基于NSGA-II算法的轴流式叶片优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转轮是水轮机的核心部件,转轮设计的好坏直接关系到水轮机的效率、运行稳定性和空化性能。为了提高水轮机的总体性能,水轮机转轮的水力设计理论与方法一直是水力机械研究领域关注的热点。
     本文针对轴流式水轮机叶片的水力优化设计方法进行研究,综合Bezier曲线参数化技术,全三维粘性CFD计算方法和NSGA-Ⅱ遗传算法,发展了一种基于NSGA-Ⅱ的适用于轴流式转轮叶片的CAD-CFD联合的多目标水力优化设计方法。该方法以轴流式转轮叶片的形状参数为优化变量,以转轮的能量性能和空化性能为目标函数,将NSGA-Ⅱ遗传算法引入作为优化工具来实现叶片的多目标优化设计。这种多目标水力优化设计方法的优化过程全部由计算机仿真完成,提高了设计工作的效率。
     将ZZ440轴流式转轮叶片作为优化设计的对象,以Bezier曲线参数化技术为基础,采用了叶片进口边沿轴向变化、叶片进口边沿轴向和周向变化、叶片进出口边分别在轴向和周向同时变化的三种参数化方法对轴流式叶片进行了表达,然后分别将这三种方法表达的轴流式叶片与具有NSGA-Ⅱ算法的CAD-CFD联合优化方法相结合进行了轴流式叶片的多目标优化设计,并对三种参数化方法的优化结果进行比较,发现将叶片的进出口边位置都作为设计变量参加优化的参数化方法是相对来说最好的。
     接下来,采用本方法进行了某电站水轮机模型活动导叶的水力性能优化设计。优化后导叶流道的进出口总压损失减少了26.97%,并且导叶表面上的最低静压力值上升了34.176%。优化后的导叶不仅流动损失减少了,而且也具有了更好的空化性能。
     计算结果表明,对于轴流叶轮机械叶片的优化问题,本文提出的多目标水力优化设计方法能够以较少的变量控制叶片几何形状,且能有效分析各设计变量对目标函数的影响程度和范围,缩小优化问题的规模,得到满意的优化结果,可作为一种有效的轴流式转轮叶片优化设计工具。
Runner is the core component of hydraulic turbine, and its quality of design directly affects the hydraulic turbine's efficiency, operation stability and cavitation performance. In order to improve the total performance of hydraulic turbine, its hydraulic design theory and method has always been the focus of hydraulic machine region.
     Integrated parametric technology of Bezier curve,3D viscous flow CFD calculation and NSGA-II algorithm, a CAD-CFD joint optimization design method for Kaplan turbine runner was put forward. Shape parameters of hydraulic turbine blade were used as optimization variable, energy and cavitation performances were used as objective function, and the multi-objective optimization for Kaplan turbine was carried out. The whole optimization process is completed by computer, and the design efficiency was greatly improved.
     The ZZ440 runner blade was used as an optimal design object. Based on the parametric technology of Bezier curve, three kinds of parametric method was used to parameterized Kaplan blade. These three methods were the inlet edge changing along with axial direction and the inlet edge changing along with axial and circumferential direction, and the third one was the inlet and outlet edge changing along with axial and circumferential direction at the same time. The Kaplan blade multi-objective optimization was carried out. According to the optimization results, the parametric method which the inlet and outlet edge change along with axial and circumferential direction was the best.
     Then the guide vane optimization was carried out. And the results shown that the total pressure loss reduced 26.97%, and the minimal pressure in guide vane blade increased 34.176%. For the optimizated guide vane the loss not only was reduced, the cavitation performance but also was improved.
     For the multi-object optimization method proposed in this paper, lesser variables can not only be used to control the blade shape, the extent of influence of each variable on objective function but also be analyzed effectively to reduce the scale of optimization problem and get the satisfying results. So it is an effective optimization design tool for Kaplan turbine runner.
引文
[1]彭国义,罗兴锜.轴流式水轮机转轮的准三维有旋流动计算[J].水利学报,1996,27(10):10-17.
    [2]杨华,谷传纲,汤方平,刘超.基于CFD紊流计算的离心泵叶型优化设计[J].扬州大学学报,2007,10(3):42-44.
    [3]任涛,闫永强,梁武科.CFD技术在离心泵优化设计中的应用[J].排灌机械,2007,25(1):25-28.
    [4]刘文龙,郭加宏,陈红勋.CFD在双吸式离心泵优化设计中的应用[J].工程热物理学报,2007,28(3):421-423.
    [5]张乐福,张亮.三板溪水电站模型水轮机优化设计[J].大电机技术,2006,(3):31-34.
    [6]刘胜柱,郭鹏程,纪兴英,罗兴锜.混流式水轮机叶片进出水边外延的方法[J].中国农村水利水电,2004,(12):114-118.
    [7]刘胜柱,郭鹏程,张乐福,罗兴锜.岩滩水电站3号机减振改造研究[J].水力发电学报,2005,(10):104-109.
    [8]陈江,季路成.某离心转轮改型气动设计[J].航空动力学报,2006,21(1):131-136.
    [9]云忠,谭建平,龚中良.轴流血泵转轮结构CFD仿真优化研究[J].机械设计,2008,23(10):6-8.
    [10]徐志斌,李立人,张磊,姚新红.基于FLUENT的离心吸纤维风机改进研究[J].机械设计与制造,2006,(12):24-26.
    [11]张慢来,冯进,丁凌云,汪飞,王伟.一种轴流式转轮的全三维优化设计[J].长江大学学报,2006,3(2):83-86.
    [12]R.SCHILLING, S.THUM, N.MULLER, S.KRAMER, N.RIEDEI, W.MOSER. DESIGN OPTIMIZATION OF HYDRAULIC MACHINERY BLADINGS BY MULTILEVEL CFD-TECHNIQUE[C]. Proceeding of the 21st IAHR Symposium on Hydraulic Machinery and Systems,2002, Lausanne, Switzerland.
    [13]Laurent TOMAS, Camille PEDRETTI, Thierry CHIAPPA, Maryse FRANCQIS, Peter STOLL. AUTOMATTED DESIGN OF A FRANCIS TURBINE RUNNER USING GLOBAL OPTIMIZATION ALGORITHMS[C]. Proceeding of the 21st IAHR Symposium on Hydraulic Machinery and Systems,2002, Lausanne, Switzerland.
    [14]Lluis Ferrando, Jean-Louis Kueny, Francois Avellan, Camille Pedretti, Laurent Tomas. SURFACE PARAMETERIZATION OF A FRANCIS RUNNER TURBINE FOR OPTIMUM DESIGN[C]. Proceeding of 22nd IAHR Symposium on Hydraulic Machinery and Systems,2004, Stockholm, Sweden.
    [15]Yasuyuki Enomoto, Sadao Kurosawa, Toshiaki Suzuki. DESIGN OPTIMIZATION OF A FRANCIS TURBINE RUNNER USING MULTI-OBJECTIVE GENETIC ALGORITHN[C]. Proceeding of 22nd IAHR Symposium on Hydraulic Machinery and Systems,2004, Stockholm, Sweden.
    [16]Kenji SHINGAL, Kei KATAYAMA, Katsumasa SHIMMEI. OPTIMIZATION OF THE AXIAL TURBINE RUNNER BLADE USING a SIMULATED ANNEALING ALGORITHM[C]. Proceeding of 23nd IAHR Symposium on Hydraulic Machinery and Systems,2006, Yokohama, Japan.
    [17]肖若富,王正伟.基于组合优化策略的离心泵优化设计[J].清华大学学报,2006,46(5):700-703.
    [18]陈波,高学林,袁新.基于NURBS的叶片全三维气动设计[J].工程热物理学报,2006,27(5):763-765.
    [19]王小翠,候志敏,张新运.基于进化算法和CFD技术的离心泵低稠度导叶的优化设计[J].流体机械,2007,35(3):21-24.
    [20]尚仁超,乔渭阳.基于参数法和贝塞尔曲线的涡轮叶片造型及其优化[J].机械设计与制造,
    2007,(8):16-18.
    [21]勒军,刘波,南向谊,陈云永,项效镕.基于神经网络的智能叶片优化设计系统的研究[J].中国机械工程,2007,18(15):1859-1861.
    [22]吴圃新,唐学林.CFD和CAD在水力转轮研制中的联合应用[J].工业科技,2007,36(2):65.
    [23]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2004,1-16.
    [24]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].浙江大学硕士学位论文,2006.
    [25]Fonseca C.M., Fleming P. J.. Genetic Algorithms for Multiobjective Optimization:Formulation, Discussion and Generalization[C]. In S. Forrest Ed., Proceedings of the Fifth International Conference on Genetic Algorithms,1993, San Mateo, California.
    [26]Horn J., Nafploitis N., Goldberg D.E.. A niched Pareto genetic algorithm for multi-objective optimization[C]. In Michalewicz, Z., editor, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Service Center,1994, Piscataway, New Jersey.
    [27]Srinivas N., Deb K.. Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithms [J]. Evolutionary Computation,1995,2(3):221-248.
    [28]Deb K., Agrawal S., Pratap A., et al.. A Fast Elitist Nondominated Sorting Genetic Algorithm For Multi-Objective Optimization:NSGA-II[C]. Proc of Parallel Problem Solving From Nature VI Conf, 2000, Paris, France.
    [29]袁德国,吕慧刚,魏子淋,陆廷金.基于NSGA-Ⅱ算法的装备研制多目标优化研究[J].计算机工程与应用,2008,44(16):228-230.
    [30]孟祥众,石秀华,杜向党.基于非支配排序遗传算法的振动主动控制优化方法[J].鱼雷技术,2008,16(4):27-30.
    [31]李成利,张明,孙月飞.NSGA-Ⅱ遗传算法在抑制电网谐波中的应用[J].微计算机信息,2007,23(10):273-275.
    [32]W.A.Wahba, A.Tourlidakis. A Genetic Algorithm Applied To The Design Of Blade Profiles For Centrifugal Pump Impeller[C]. The 15th AIAA Computational Fluid Dynamics Conference,2001, Anaheim, California.
    [33]闫永强.基于Bezier曲面造型与CFD分析的离心泵叶轮优化设计[D].西安理工大学硕士学位论文,2004.
    [34]忽晓东,刘强,刘亚磊,赵峰.Bezier曲线在涡轮叶片设计中的应用[J].石油矿场机械,2007,36(2):1-3.
    [35]汪建华,童新华.Bezier曲线在离心泵叶轮轴面流道设计中的应用[J].长江大学学报,2007,4(3):93-96.
    [36]周卫东,王瑞和,沈忠厚,李罗鹏.Bezier曲线在井底增压钻井离心泵叶片三维造型中的应用[J].钻采工艺,2008,31(3):84-86.
    [37]殷明霞,刘群辉,桂幸民.利用Bezier样条曲线进行叶轮机可视化设计[J].航空动力学报,2006,21(1):156-160.
    [38]高建铭,姚志明.水轮机水力计算[M].北京:电力工业出版社,1982,48-49,63-70.
    [39]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [40]王康健.气固两相平面混合层的直接数值摸拟及扰动波对平面混合层的影响[D].浙江大学硕士学位论文,2004.
    [41]郭良民.大涡模拟应用研究及光船气动性能分析[D].国防科学技术大学硕士学位论文,2005.
    [42]逯鹏.基于全流道模拟的混流式水轮机尾水管内部流动研究[D].西安理工大学硕士学位论文,2007.
    [43]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [44]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1998.
    [45]Lakehal D, Thiele F. Sensitivity of turbulent shedding flow to non-linear stress-strain relations and Reynold stress models [J]. Computers & Fluids,2001,30(1):1-35.
    [46]HANJALOC K, Iakirlic S. Contribution towards the second-moment closure modeling with applications to rectilinear and circular tidal flows [J]. International Journal for Numerical Methods in fluids,1998,26(3):251-280.
    [47]Launder B E, Spalding D B. Progress in the development of a Reynolds-stress turbulence closure [J]. J. Fluids Mech,1975,68(15):537-566.
    [48]郭鹏程.复杂边界通道内的三维紊流数值模拟[D].西安理工大学硕士学位论文,2000.
    [49]J.O. Hinze. Turbulence [M]. McGraw-Hill, New York,1975.
    [50]B. P.M. van Esch, N. P. Kruyt. Hydraulic Performance of a Mixed-Flow Pump:Unsteady Inviscid Computations and:oss Models [J]. ASME J. Fluids Eng.,2001,123(2):256-264.
    [51]王福军.计算流体动力学分析——CFD软件原理及应用[M].北京:清华大学出版社,2004.
    [52]周天孝,白文.CFD多块网格生成新进展[J].力学进展,1999,29(3):344-368.
    [53]Lo S H. A new mesh generation scheme for arbitrary planar domains [J]. Int J Numer Methods Eng, 1985,21(8):1403-1426.
    [54]郝海兵.多种多块网格生成技术在复杂流动数值模拟中的应用[D].西北工业大学硕士学位论文,2007.
    [55]万天虎.考虑轮缘间隙的贯流式水轮机性能分析[D].西安理工大学硕士学位论文,2006.
    [56]袁新,林智荣,赖宇阳,陈志鹏.透平叶片的气动优化设计系统[J].热力透平,2004,33(1):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700