracing method for our dataset, and dosome quantitative analysis on the tracing result to address some biological problems.
     (1) Local neuron tracing. For Golgi dataset, an enhanced2.5D morphological method isprovided for soma location; a new gradient-based Rayburst algorithm is presented forthe morphological detection of hollow soma’s irregular surface; via improving the3Dinteractive performance of OpenSnake tracing algorithm, and optimising tracingresults based on neuronal connection, a accurate and semi-automatic method for neuron tracing from Golgi datasets is proposed by integrating our soma detectionalgorithm. The accuracy for soma localization and soma surface detection is greaterthan93%and84%, respectively. For neurite tracing, the accuracy of automatic tracingis more than86%, and the average deviation of traced centerline is about0.5μm.
     (2) Long-distance neuron tracing. For fluorescent mouse brain dataset, we firstly providesthe efficient solution based on Amira software to long-distance neuron tracing.Compared with traditional and inefficient (several days) block tracing and stitching,our method only consumes2to3hours to trace a single neuron projection.
     (3) Quantitative analysis on the morphologies of neuronal in different brain regions. Basedon our local neuron tracing method, several pyrimidal neurons in different cortexlayers were traced and some morphological features such as soma surfce area, volumeand distribution of neurite surface are analyzed. The results show these neurons areembedded with certain differences on these morphological features. These differencesmight have laid a great foundation for the research on neuron classification.
     (4) Location of long-distance neuron projection at nuclei level. The dataset of sparselyfluorescence-labeled mouse brain (Postnatal day14, P14) was used for long-distanceneuron tracing. Since no brain atlas for P14mouse is available now, the P14and adultmouse brain datasets from MRI imaging are chosen as reference for registering alltraced long-distance neurons projection to The Mouse Brain in StereotaxicCoordinates atlas regionally, thus realizing the location of long-distance neuronprojection at nuclei level. The results not only confirm some previous report, such asthe classic bidirectional projection in the somatosensory pathway, but also highlightsome unreported but putative projection pathways, such as the projection from DpG toRtTg. these new findings will provide reference for the research on brain-wideinformation processing functions.
引文
[1] Bear M. F., Connors B. W., Paradiso M. A. Neuroscience: Exploring the brain:Lippincott Williams&Wilkins,2006.
    [2] Roysam B., Shain W., Ascoli G. A. The central role of neuroinformatics in thenational academy of engineering's grandest challenge: reverse engineer the brain.Neuroinformatics,2009,7(1):1-5.
    [3] Kandel E. R., Schwartz J. H., Jessell T. M. Principles of neural science. New York:McGraw-Hill,2000, pp.1227-1446.
    [4] Pechura C. M. Mapping the brain and its functions: integrating enablingtechnologies into neuroscience research: NationalAcademies Press,1991.
    [5] Goodhill G. J., Carreira-Perpinan M. A. Cortical columns, Encyclopedia ofCognitive Science. Macmillan Publishers Ltd;2002.
    [6] Miyamichi K., Amat F., Moussavi F., et al. Cortical representations of olfactoryinput by trans-synaptic tracing. Nature,2011,472(7342):191-196.
    [7] Hey A. J., Tansley S., Tolle K. M. The fourth paradigm: data-intensive scientificdiscovery. Microsoft Research,2009.
    [8] DeFelipe J. From the connectome to the synaptome: an epic love story. Science,2010,330(6008):1198-1201.
    [9] Sporns O., Tononi G., K tter R. The human connectome: a structural description ofthe human brain. PLoS Computational Biology,2005,1(4): e42.
    [10] Eisenstein M. Neural circuits: Putting neurons on the map. Nature,2009,461(7267):1149-1152.
    [11] Sosulski D. L., Bloom M. L., Cutforth T., et al. Distinct representations of olfactoryinformation in different cortical centres. Nature,2011,472(7342):213-216.
    [12] Ghosh S., Larson S. D., Hefzi H., et al. Sensory maps in the olfactory cortex definedby long-range viral tracing of single neurons. Nature,2011,472(7342):217-220.
    [13] Roebroeck A., Galuske R., Formisano E., et al. High-resolution diffusion tensorimaging and tractography of the human optic chiasm at9.4T. NeuroImage,2008,39(1):157-168.
    [14] Hagmann P., Kurant M., Gigandet X., et al. Mapping human whole-brain structuralnetworks with diffusion MRI. PloS One,2007,2(7): e597.
    [15] Mukherjee P., Chung S., Berman J., et al. Diffusion tensor MR imaging and fibertractography: technical considerations. American Journal of Neuroradiology,2008,29(5):843-852.
    [16] Dorr A., Lerch J., Spring S., et al. High resolution three-dimensional brain atlasusing an average magnetic resonance image of40adult C57Bl/6J mice.NeuroImage,2008,42(1):60-69.
    [17] Maack N.3D reconstruction of neural circuits from serial EM images [Doctoraldissertation], lmu,2008.
    [18] Luo L., Callaway E. M., Svoboda K. Genetic dissection of neural circuits. Neuron,2008,57(5):634-660.
    [19] Pawley J., Masters B. R. Handbook of biological confocal microscopy. OpticalEngineering,1996,35(9):2765-2766.
    [20] Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescencemicroscopy. Science,1990,248(4951):73-76.
    [21] Wilt B. A., Burns L. D., Ho E. T. W., et al. Advances in light microscopy forneuroscience.Annual review of neuroscience,2009,32:435.
    [22] Bohland J. W., Wu C., Barbas H., et al. A proposal for a coordinated effort for thedetermination of brainwide neuroanatomical connectivity in model organisms at amesoscopic scale. PLoS Computational Biology,2009,5(3): e1000334.
    [23] Tsai P. S., Friedman B., Ifarraguerri A. I., et al. All-optical histology using ultrashortlaser pulses. Neuron,2003,39(1):27-41.
    [24] Tuchin V. V. Optical clearing of tissues and blood using the immersion method.Journal of Physics D:Applied Physics,2005,38(15):2497.
    [25] Micheva K. D., Smith S. J. Array tomography: a new tool for imaging the moleculararchitecture and ultrastructure of neural circuits. Neuron,2007,55(1):25-36.
    [26] Li A., Gong H., Zhang B., et al. Micro-optical sectioning tomography to obtain ahigh-resolution atlas of the mouse brain. Science,2010,330(6009):1404-1408.
    [27] Chalfie M., Tu Y., Euskirchen G., et al. Green fluorescent protein as a marker forgene expression. Science,1994,263(5148):802-805.
    [28] Feng G., Mellor R. H., Bernstein M., et al. Imaging neuronal subsets in transgenicmice expressing multiple spectral variants of GFP. Neuron,2000,28(1):41-51.
    [29] Gong H., Zeng S., Yan C., et al. Continuously tracing brain-wide long-distanceaxonal projections in mice at a one-micron voxel resolution. NeuroImage,2013,74:87-98.
    [30] Lu J. Neuronal tracing for connectomic studies. Neuroinformatics,2011,9(2-3):159-166.
    [31] Peng H. Bioimage informatics: a new area of engineering biology. Bioinformatics,2008,24(17):1827-1836.
    [32] Svoboda K. The past, present, and future of single neuron reconstruction.Neuroinformatics,2011,9(2):97-98.
    [33] Liu Y. The DIADEM and beyond. Neuroinformatics,2011,9(2):99-102.
    [34] Meijering E. Neuron tracing in perspective. Cytometry Part A,2010,77A(7):693-704.
    [35] Weaver C. M., Pinezich J. D., Lindquist W. B., et al. An algorithm for neuriteoutgrowth reconstruction. Journal of Neuroscience Methods,2003,124(2):197-205.
    [36] Shah A., Fischer C., Knapp C. F., et al. Quantitation of neurite growth parameters inexplant cultures using a new image processing program. Journal of NeuroscienceMethods,2004,136(2):123-131.
    [37] Liu T., Li G., Nie J., et al. An automated method for cell detection in zebrafish.Neuroinformatics,2008,6(1):5-21.
    [38] Roysam B., Lin G., Abdul-Karim M.-A., et al. Automated three-dimensional imageanalysis methods for confocal microscopy. Handbook of Biological ConfocalMicroscopy,2006:316-337.
    [39] Bashar M. K., Komatsu K., Fujimori T., et al. Automatic extraction of nucleicentroids of mouse embryonic cells from fluorescence microscopy images. PloSOne,2012,7(5).
    [40] Wahlby C., Sintorn I. M., Erlandsson F., et al. Combining intensity, edge and shapeinformation for2D and3D segmentation of cell nuclei in tissue sections. Journal ofMicroscopy-Oxford,2004,215:67-76.
    [41] Li G., Liu T., Nie J., et al. Detection of blob objects in microscopic zebrafish imagesbased on gradient vector diffusion. Cytometry PartA,2007,71A(10):835-845.
    [42] Yu W., Lee H. K., Hariharan S., et al. Evolving generalized voronoi diagrams foraccurate cellular image segmentation. Cytometry PartA,2010,77A(4):379-386.
    [43] Dufour A., Shinin V., Tajbakhsh S., et al. Segmenting and tracking fluorescent cellsin dynamic3-D microscopy with coupled active surfaces. Image Processing, IEEETransactions on,2005,14(9):1396-1410.
    [44] Vallotton P., Lagerstrom R., Sun C., et al. Automated analysis of neurite branchingin cultured cortical neurons using HCA-Vision. Cytometry Part A,2007,71A(10):889-895.
    [45] Al-Kofahi Y., Lassoued W., Lee W., et al. Improved automatic detection andsegmentation of cell nuclei in histopathology images. Ieee Transactions onBiomedical Engineering,2010,57(4):841-852.
    [46] Qi X., Xing F., Foran D. J., et al. Robust segmentation of overlapping cells inhistopathology specimens using parallel seed detection and repulsive level set. IeeeTransactions on Biomedical Engineering,2012,59(3):754-765.
    [47] He W., Hamilton T. A., Cohen A. R., et al. Automated three-dimensional tracing ofneurons in confocal and brightfield images. Microscopy and Microanalysis,2003,9(4):296-310.
    [48] Al-Kofahi Y., Dowell-Mesfin N., Pace C., et al. Improved detection of branchingpoints in algorithms for automated neuron tracing from3D confocal images.Cytometry PartA,2008,73A(1):36-43.
    [49] Al-Kofahi K. A., Can A., Lasek S., et al. Median-based robust algorithms for tracingneurons from noisy confocal microscope images. Ieee Transactions on InformationTechnology in Biomedicine,2003,7(4):302-317.
    [50] Al-Kofahi K. A., Lasek S., Szarowski D. H., et al. Rapid automatedthree-dimensional tracing of neurons from confocal image stacks. Ieee Transactionson Information Technology in Biomedicine,2002,6(2):171-187.
    [51] Rodriguez A., Ehlenberger D. B., Dickstein D. L., et al. Automatedthree-dimensional detection and shape classification of dendritic spines fromfluorescence microscopy images. PloS One,2008,3(4).
    [52] Wearne S. L., Rodriguez A., Ehlenberger D. B., et al. New techniques for imaging,digitization and analysis of three-dimensional neural morphology on multiple scales.Neuroscience,2005,136(3):661-680.
    [53] Rodriguez A., Ehlenberger D. B., Hof P. R., et al. Rayburst sampling, an algorithmfor automated three-dimensional shape analysis from laser scanning microscopyimages. Nature Protocols,2006,1(4):2152-2161.
    [54] Senft S. L. A brief history of neuronal reconstruction. Neuroinformatics,2011,9(2-3):119-128.
    [55] Wang Y., Narayanaswamy A., Tsai C.-L., et al. A broadly applicable3-D neurontracing method based on open-curve snake. Neuroinformatics,2011,9(2-3):193-217.
    [56] Xiao L., Yuan X., Galbreath Z., et al. Automatic and reliable extraction of dendritebackbone from optical microscopy images. In: Li K, Jia L, Sun X, Fei M, Irwin GW,editors. Life System Modeling and Intelligent Computing. Lecture Notes inBioinformatics.63302010. pp.100-112.
    [57] Wu C., Schulte J., Sepp K. J., et al. Automatic robust neurite detection andmorphological analysis of neuronal cell cultures in high-content screening.Neuroinformatics,2010,8(2):83-100.
    [58] Zhao T., Xie J., Amat F., et al. Automated reconstruction of neuronal morphologybased on local geometrical and global structural models. Neuroinformatics,2011,9(2):247-261.
    [59] Rodriguez A., Ehlenberger D. B., Hof P. R., et al. Three-dimensional neuron tracingby voxel scooping. Journal of Neuroscience Methods,2009,184(1):169-175.
    [60] Vasilkoski Z., Stepanyants A. Detection of the optimal neuron traces in confocalmicroscopy images. Journal of Neuroscience Methods,2009,178(1):197-204.
    [61] Frangi A. F., Niessen W. J., Vincken K. L., et al. Multiscale vessel enhancementfiltering. In: Wells WM, Colchester A, Delp S, editors. Medical Image Computingand Computer-Assisted Intervention-Miccai'98. Lecture Notes in ComputerScience.14961998. pp.130-137.
    [62] Narayanaswamy A., Wang Y., Roysam B.3-D image pre-processing algorithms forimproved automated tracing of neuronal arbors. Neuroinformatics,2011,9(2-3):219-231.
    [63] Peng H., Ruan Z., Long F., et al. V3D enables real-time3D visualization andquantitative analysis of large-scale biological image data sets. Nature Biotechnology,2010,28(4):348-353.
    [64] Peng H., Ruan Z., Atasoy D., et al. Automatic reconstruction of3D neuronstructures using a graph-augmented deformable model. Bioinformatics,2010,26(12): i38-i46.
    [65] Meijering E., Jacob M., Sarria J. C. F., et al. Design and validation of a tool forneurite tracing and analysis in fluorescence microscopy images. Cytometry Part A,2004,58A(2):167-176.
    [66] Peng H., Long F., Zhao T., et al. Proof-editing is the bottleneck of3D neuronreconstruction: the problem and solutions. Neuroinformatics,2011,9(2):103-105.
    [67] Kass M., Witkin A., Terzopoulos D. Snakes: Active contour models. Internationaljournal of computer vision,1988,1(4):321-331.
    [68] Xu C. Y., Prince J. L. Snakes, shapes, and gradient vector flow. Ieee Transactions onImage Processing,1998,7(3):359-369.
    [69] Yin Kong K., Marcus A., Young Hong J., et al. Computer assisted analysis ofmicrotubule dynamics in living cells. Conference proceedings: AnnualInternational Conference of the IEEE Engineering in Medicine and Biology SocietyIEEE Engineering in Medicine and Biology Society Conference,2005,4:3982-3985.
    [70] Li H., Shen T., Smith M. B., et al., editors. Automated actin filament segmentation,tracking and tip elongation measurements based on open active contour models.Biomedical Imaging: From Nano to Macro,2009ISBI'09IEEE InternationalSymposium on,2009:1302-1305.
    [71] Wang Y., Narayanaswamy A., Roysam B., et al. Novel4-D open-curve activecontour and curve completion approach for automated tree structure extraction.2011Ieee Conference on Computer Vision and Pattern Recognition. IEEEConference on Computer Vision and Pattern Recognition2011. pp.1105-1112.
    [72] Engel K., Hadwiger M., Kniss J., et al. Real-time volume graphics. EurographicsAssociation,2006:112-114.
    [73] Ahrens J., Geveci B., Law C. Paraview: An end user tool for large data visualization:The Visualization Handbook,2005, pp.717-731.
    [74] Meyer-Spradow J., Ropinski T., Mensmann J., et al. Voreen: A rapid-prototypingenvironment for ray-casting-based volume visualizations. Ieee Computer GraphicsandApplications,2009,29(6):6-13.
    [75] Fogal T., Krüger J., editors. Tuvok, an architecture for large scale volume rendering.Proceedings of the15th International Workshop on Vision, Modeling, andVisualization,2010:57-66.
    [76] Stalling D., Westerhoff M., Hege H.-C. Amira: A highly interactive system forvisual data analysis. The visualization handbook,2005,38:749-767.
    [77] Parekh R., Ascoli G. A. Neuronal morphology goes digital: a research hub forcellular and system neuroscience. Neuron,2013,77(6):1017-1038.
    [78] Halavi M., Polavaram S., Donohue D. E., et al. NeuroMorpho. Org implementationof digital neuroscience: dense coverage and integration with the NIF.Neuroinformatics,2008,6(3):241-252.
    [79] Ascoli G. A., Krichmar J. L., Nasuto S. J., et al. Generation, description and storageof dendritic morphology data. Philosophical Transactions of the Royal Society ofLondon Series B: Biological Sciences,2001,356(1412):1131-1145.
    [80] Scorcioni R., Ascoli G. A. Algorithmic extraction of morphological statistics fromelectronic archives of neuroanatomy. Connectionist Models of Neurons, LearningProcesses, andArtificial Intelligence: Springer,2001. pp.30-37.
    [81] Scorcioni R., Polavaram S., Ascoli G. A. L-Measure: A web-accessible tool for theanalysis, comparison and search of digital reconstructions of neuronal morphologies.Nature Protocols,2008,3(5):866-876.
    [82] Cuntz H., Forstner F., Borst A., et al. One rule to grow them all: a general theory ofneuronal branching and its practical application. PLoS Computational Biology,2010,6(8): e1000877.
    [83] Cuntz H., Forstner F., Borst A., et al. The TREES toolbox—probing the basis ofaxonal and dendritic branching. Neuroinformatics,2011,9(1):91-96.
    [84] Scorcioni R., Lazarewicz M. T., Ascoli G. A. Quantitative morphometry ofhippocampal pyramidal cells: differences between anatomical classes andreconstructing laboratories. Journal of Comparative Neurology,2004,473(2):177-193.
    [85] Chiang A.-S., Lin C.-Y., Chuang C.-C., et al. Three-dimensional reconstruction ofbrain-wide wiring networks in drosophila at single-cell resolution. Current Biology,2011,21(1):1-11.
    [86] Long F., Zhou J., Peng H. Visualization and analysis of3D microscopic images.PLoS Computational Biology,2012,8(6): e1002519.
    [87] Valverde F. Golgi atlas of the postnatal mouse brain: Springer-Verlag Viena,1998.
    [88] Rosoklija G., Mancevski B., Ilievski B., et al. Optimization of Golgi methods forimpregnation of brain tissue from humans and monkeys. Journal of NeuroscienceMethods,2003,131(1):1-7.
    [89] Silva-Gomez A. B., Rojas D., Juárez I., et al. Decreased dendritic spine density onprefrontal cortical and hippocampal pyramidal neurons in postweaning socialisolation rats. Brain Research,2003,983(1):128-136.
    [90] Gibb R., Kolb B. A method for vibratome sectioning of Golgi-Cox stained whole ratbrain. Journal of Neuroscience Methods,1998,79(1):1-4.
    [91] Zhang B., Li A., Yang Z., et al. Modified Golgi-Cox method for micrometer scalesectioning of the whole mouse brain. Journal of Neuroscience Methods,2011,197(1):1-5.
    [92] Ragan T., Kadiri L. R., Venkataraju K. U., et al. Serial two-photon tomography forautomated ex vivo mouse brain imaging. Nature Methods,2012,9(3):255-258.
    [93] Ward W. W. Biochemical and physical properties of green fluorescent protein.Green Fluorescent Protein: Properties, Applications, and Protocols,2nd ed Methodsof BiochemicalAnalysis,2005,47:39-65.
    [94] Alkaabi K. M., Yafea A., Ashraf S. S. Effect of pH on thermal-andchemical-induced denaturation of GFP. Applied biochemistry and biotechnology,2005,126(2):149-156.
    [95] Patterson G. H., Knobel S. M., Sharif W. D., et al. Use of the green fluorescentprotein and its mutants in quantitative fluorescence microscopy. Biophysical journal,1997,73(5):2782-2790.
    [96] Yang Z., Hu B., Zhang Y., et al. Development of a plastic embedding method forlarge-volume and fluorescent-protein-expressing tissues. PloS One,2013,8(4).
    [97] Xie X., Lam K.-M. An efficient illumination normalization method for facerecognition. Pattern Recognition Letters,2006,27(6):609-617.
    [98] Broser P. J., Erdogan S., Grinevich V., et al. Automated axon length quantificationfor populations of labelled neurons. Journal of Neuroscience Methods,2008,169(1):43-54.
    [99] Zhang Y., Zhou X., Degterev A., et al. Anovel tracing algorithm for high throughputimaging Screening of neuron-based assays. Journal of Neuroscience Methods,2007,160(1):149-162.
    [100] Konstantinidis A. C., Olivo A., Munro P. R., et al. Optical characterisation of aCMOS active pixel sensor using periodic noise reduction techniques. NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors andAssociated Equipment,2010,620(2):549-556.
    [101] Leong F. W., Brady M., McGee J. O. D. Correction of uneven illumination(vignetting) in digital microscopy images. Journal of clinical pathology,2003,56(8):619-621.
    [102] King M. A., Doherty P. W., Schwinger R. B., et al. A Wiener filter for nuclearmedicine images. Medical physics,1983,10:876.
    [103]Otsu N. Athreshold selection method from gray-level histograms. Automatica,1975,11(285-296):23-27.
    [104] OzgenA. E.Advanced data mining techniques. Interfaces,2009,39(4):377-378.
    [105] Makhoul J., Kubala F., Schwartz R., et al., editors. Performance measures forinformation extraction. Proceedings of DARPA Broadcast News Workshop,1999:249-252.
    [106] Li G., Liu T., Tarokh A., et al.3D cell nuclei segmentation based on gradient flowtracking. Bmc Cell Biology,2007,8(1):40.
    [107] Lichtman J. W., Denk W. The big and the small: challenges of imaging the brain’scircuits. Science,2011,334(6056):618-623.
    [108] Lu J., Fiala J. C., Lichtman J. W. Semi-automated reconstruction of neural processesfrom large numbers of fluorescence images. PloS One,2009,4(5): e5655.
    [109] Watson C., Paxinos G., Puelles L. The mouse nervous system.1ed. San Diego:Academic Press,2011.
    [110] Aggarwal M., Zhang J., Miller M. I., et al. Magnetic resonance imaging andmicro-computed tomography combined atlas of developing and adult mouse brainsfor stereotaxic surgery. Neuroscience,2009,162(4):1339-1350.
    [111] Paxinos G., Franklin K. The mouse brain in stereotaxic coordinates.2ed. San Diego:Academic Press,2001.
    [112] Aronoff R., Matyas F., Mateo C., et al. Long‐range connectivity of mouse primarysomatosensory barrel cortex. European Journal of Neuroscience,2010,31(12):2221-2233.
    [113] Liao C. C., Chen R. F., Lai W. S., et al. Distribution of large terminal inputs fromthe primary and secondary somatosensory cortices to the dorsal thalamus in therodent. The Journal of comparative neurology,2010,518(13):2592-2611.
    [114] Paxinos G. The rat nervous system.3ed. San Diego:Academic Press,2004.
    [115] Cebrián C., Parent A., Prensa L. Patterns of axonal branching of neurons of thesubstantia nigra pars reticulata and pars lateralis in the rat. The Journal ofcomparative neurology,2005,492(3):349-369.
    [116] Cebrián C., Parent A., Prensa L. The somatodendritic domain of substantia nigrapars reticulata projection neurons in the rat. Neuroscience research,2007,57(1):50.
    [117] Vann S. D., Aggleton J. P., Maguire E. A. What does the retrosplenial cortex do?Nature Reviews Neuroscience,2009,10(11):792-802.
    [118] Wyass J. M., Van Groen T. Connections between the retrosplenial cortex and thehippocampal formation in the rat: a review. Hippocampus,2004,2(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700