基于近红外光谱技术的小麦叶片氮素营养及籽粒蛋白质含量监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物氮素营养的快速、无损估测对提高产量和改善品质具有重要意义。近红外光谱为作物无损监测和信息的准确获取提供了有效手段。本研究的目的是以不同年份、不同品种、不同施氮水平的小麦田间试验为基础,基于傅立叶近红外光谱仪获取小麦主要生育时期鲜叶、干叶及其成熟期籽粒的光谱信息,运用偏最小二乘法(PLS)、BP神经网络(BPNN)和小波神经网络(WNN),分析并量化其与叶片全氮含量、糖氮比、籽粒蛋白质含量的关系,以实现小麦生长和品质信息的近红外快速预测模型。
     首先运用多种光谱预处理技术,对鲜叶在1155~1803 nm和2118~2500 nm光谱区间,干叶在2046~2155 nm、2297-2339 nm和2343~2378 nm光谱区间,用PLS、BPNN和WNN方法分别确立了小麦叶片氮含量的定量监测模型。结果显示,鲜叶和干叶的最优光谱预处理方法分别为MSC+Savitzky-Golay二阶导数和MSC+Norris一阶导数。对于鲜叶样品,PLS模型的预测均方根误差(RMSEP)和决定系数(R2)分别为0.216%和0.841;BPNN模型的RMSEP和R2分别为0.175%和0.894;WNN模型的RMSEP和R2分别为0.169%和0.901。对于粉末状干叶样品,PLS模型的RMSEP和R2分别为0.147%和0.910;BPNN模型的RMSEP和R2分别为0.101%和0.960;WNN模型的RMSEP和R2分别为0.094%和0.978。从模型精度和稳健性来看,神经网络法相对优于PLS法;粉末状干叶模型优于鲜叶模型。
     采用上述类似方法建立了小麦鲜叶和干叶糖氮比预测模型。结果显示,鲜叶光谱模型预测性能不佳;干叶在1655~2378 nm谱区范围内采用MSC+Norris一阶导数光谱预处理方法构建模型,表现较好;基于PLS、BPNN和WNN方法构建的糖氮比估算模型,其预测均方根误差(RMSEP)分别为0.332%、0.292%和0.288%,决定系数(R2)分别为0.853、0.865和0.870。
     进一步基于小麦籽粒近红外漫反射光谱构建了整粒小麦蛋白质含量预测模型。结果表明,对光谱进行多元散射校正并结合Norris一阶导数在1242~2230 nm谱区构建模型,表现较好;检验结果显示,PLS模型的RMSEP和R2分别为0.848%和0.794,BPNN模型的RMSEP和R2为0.770%和0.814,WNN模型的RMSEP和R2为0.761%和0.816;神经网络回归效果好于偏最小二乘法。
     最后探讨了同时估测小麦鲜叶和干叶可溶性总糖和全氮含量的可行性。结果表明,PLS、BPNN和WNN三种方法均不能准确的同时测定小麦鲜叶的全氮和总糖含量,但所构建的干叶WNN模型预测效果较好,其预测均方根误差(RMSEP)分别为0.101%和0.089%,决定系数(R2)分别为0.957和0.941;并且,在收敛速度和预测精度上,WNN模型均明显优于BPNN和PLS模型,其光谱预处理方法为:鲜叶为MSC+Savitzky-Golay二阶导数;干叶为MSC+Norris一阶导数;建模谱区为1100~2500nm。
Quick and non-destructive monitoring of crop nitrogen status is useful for the managements to improve crop grain yield and quality. Near infrared (NIR) spectroscopy technology has provided an effective tool for non-destructive monitoring and crop information acquisition. In this study, a series of field experiments using different wheat varieties under various nitrogen levels were carried out in different years. Time-course near infrared spectrum (1100~2500 nm) were taken by Fourier transform near infrared spectrometer from fresh and dry wheat leaves, and mature grain. The purposes of this study were to develop prediction models for leaf nitrogen, the ratio of sugar to nitrogen and grain protein of wheat using different methods of chemometrics including partial least squares (PLS), back-propagation neural network (BPNN) and wavelet neural network (WNN), to realize quantitative analyzing wheat growth and quality information with NIR technique.
     Different spectra preprocessing ways combined with PLS, BPNN and WNN were used respectively to develop the models, in which 1155~1803 nm and 2118~2500 nm for fresh leaf nitrogen,2046~2155 nm,2297~2339 nm and 2343~2378 nm for dry leaf nitrogen. The result showed that MSC combined Savitzky-Golay second derivative, MSC combined Norris first derivative could be the suitable methods to develop nitrogen monitoring models for fresh and dry leaf, respectively. For fresh leaves, the root mean square errors of prediction (RMSEP) and coefficients of determination (R) by PLS model were 0.216% and 0.841, that by BPNN model were 0.175% and 0.894%, while that by WNN model were 0.169% and 0.901, respectively. For dry leaves, RMSEP and R2 by PLS model were 0.147% and 0.910, that by BPNN model were 0.101% and 0.960, while that by WNN model were 0.094% and 0.978, respectively. In term of prediction precision and stability of model, dry leaf was superior to fresh leaf, and neural network was superior to PLS relatively.
     Then, quantitative models for soluble sugar to nitrogen ratio in wheat leaves were established with the same way for leaf nitrogen. The evaluation results showed that, the models precision for fresh leaves was not satisfactory, but RMSEP by PLS, BPNN and WNN models for dry leaves based on 1655-2378nm were 0.332%,0.292% and 0.288%, while the coefficients of determination (R2) were 0.853,0.865, and 0.870, respectively. It seemed that artificial neural network models were superior to PLS model on prediction performance.
     Thirdly, the models for grain protein content of wheat were constructed with near infrared diffuse reflectance based on 1242~2230 nm after spectra data were pre-processed with MSC combined Norris first derivative method, which was optimized from MSC, Savitzky-Golay smoothing and derivative, Norris derivative methods. The evaluation results showed that, RMSEP and R2 by PLS model were 0.848% and 0.794, that by BPNN model 0.770% and 0.814, while that by WNN model were 0.761% and 0.816, respectively, it was clear that neural network models were superior to PLS model.
     Finally, the feasibility of simultaneous determination of soluble sugar and total nitrogen contents in fresh and dry wheat leaves was examined. The results showed that models based on PLS, BPNN and WNN could not be applied to estimating soluble sugar and total nitrogen contents in fresh wheat leaves simultaneously, but prediction precision of WNN model for dry leaves was satisfactory, RMSEP were 0.101% and 0.089%, with R2 of 0.957 and 0.941, respectively. In addition, WNN model was superior to BPNN and PLS models on convergence speed and prediction precision obviously. Spectra preprocessing methods was that, MSC combined Savitzky-Golay second derivative for fresh leaves, MSC combined Norris first derivative for dry leaves, and modeling spectrum range was 1100~2500 nm.
引文
1. Abbate A, Drake J, Mayes D M, Von Rosenberg C W Jr. A rugged near-infrared spectrometer for the real-time measurement of grains during harvest. Spectroscopy,2000,15(6):34-38.
    2. Abe H, Kusama T, Kawano S, Iwamoto M. Non-destructive determination of protein content in a single kernel of wheat and soybean by near infrared spectroscopy. In:Davies A M C, Williams P C (Eds). Near-infrared spectroscopy:the future wave. The proceedings of the 7th international conference on NIR spectroscopy. Chichester, United Kingdom:NIR Publications,1996:457-461.
    3. Aber J D, Bolster K L, Newman S D, Soulia M, Martin M E. Analyses of forest foliage II: Measurement of carbon fraction and nitrogen content by end-member analysis. Journal of Near Infrared Spectroscopy,1994,2(1):15-23.
    4. Armstrong P R, Maghirang E B, Xie F, Dowell F E. Comparison of dispersive and fourier-transform NIR instruments for measuring grain and flour Attributes. Applied Engineering in Agriculture,2006, 22(3):453-457.
    5. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment,1998,64(3):234-253.
    6. Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research,2005,35(2):305-317.
    7. Barton II F E. Theory and principles of near infrared spectroscopy. Spectroscopy Europe,2002, 14(1):12-18.
    8. Batten G D, Blakeney A B, Ciavarella S. A tissue testing service for rice producers. In:. Humphreys E, Murray E A, Clampett W S, Lewin L G (Eds). Temperate rice-achievements and potential. Griffith, Australia:NSW Agriculture,1994:473-476.
    9. Batten G D, Blakeney A B, Glennie-Holmes M G, Henry R J, McCaffery A C, Bacon P E, Heenan D P. Rapid determination of shoot nitrogen status in rice using near infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture,1991,54(2):191-197.
    10. Batten G D, Blakeney A B, McGrath V B, Ciavarella S. Non-structural carbohydrate:Analysis by near infrared reflectance spectroscopy and its importance as an indicator of plant growth. Plant and Soil,1993, (1):243-246.
    11. Batten G D, Blakeney A B. Widening horizons for plant analysis by NIR. NIR News,1996,7: 14-15.
    12. Batten G D, Ciavarella S, Blakeney A B. Analysis of plant constituents using NIRS:
    intercorrelation effects. In:Davies A M C, Garrido-Varo A (Eds). Proceedings of the 11th International Conference on Near Infrared Spectroscopy. Chichester, United Kingdom:NIR Publications,2004:389-392.
    13. Batten G D. Plant analysis using near infrared reflectance spectroscopy:the potential and the limitations. Australian Journal of Experimental Agriculture,1998,38(7):697-706.
    14. Birth G S, Norris K H. An instrument using light transmittance for nondestructive measurement of fruit maturity. Food Technology,1958,12:592.
    15. Black C K, Panozzo J F. Whole grain quality evaluation in wheat based on near infrared spectroscopy. An Australian and Chinese Collaboration on Wheat Quality. Conference Proceedings, Chinese Academy of Agricultural Sciences/Bread Research Institute Australia,2001.
    16. Blakeney A B, Batten G D, Welsh L A. Leaf nitrogen determination using a portable near-infrared spectrometer. In:Davies A M C, Williams P C (Eds). Near-infrared spectroscopy:the future wave. The proceedings of the 7th international conference on NIR spectroscopy. Chichester, United Kingdom:NIR Publications,1996:149-152.
    17. Bolster K L, Martin M E, Aber J D. Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectance:a comparison of statistical methods. Canadian Journal of Forest Research,1996,26(4):590-600.
    18. Bramble T, Dowell F E, Herman T J. Single-kernel near-infrared protein prediction and the role of kernel weight in hard red winter wheat. Applied Engineering in Agriculture,2006,22(6):945-949.
    19. Buchmann N B, Josefsson H, Cowe I A. Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near infrared transmission (NIT) network. Cereal Chemistry,2001,78(5):572-577.
    20. Card D H, Peterson D L, Matson P A, Aber J D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment,1988,26(2):123-147.
    21. Ciurczak E W. Use of near infrared spectroscopy in cereal products. Food Testing and Analysis, 1995,5:35-39.
    22. Cozzolino D, Delucchi I, Kholi M, Vazquez D. Use of near infrared reflectance spectroscopy to evaluate quality characteristics in whole-wheat grain. Agricultura Tecnica (Chile),2006,66(4): 370-375.
    23. Curran P J, Dungan J L, Macler B A, Plummer S E, Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment 1992,39(2):153-166.
    24. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76(3):349-359.
    25. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989,30(3): 271-278.
    26. Dawson T P, Curran P J, North P R J, Plummer S E. The propagation of foliar biochemical absorption features in forest canopy reflectance:a theoretical analysis. Remote Sensing of Environment,1999,67(2):147-159.
    27. Delwiche S R, Dowell F E. Single kernel wheat NIR analysis. Paper presented at the 2nd International Wheat Quality Conference, Manhattan, USA,2001.
    28. Delwiche S R, Hruschka W R. Protein content of bulk wheat from near-infrared reflectance of individual kernels. Cereal Chemistry,2000,77(1):86-88.
    29. Delwiche S R, Reeves III J B. The effect of spectral pre-treatments on the partial least squares modelling of agricultural products. Journal of Near Infrared Spectroscopy,2004,12(3):177-182.
    30. Delwiche S R. Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. Journal of Cereal Science,1998,27(3):241-254.
    31. Delwiche S R. Single wheat kernel analysis by near-infrared transmittance:protein content. Cereal Chemistry,1995,72(1):11-16.
    32. Dowell F E, Baenziger P S, Maghirang E B. Automated single kernel sorting for enhancing grain quality in breeding lines.2007 ASABE annual international meeting, Minnesota, USA. Paper Number 073059.
    33. Dowell F E, Chung O K, Pierce R O, Maghirang E B. Rapid methods for predicting grain, flour, and end-use quality. Meeting Abstract. Presented at the ICC Jubilee Conference, Vienna, Austria, 2005.
    34. Dowell F E, Maghirang E B, Graybosch R A, Baenziger P S, Baltensperger D D, Hansen L E. An automated near-infrared system for selecting individual kernels based on specific quality characteristics. Cereal Chemistry,2006,83(5):537-543.
    35. Dowell F E, Maghirang E B, Xie F, Chung O K, Pierce R O. Predicting grain, flour, and bread quality using NIR spectroscopy. International Cereal and Bread Congress Proceedings. Harrogate England,2004.
    36. Dowell F E, Maghirang E B, Xie F, Lookhart G L, Pierce R O, Seabourn B W, Bean S R, Wilson J D, Chung O K. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chemistry,2006,83(5):529-536.
    37. Dowell F E, Maghirang E B. Accuracy and feasibility of measuring characteristics of single kernels
    using near-infrared spectroscopy. Paper for presentation at the ICC Conference 2002 "Novel Raw Materials, Technologies, and Products-New Challenge for Quality Control", Budapest, Hungary, 2002.
    38. Dowell F E, Maghirang E B. An automated NIR single-kernel trait selection "system. American Association of Cereal Chemists Meetings,2005.
    39. Dowell F E, Steele J L, Wang D, Baker J E, Throne J E, Delwiche S R. Automated single wheat kernel quality measurement using near-infrared reflectance.1997 ASAE annual international meeting, Minnesota, USA. Paper Number 973022.
    40. Dury S J, Jia X, Turner B J, Dibley G. From leaf to canopy:determination of nitrogen concentration of eucalypt tree foliage using HyMap image data. In:Proceedings of 10th Australian Remote Sensing and Photogrammetry Conference, Adelaide, Australia,2000:875-891.
    41. Dury S J, Turner B J. Nutrient estimation of eucalypt foliage derived from hyperspectral data. In: Proceedings of 2001 IEEE International Geoscience and Remote Sensing Symposium, Sydney, Australia,2001:774-776.
    42. Elvidge C D. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing,1990,11(10):1775-1795.
    43. Engel R, Long D, Carlson G. On-the-go grain protein sensing is near. Better Crops with Plant Food, 1997,81(4):20-23.
    44. Foley W J, Mcllwee A, Lawler I, Aragones L, Woolnough A P, Berding N. Ecological applications of near infrared reflectance spectroscopy-a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia,1998, 116(3):293-305.
    45. Fourty T, Baret F. On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing,1998,19(4):1283-1297.
    46. Garcia-Ciudad A, Ruano A, Becerro F, Zabalgogeazcoa I, Vazquez de Aldana B R, Garcia-Criado B. Assessment of the potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Animal Feed Science and Technology,1999,77:91-98.
    47. Gausman H W. Leaf reflectance of near-infrared. Photogrammetric Engineering and Remote Sensing,1974,40(2):183-191.
    48. Gausman H W. Reflectance of leaf components. Remote Sensing of Environment,1977,6(1):1-9.
    49. Gillon D, Dauriac F, Deshayes M, Valette J C, Moro C. Estimation of foliage moisture content using near infrared reflectance spectroscopy. Agricultural and Forest Meteorology,2004,124: 51-62.
    50. Gillon D, Houssard C, Joffre R. Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia,1999,118(2): 173-182.
    51. Gislum R, Micklander E, Nielsen J P. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research,2004,88:269-277.
    52. Grossman Y L, SAnderson E W, Ustin S L. Relationships between leaf chemistry and reflectance for plantspecies from Jasper Ridge Biological Reserve, California. IEEE International Geoscience and Remote Sensing Symposium,1994,4:2357-2359.
    53. Grossman Y L, Ustin S L, Jacquemoud S, Sanderson E W, Schmuck G, Verdebout J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment,1996,56(3):182-193.
    54. Hart J R, Norris K H, Golumbic C. Determination of the moisture content of seeds by near-infrared spectrophotometry of their methanol extracts. Cereal Chemistry,1962,39(2):94-99.
    55. Hlavka C A, Peterson D L, Johnson L F, Ganapol B. Analysis of forest foliage spectra using a multivariate mixture model. Journal of Near Infrared Spectroscopy,1997,5(3):167-173.
    56. Huang H, Yu H, Xu H, Ying Y. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages:a review. Journal of Food Engineering,2008,8(3):303-313.
    57. Jacquemoud S, Baret F. PROSPECT:a model of leaf optical properties spectra. Remote Sensing of Environment,1990,34(2):75-91.
    58. Jacquemoud S, Verdebout J, Schmuck G, Andreoli G, Hosgood B. Investigation of leaf biochemistry by statistics. Remote sensing of Environment,1995,54(3):180-188.
    59. Jiang J H, Berry R J, Siesler H W, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry,2002,74(14):3555-3565.
    60. Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglas-fir foliage. International Journal of Remote Sensing,1996,17(3):489-500.
    61. Johnson L F. Nitrogen influence on fresh-leaf NIR spectra. Remote Sensing of Environment,2001, 78(3):314-320.
    62. Kays S E, Barton Ⅱ F E, Windham W R. Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. Journal of Near Infrared Spectroscopy,2000,8(1): 35-43.
    63. Kokaly R F, Clark R N. Spectroscopic Determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67(3):267-287.
    64. Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75(2):153-161.
    65. Lacaze B, Joffre R. Extracting biochemical information from visible and near infrared reflectance spectroscopy of fresh and dried leaves. Journal of plant physiology,1994,144(3):277-281.
    66. Law D P, Tkachuk R. Near infrared Diffuse Reflectance Spectra of Wheat and Wheat Components. Cereal Chemistry,1977,54(2):256-265.
    67. Long D S, Engel R E, Carpenter F M. On-combine sensing and mapping of wheat protein concentration. Online, Crop Management, Plant Management Network,2005. (http://www.plantmanagementnetwork.org/pub/cm/research/2005/protein/)
    68. Long D S, Engel R E, Siemens M C. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agronomy Journal,2008,100(2):247-252.
    69. Maertens K, Reyns P, Baerdemaeker J D. On-line measurement of grain quality with NIR technology. Transactions of the ASAE,2004,47(4):1135-1140.
    70. Mahesh S, Jayas DS, Paliwal J, White N D G. Protein and oil contents determination in wheat using near-infrared (NIR) hyperspectral imaging.2008 ASABE annual international meeting, Rhode Island, USA. Paper Number 084895.
    71. Martin M E, Aber J D. Analyses of forest foliage Ⅲ:Determining nitrogen, lignin, and cellulose in fresh leaves using near infrared reflectance data. Journal of Near Infrared Spectroscopy,1994,2(1): 25-32.
    72. Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote sensing spectral estimation of canopy chemistry across the Oregon Transect.Ecological Applications,1994,4(2): 280-298.
    73. McClure W F, Crowell B, Stanfield D L, Mohapatra S, Morimoto S, Batten G. Near infrared technology for precision environmental measurements:Part 1. Determination of nitrogen in green-and dry-grass tissue. Journal of Near Infrared Spectroscopy,2002,10(3):177-185.
    74. McClure W F. Near-infrared spectroscopy:The giant running strong. Analytical Chemistry,1994, 66(1):43A-53A.
    75. McClure W F. Review:204 years of near infrared technology:1800-2003. Journal of Near Infrared Spectroscopy,2003,11(6):487-518.
    76. McGrath V B, Blakeney A B, Batten G D. Fructan to nitrogen ratio as an indicator of nutrient stress
    in wheat crops. New Phytologist,1997,136(1):145-152.
    77. McLellan T M, Aber J D, Martin M E, Melillo J M, Nadelhoffer K J. Determination of nitrogen, lignin and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy. Canadian Journal of Forest Research,1991,21(11):1684-1689.
    78. McLellan T M, Martin M E, Aber J D, Melillo J M, Nadelhoffer K J, Deway B. Comparison of wet chemistry and near infrared reflectance measurements of carbon fraction chemistry and nitrogen concentration of forest foliage. Canadian Journal of Forest Research,1991,21(11):1689-1693.
    79. Meyer J H. Near infrared spectroscopy (NIRS) research in the South African sugar industry. International Sugar Journal (Cane Sugar Edition),1998,100(1194):279-286.
    80. Miralbes C. Prediction chemical composition and alveograph parameters on wheat by near-infrared transmittance spectroscopy. Journal of Agricultural and Food Chemistry,2003,51 (21):6335-6339.
    81. Morimoto S, McClure W F, Crowell B, Stanfield D L. Near infrared technology for precision environmental measurements:Part 2. Determination of carbon in green grass tissue. Journal of Near Infrared Spectroscopy,2003,11(4):257-267.
    82. Moron A, Cozzolino D. The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. The Journal of Agricultural Science,2002,139(4):413-423.
    83. Moron A, Garcia A, Sawchik J, Cozzolino D. Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture,2007,87(1):147-152.
    84. Moron A, Garcia A, Sawchik J, Cozzolino D. Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture,2007,87(1):147-152.
    85. Mroczyk W B, Michalski K M. Quantitative and qualitative analyses in near infrared analysis of basic compounds in sugar beet leaf. Computers & Chemistry,1995,19(3):299-301.
    86. Murray L, Williams P C. Chemical principles of near-infrared technology. In:Williams P C, Norris K (Eds). Near-infrared Technology. St. Paul, MN:American Association of Cereal Chemists,1987.
    87. Newman S D, Soulia M, Aber J D, Dewey B, Ricca A. Analyses of forest foliage Ⅰ:Laboratory procedures for proximate carbon fractionation and nitrogen determination. Journal of Near Infrared Spectroscopy,1994,2(1):5-14.
    88. Nielsen J P, Pedersen D K, Munck L. Development of nondestructive screening methods for single kernel characterization of wheat. Cereal Chemistry,2003,80(3):274-280.
    89. Norris K H, Barnes R F, Moore J E, Shenk J S. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science,1976,43(4):889-897.
    90. Norris K H, Rowan J D. Automatic detection of blood in eggs. Agricultural Engineering,1962, 43(3):154-159.
    91. Ono K, Hiraide M, Amari M. Determination of lignin, holocellulose, and organic solvent extractives in fresh leaf, litterfall, and organic material on forest floor using near-infrared reflectance spectroscopy. Journal of Forest Research,2003,8(3):191-198.
    92. Osborne B G, Douglas S, Fearn T, Willis K H. The development of universal calibrations for measurement of protein and moisture in UK home-grown wheat by near-infrared reflectance analysis. Journal of the Science of Food and Agriculture,1982,33(8):736-740.
    93. Osborne B G, Fearn T. Near infrared spectroscopy in food analysis. New York:John Wiley and Sons, inc.,1986:131-136.
    94. Osborne B G. Review:Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes. Journal of Near Infrared Spectroscopy,2006, 14(2):93-101.
    95. Pamplona R R, Tayag C L, Zulueta N V, Prudente J A, Cruz R T. Rice leaf tissue nitrogen analysis using near infrared reflectance. Philippine Journal of Crop Science,1996,21(sup 1):28.
    96. Park R S, Agnew R E, Gordon F J, Steen R W J. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Animal Feed Science and Technology,1998,72:155-167.
    97. Pasikatan M C, Dowell F E. High-speed NIR segregation of high-and low-protein single wheat seeds. Cereal Chemistry,2004,81(1):145-150.
    98. Paul C, Schoberlein W. Using near infra-red reflectance spectroscopy (NIRS) to monitor the N supply situation in grass seed multiplication stands. Wirtschaftseigene Futter,1991,37:201-217.
    99. Peterson D L, Aber J D, Matson P A, Card D H, Swanberg N, Wessman C, Spanner M. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment,1988, 24(1):85-108.
    100. Petisco C, Garcia-Criado B, Vazquez de Aldana B R, Zabalgogeazcoa I, Mediavilla S, Garcia-Ciudad A. Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species. Analytical and bioanalytical chemistry, 2005,382(2):458-465.
    101.Riley M R, Canaves L C. FT-NIR spectroscopic analysis of nitrogen in cotton leaves. Applied spectroscopy,2002,56(11):1484-1489.
    102. Rodriguez I R, Miller G L. Using near infrared reflectance spectroscopy to schedule nitrogen applications on dwarf-type Bermudagrasses. Agronomy Journal,2000,92(3):423-427.
    103. Ruano-Ramos A, Garcia-Ciadad A, Garcia-Criado B. Determination of nitrogen and ash contents in total herbage and botanical components of grassland systems with near infra-red spectroscopy. Journal of the Science of Food and Agriculture,1999,79(1):137-143.
    104. Rubenthaler G L, Pomeranz Y. Near-infrared reflectance spectra of hard red winter wheats varying widely in protein content and breadmaking potential. Cereal Chemistry,1987,64(6):407-411.
    105. Saranga Y, Landa A, Shekel Y, Bosak A, Kafkafi U. Near-infrared analysis of cotton leaves as a guide for nitrogen fertilization. Agronomy Journal,1998,90(1):16-21.
    106. Shi R, Zhuang D, Niu Z. Physical investigation on biochemical prediction using continuum removal. In:Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium,2004: 1463-1466.
    107. Sissons M, Osborne B, Sissons S. Application of near infrared reflectance spectroscopy to a durum wheat breeding programme. Journal of Near Infrared Spectroscopy,2006,14(1):17-25.
    108. Sivakumar M. Determination of main constituents in wheat using near infrared hyperspectral imaging. Winnipeg, Canada:University of Manitoba,2007.
    109. Slaton M R, Hunt E R, Smith W K. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany,2001,88(2):278-284.
    110. Stark E, Luchter K, Margoshes M. Near-infrared analysis (NIRA):A technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews,1986,22(4):335-339.
    111. Stone M L, Solie J B Raun W R, Whitney R W, Taylor S L, Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE, 1996,39(5):1623-1631.
    112. Vavfova P, Stenberg B, Karsisto M, Kitunen V, Tapanila T, Laiho R. Near infrared reflectance spectroscopy for characterization of plant litter quality:towards a simpler way of predicting carbon turnover in Peatlands? In:Vymazal J, Kropfelova L (Eds). Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Netherlands:Springer,2008:65-87.
    113. Vazquez de Aldana B R, Garcia-Criado B, Garcia-Ciudad A, Perez Corona M E. Estimation of mineral content in natural grasslands by near infrared reflectance spectroscopy. Communications in Soil Science and Plant Analysis,1995,26:1383-1396.
    114. Wessman C A, Aber J D, Peterson D L, Melillo J M. Foliar analysis using near infrared reflectance spectroscopy. Canada Journal of Forest Research.1988,18(1):6-11.
    115. Wetzel D L. Near-infrared reflectance analysis, sleeper among spectroscopic techniques. Analytical Chemistry,1983,55(12):1165A-1176A.
    116. White J D, Trotter C M, Brown L J, Scott N. Nitrogen concentration in New Zealand Vegetation foliage derived from laboratory and field spectrometry. International Journal of Remote Sensing, 2000,21(12):2525-2531.
    117. Williams P C, Norris K H, Gehrke C W, Bernstein K. Comparison of near-infrared methods for measuring protein and moisture in wheat. Cereal Foods World,1983,28(2):149-152.
    118. Williams P C, Norris K H, Sobering D C. Determination of protein and moisture in wheat and barley by NIR transmission. Journal of Agricultural and Food Chemistry,1985,33(2):239-244.
    119. Williams P C, Sobering D C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy,1993,1(1):25-32.
    120. Williams P C. Screening wheat for protein and hardness by near infrared reflectance spectroscopy. Cereal Chemistry,1979,56(3):169-172.
    121. Wrigley C W, Beitz J A. Proteins and amino acids. In:Pomeranz Y (Eds). Wheat:chemistry and technology. St. Paul, MN:American Association of Cereal Chemists,1988:159-285.
    122. Yoder B J, Pettigrew-Crosby R E. Prediction nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53(3):199-211.
    123. Zhang J, Wang K. New vegetation index for estimating nitrogen concentration using fresh leaf spectral reflectance. Transactions of the CSAE,2008,24(3):158-161.
    124. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005,97(1):89-98.
    125. Zhao D, Reddy K R, Kakani V G, Reddy V R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005,22(4):391-403.
    126. Zhou Q F, Shen Z Q, Wang R C. Fourier transform infrared spectral difference of leaf tips in rice related to nitrogen fertilizer rates. Acta Botanica Sinica,2002,44(5):547-550.
    127.GB/T18868-2002饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定-近红外光谱法.
    128.陈锋,何中虎,崔党群,赵武善,张艳,王德森.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1-4.
    129.陈新平,李志宏,王兴仁,张福锁.土壤、植株快速测试推荐施肥技术体系的建立与应用.土 壤肥料,1999,(2):6-10.
    130.董晶晶,牛铮.高光谱反演叶片叶绿素及全氮含量.遥感信息,2008,(5):25-27.
    131.冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学,2008,41(6):1630-1639.
    132.高文淑,张录达,王万军.应用付里叶变换近红外漫反射光谱法测定几种谷物籽粒中蛋白质的含量.北京农业大学学报,1990,16(增刊):72-79.
    133.胡永光,李萍萍,母建华,毛罕平,吴才聪,陈斌.基于可见-近红外光谱技术预测茶鲜叶全氮含量.光谱学与光谱分析,2008,28(12):2821-2825.
    134.吉川年彦,周宝库.应用近红外分光法测定水稻叶片的氮、镁、钾.土壤学进展,1992,20(5):53-54.
    135.吉海彦,闻 明,郝斌.神经网络模型在LED便携式近红外整粒小麦成分测量仪上的建立.光谱学与光谱分析,2006,26(1):57-59.
    136.景茂,严衍禄,刘广田.付里叶变换近红外漫反射光谱法测定小麦单籽粒中蛋白质含量.光谱学与光谱分析,1991,11(3):20-22.
    137.李大群,王文真,张玉良.近红外漫反射光谱法测定大豆和小麦中的蛋白质含量.分析仪器,1989,(4):45-50.
    138.李大群.小麦和大豆蛋白质含量的近红外漫反射光谱分析实验研究.光学机械,1989,(2):50-53.
    139.李民赞.光谱分析技术及其应用.北京:科学出版社,2006:176-228.
    140.李庆春,王文真,张玉良,贺微仙,杨金华,林澄菲,李宗智.近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用.作物学报,1992,18(3):235-240.
    141刘凤华,刘志华.近红外光谱分析技术在进口小麦中的应用.现代商检科技,1995,5(1):53-54.
    142.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    143.彭玉魁,李菊英,祁振英.近红外光谱分析技术在小麦营养成份鉴定上的应用.麦类作物,1997,17(2):33-35.
    144.彭玉魁,李菊英.NIRS法同时测定小麦种子水分、粗蛋白、赖氨酸和粗淀粉含量研究.西北农业学报,1996,5(3):31-34.
    145.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    146.沈艳,牛铮,缪启龙,徐永明.基于归一化高光谱位置变量的干叶片生化组分分析.南京气象学院学报,2006,29(6):833-838.
    147.沈艳,牛铮,王汶,徐永明.基于导数光谱位置变量的干叶片生化组分反演.遥感信息,
    2005,(4):7-10.
    148.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    149.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究-以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    150.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,31(3):355-360.
    151.田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术.生态学杂志,2007,26(9):1454-1463.
    152.王渊,黄敬峰,王福民,刘占宇.油菜叶片和冠层水平氮素含量的高光谱反射率估算模型.光谱学与光谱分析,2008,28(2):273-277.
    153.王多加,周向阳,金同铭,胡祥娜,钟娇娥,吴启堂.近红外光谱检测技术在农业和食品分析上的应用.光谱学与光谱分析,2004,24(4):447-450.
    154.王人潮,黄敬峰.水稻遥感估产.北京:中国农业出版社,2002:101.
    155.王卫东,谷运红,秦广雍,霍裕平.近红外漫反射光谱法测定整粒小麦单株蛋白质含量.光谱学与光谱分析,2007,27(4):697-701.
    156.邢东兴,常庆瑞.基于光谱分析的果树叶片全氮、全磷、全钾含量估测研究-以红富士苹果树为例.西北农林科技大学学报(自然科学版),2009,37(2):141-154.
    157.徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,20(2):134-142.
    158.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1): 73-80.
    159.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435.
    160.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005:1-115.
    161.易秋香,黄敬峰,王秀珍,钱翌.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9):138-143.
    162.张广才,燕香梅,韩晓日.应用近红外光谱和主成分回归法快速进行植物营养诊断研究.陆婉珍,袁洪福,褚小立,王艳斌主编,当代中国近红外光谱技术(全国第一届近红外光谱学术会议论文集),2006:349-355.
    163.张广军,Panigrahi S.近红外透射式谷物蛋白质含量在线监测系统.光电工程,2001,28(2):19-22.
    164.张金恒.基于连续统去除法的水稻氮素营养光谱诊断.植物生态学报,2006,30(1):78-82.
    165.张录达,沈晓南,赵龙莲,李军会.近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量.分析化学,2000,28(6):723-726.
    166.张旭宏.我国小麦产业国际竞争力分析及建议.中国经贸导刊,2005,(1):35-36.
    167.郑咏梅,张军,陈星旦,申铉国,张铁强.短波近红外光谱的整粒小麦蛋白质PLS方法的定量分析.光谱学与光谱分析,2004,24(9):1047-1049.
    168.周冬琴,朱艳,杨杰,田永超,姚霞,曹卫星.基于冠层高光谱参数的水稻叶片碳氮比监测.农业工程学报,2009,25(3):135-141.
    169.朱志华,王文真,刘三才,李为喜,张晓芳,刘方,李燕.近红外漫反射光谱分析技术在作物种质资源品质性状鉴定中的应用.现代科学仪器,2006,(1):63-66.
    1. Balabin R M, Safieva R Z, Lomakina E I. Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra. Chemometrics and Intelligent Laboratory Systems,2008,93(1):58-62.
    2. Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy,1989,43(5):772-777.
    3. Bochereau L, Bourgine P, Palagos B. A method for prediction by combing data analysis and neural network:application to prediction of apple quality using near infrared spectra. Journal of Agricultural Engineering Research,1992,51:207-216.
    4. Brereton R G. Chemometrics:data analysis for the laboratory and chemical plant. Chichester, United Kingdom:John Wiley and Sons Ltd,2002.
    5. Buchmann N B, Josefsson H, Cowe I A. Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near infrared transmission (NIT) network. Cereal Chemistry,2001,78(5):572-577.
    6. Chen J Y, Iyo C, Terada F, Kawano S. Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk. Journal of Near Infrared Spectroscopy.2002,10(4):301-307.
    7. Chen Y R, Delwiche S R, Hruschka W R. Classification of hard red wheat by feedforward backpropagation neural networks. Cereal Chemistry,1995,72(3):317-319.
    8. Delwiche S R, Chen Y R, Hruschka W R. Differentiation of hard red wheat by near-infrared analysis of bulk samples. Cereal Chemistry,1995,72(3):243-247.
    9. Gautam R, Panigrahi S, Franzen D. Neural network optimization of remotely sensed maize leaf nitrogen with a genetic algorithm and linear programming using five performance parameters. Biosystems Engineering,2006,95(3):359-370.
    10. Geladi P, MacDougall D, Martens H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Applied Spectroscopy,1985,39(3):491-500.
    11. Gorry P A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method, Analytical Chemistry,1990,62(6):570-573.
    12. Gributs C E W, Burns D H. Parsimonious calibration models for near-infrared spectroscopy using wavelets and scaling functions. Chemometrics and Intelligent Laboratory Systems,2006,83(1): 44-53.
    13. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86(4):542-553.
    14. Isaksson T, Naes T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Applied Spectroscopy,1988,42(7):1273-1284.
    15. Kardanpour Z, Hemmateenejad B, Khayamian T. Wavelet neural network-based QSPR for prediction of critical micelle concentration of Gemini surfactants, Analytica Chimica Acta,2005, 531(2):285-291.
    16. Martens H, Jensen S A, Geladi P. Multivariate linearity transformation for near infrared reflectance spectra of meat. In:Christie O H J (Eds). Application Spectroscopy, Proceedings of the Nordic Symposium, Applied Statistics. Stavanger, Norway:Stockholm Forlag Publication,1983:235-267.
    17. Mutanga O, Skidmore A K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment,2004,90(1): 104-115.
    18. Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy,2006,24(4): 349-356.
    19. Noh H, Zhang Q, Shin B, Han S, Feng L. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosystems Engineering,2006,94(4):477-485.
    20. Norris K H, Williams P C. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. influence of particle size. Cereal Chemistry, 1984,61(2):158-165.
    21. Perez-Marin D, Garrido-Varo A, Guerrero J E. Non-linear regression methods in NIRS quantitative analysis. Talanta,2007,72(1):28-42.
    22. Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry,1964,36(8):1627-1639.
    23. Subasi A, Alkan A, Koklukaya E, Kiymik M K. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks,2005,18(7):985-997.
    24. Tabaraki R, Khayamian T, Ensafi A A. Solubility prediction of 21 azo dyes in supercritical carbon dioxide using wavelet neural network, Dyes and Pigments,2007,73 (2):230-238.
    25. Tabaraki R, Khayamian T, Ensafi A A. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Journal of Molecular Graphics and Modelling,2006,25(1):46-54.
    26. Thermo Electron Corporation. Nicolet 5700 Spectrometer User Guide.2005.
    27. Wold S. Personal memories of the early PLS development. Chemometrics and Intelligent Laboratory Systems,2001,58(2):83-84.
    28. Yi Q X, Huang J F, Wang F M, Wang X Z, Liu Z Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environment Science & Technology.2007, 4.1(19):6770-6775.
    29. Zhang Q, Benveniste A. Wavelet network. IEEE Transactions on Neural Networks,1992,3(6): 889-898.
    30.褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,16(4):528-542.
    31.董晶晶,牛铮.高光谱反演叶片叶绿素及全氮含量.遥感信息,2008,(5):25-27.
    32.高荣强,范世福,严衍禄,赵丽丽.近红外光谱的数据预处理研究.光谱学与光谱分析,2004,24(12):1563-1565.
    33.吉海彦,王鹏新,严泰来.冬小麦活体叶片叶绿素和水分含量与反射光谱的模型建立.光谱学与光谱分析,2007,27(3):514-516.
    34.吉海彦,严衍禄.主成分-人工神经网络在近红外光谱定量分析中的应用.分析测试学报,1999,18(3): 12-15.
    35.刘建学,吴守一,方如明.基于近红外光谱的神经网络预测大米直链淀粉含量.农业机械学报,2001,32(2):55-57.
    36.陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术.北京:中国石化出版社,2000.
    37.王纪华,黄文江,劳彩莲,张录达,罗长兵,王韬,刘良云,宋晓宇,马智宏.运用PLS算法由小麦冠层反射光谱反演氮素垂直分布.光谱学与光谱分析,2007,27(7):1319-1322.
    38.徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,20(2):134-142.
    39.许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    40.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    41.张振清.植物材料中可溶性糖的测定.植物生理学实验手册.上海:上海科学技术出版社,1982:134-138.
    42.祝诗平,王一鸣,张小超.小波消噪及其在小麦蛋白质含量近红外光谱分析中的应用.西南农业大学学报(自然科学版),2003,25(6):522-525.
    1. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment,1998,64(3):234-253.
    2. Azzouz T, Puigdomenech A, Aragay M, Tauler R. Comparison between different data pre-treatment methods in the analysis of forage samples using near-infrared diffuse reflectance spectroscopy and partial least-squares multivariate calibration method. Analytica Chimica Acta,2003,484(1): 121-134.
    3. Blakeney A B, Batten G D, Welsh L A. Leaf nitrogen determination usirig a portable near-infrared spectrometer. In:Davies A M C, Williams P Eds. Near-Infrared Spectroscopy:the future waves. The Proceedings of the 7th International Conference on NIR Spectroscopy. Chichester, United Kingdom:
    NIR Publications,1996:149-152.
    4. Blanco M, Coello J, Montoliu I, Romero M A. Orthogonal signal correction in near infrared calibration. Analytica Chimica Acta,2001,434(1):125-132.
    5. Christy C D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture,2008,61(1):10-19.
    6. Cozzolino D, Fassio A, Fernandez E, Restaino E, Manna A L. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Animal Feed Science and Technology.2006,129:329-336.
    7. Cozzolino D, Moron A. Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil and Tillage Research,2006,85:78-85.
    8. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76(3):349-359.
    9. Dou Y, Mi H, Zhao L Z, Ren Y Q, Ren Y L. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,2006,351(2):174-180.
    10. Dury S J, Jia X, Turner B J, Dibley G. From leaf to canopy:determination of nitrogen concentration of eucalypt tree foliage using HyMap image data. In:Proceedings of 10th Australian Remote Sensing and Photogrammetry Conference, Adelaide, Australia,2000:875-891.
    11. Fu X G, Yan G Z, Chen B, Li H B. Application of wavelet transform to improve prediction precision of near infrared spectra. Journal of Food Engineering,2005,69(4):461-466.
    12. Garcia-Ciudad A, Ruano A, Becerro F, Zabalgogeazcoa I, Vazquez de Aldana B R, Garcia-Criado B. Assessment of the potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Animal Feed Science and Technology,1999,77:91-98.
    13. Gislum R, Micklander E, Nielsen J P. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research,2004,88:269-277.
    14. Halgerson J L, Sheaffer C C, Martin N P, Peterson P R, Weston S J. Near-infrared reflectance spectroscopy prediction of leaf and mineral concentrations in alfalfa. Agronomy Journal,2004, 96(2):344-351.
    15. Hans B P. Analysis of water in food by near infrared spectroscopy. Food Chemistry,2003,82(1): 107-115.
    16. Janik L J, Cozzolino D, Dambergs R, Cynkar W, Gishen M. The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks. Analytica Chimica Acta,2007,594(1):107-118.
    17. Jiang J H, Berry R J, Siesler H W, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry,2002,74(14):3555-3565.
    18. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67(3):267-287.
    19. McClure W F, Crowell B, Stanfield D L, Mohapatra S, Morimoto S, Batten G. Near infrared technology for precision environmental measurements:part 1. Determination of nitrogen in green-and dry-grass tissue. Journal of Near Infrared Spectroscopy,2002,10(3):177-185.
    20. Moron A, Garcia A, Sawchik J, Cozzolino D. Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture,2007,87(1):147-152.
    21. Moros J, Llorca I, Cervera M L, Pastor A, Garrigues S, Guardia M. Chemometric determination of arsenic and lead in untreated powdered red paprika by diffuse reflectance near-infrared spectroscopy. Analytica Chimica Acta,2008,613(2):196-206.
    22. Mroczyk W B, Michalski K M. Quantitative and qualitative analyses in near infrared analysis of basic compounds in sugar beet leaf. Computers & Chemistry,1995,19(3):299-301.
    23. Riley M R, Canaves L C. FT-NIR spectroscopic analysis of nitrogen in cotton leaves. Applied spectroscopy,2002,56(11):1484-1489.
    24. Smith B M, Gemperline P J. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Analytica Chimica Acta,2000,423(2):167-177.
    25. Subasi A, Alkan A, Koklukaya E, Kiymik M K. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks,2005,18(7):985-997.
    26. Tabaraki R, Khayamian T, Ensafi A A. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Journal of Molecular Graphics and Modelling,2006,25(1):46-54.
    27. Thermo Electron Corporation. TQ Analyst Users Guide.2004.
    28. Williams P, Norris K. Near-infrared technology in the agricultural and food industries (2nd Edition). St. Paul, MN:American Association of Cereal Chemists Inc.,2001.
    29. Yoder B J, Pettigrew-Crosby R E. Prediction nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment,
    1995,53(3):199-211.
    30. Zhang Q, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks,1992,3(6): 889-898.
    31. Zhang Q. Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Networks,1997,8(2):227-236.
    32. Zhong H B, Zhang J, Gao M, Zheng J B, Li G B, Chen L R. The discrete wavelet neural network and its application in oscillographic chronopotentiometric determination. Chemometrics and Intelligent Laboratory Systems,2001,59:67-74.
    33.方利民,林敏.基于独立分量和神经网络的近红外多组分分析方法.分析化学,2008,36(6):815-818.
    34.李民赞.光谱分析技术及其应用.北京:科学出版社,2006:176-228.
    35.陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术.北京:中国石化出版社,2000.
    36.吕 进,刘辉军,林敏,陈才华,庄松林.近红外光谱分析技术在茶叶成分检测中的应用.陆婉珍,袁洪福,褚小立,王艳斌主编,当代中国近红外光谱技术-全国第一届近红外光谱学术会议论文集,2006:435-440.
    37.田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006:106-131.
    38.闻 新,周 露,王丹力,熊晓英.MATLAB神经网络应用设计.北京:科学出版社,2001:225-232.
    39.翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社,2005:1-33.
    40.许禄,邵学广.化学计量学方法.北京:科学出版社,2004:279-298.
    41.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1): 73-80.
    42.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    1. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment,1998,64(3):234-253.
    2. Batten G D, Blakeney A B, McGrath V B, Ciavarella S. Non-structural carbohydrate:Analysis by near infrared reflectance spectroscopy and its importance as an indicator of plant growth. Plant and Soil,1993, (1):243-246.
    3. Batten G D. Plant analysis using near infrared reflectance spectroscopy:the potential and the limitations. Australian Journal of Experimental Agriculture,1998,38(7):697-706.
    4. Blakeney A B, Batten G D, Welsh L A. Leaf nitrogen determination using a portable near-infrared spectrometer. In:Davies A M C, Williams P C (Eds). Near-infrared spectroscopy:the future wave. The proceedings of the 7th international conference on NIR spectroscopy. Chichester, United Kingdom:NIR Publications,1996:149-152.
    5. Blanco M, Coello J, Montoliu I, Romero M A. Orthogonal signal correction in near infrared calibration. Analytica Chimica Acta,2001,434(1):125-132.
    6. Bolster K L, Martin M E, Aber J D. Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectance:a comparison of statistical methods. Canadian Journal of Forest Research,1996,26:590-600.
    7. Chodak M, Ludwig B, Khanna P, Beese F. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. Journal of Plant Nutrition and Soil Science,2002,165(1):27-33.
    8. Couteaux M M, Berg B, Rovira P. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biology and Biochemistry,2003,35(12):1587-1600.
    9. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry-Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76(3):349-359.
    10. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989,30(3): 271-278.
    11. Dou Y, Mi H, Zhao L Z, Ren Y Q, Ren Y L. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,2006,351(2):174-180.
    12. Elvidge C D. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing,1990,11(10):1775-1795.
    13. Garcia-Ciudad A, Ruano A, Becerro F, Zabalgogeazcoa I, Vazquez de Aldana B R, Garcia-Criado B. Assessment of the potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Animal Feed Science and Technology,1999,77:91-98.
    14. Gillon D, Houssard C, Joffre R. Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia,1999,118(2):173-182
    15. Gislum R, Micklander E, Nielsen J P. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research,2004,88:269-277.
    16. Grossman Y L, SAnderson E W, Ustin S L. Relationships between leaf chemistry and reflectance for plantspecies from Jasper Ridge Biological Reserve, California. IEEE International Geoscience and Remote Sensing Symposium,1994,4:2357-2359.
    17. Hans B P. Analysis of water in food by near infrared spectroscopy. Food Chemistry,2003,82(1): 107-115.
    18. Hyvarinen A, Oja E. Independent component analysis:algorithms and applications. Neural Networks,2000,13:411-430.
    19. Jacquemoud S, Baret F. PROSPECT:a model of leaf optical properties spectra. Remote Sensing of Environment,1990,34(2):75-91.
    20. Jiang J H, Berry R J, Siesler H W, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry,2002,74(14):3555-3565.
    21. Kokaly R F, Clark R N. Spectroscopic Determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67(3):267-287.
    22. Lawler I R, Aragones L, Berding N, Marsh H, Foley W. Near-infrared reflectance spectroscopy is a rapid, cost-effective predictor of seagrass nutrients. Journal of chemical ecology,2006,32(6): 1353-1365.
    23. McClure W F, Crowell B, Stanfield D L, Mohapatra S, Morimoto S, Batten G. Near infrared technology for precision environmental measurements:part 1. Determination of nitrogen in green- and dry-grass tissue. Journal of Near Infrared Spectroscopy,2002,10(3):177-185.
    24. McGrath V B, Blakeney A B, Batten G D. Fructan to nitrogen ratio as an indicator of nutrient stress in wheat crops. New Phytologist,1997,136(1):145-152.
    25. Moron A, Garcia A, Sawchik J, Cozzolino D. Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture,2006,87(1):147-152.
    26. Ono K, Hiraide M, Amari M. Determination of lignin, holocellulose, and organic solvent extractives in fresh leaf, litterfall, and organic material on forest floor using near-infrared reflectance spectroscopy. Journal of Forest Research,2003,8(3):191-198.
    27. Pasikatan M C, Steele J L, Spillman C K, Haque E. Review:near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials. Journal of Near Infrared Spectroscopy,2001,9(3):153-164.
    28. Richardson A D, Reeves III J B. Quantitative reflectance spectroscopy as an alternative to traditional wet lab analysis of foliar chemistry:near-infrared and mid-infrared calibrations compared. Canadian Journal of Forest Research,2005,35(5):1122-1130.
    29. Shi R, Zhuang D, Niu Z. Physical investigation on biochemical prediction using continuum removal. In:Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium,2004: 1463-1466.
    30. Smith B M, Gemperline P J. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Analytica Chimica Acta,2000,423(2):167-177.
    31. Subasi A, Alkan A, Koklukaya E, Kiymik M K. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks,2005,18(7):985-997.
    32. Tabaraki R, Khayamian T, Ensafi A A. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Journal of Molecular Graphics and Modelling,2006,25(1):46-54.
    33. Vavrova P, Stenberg B, Karsisto M, Kitunen V, Tapanila T, Laiho R. Near infrared reflectance spectroscopy for characterization of plant litter quality:towards a simpler way of predicting carbon turnover in Peatlands? In:Vymazal J, Kropfelova L. Eds. Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Netherlands:Springer,2008:65-87.
    34. Williams P, Norris K. Near-infrared technology in the agricultural and food industries (2nd Edition). St. Paul, MN:American Association of Cereal Chemists Inc.,2001.
    35. Yeh T F, Chang H M, Kadla J F. Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry,2004,52(6):1435-1439.
    36. Zhang Q. Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Networks,1997,8(2):227-236.
    37. Zhong H B, Zhang J, Gao M, Zheng J B, Li G B, Chen L R. The discrete wavelet neural network and its application in oscillographic chronopotentiometric determination. Chemometrics and Intelligent Laboratory Systems,2001,59:67-74.
    38.冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学,2008,41(6):1630-1639.
    39.蒋锦峰,赵明月,范黎,马 明,李栋.应用近红外检测技术快速测定烟草主要化学成分.陆婉珍,袁洪福,褚小立,王艳斌主编,当代中国近红外光谱技术-全国第一届近红外光谱学术会议论文集,2006:455-462.
    40.江苏农学会.江苏麦作科学.南京:江苏科学技术出版社,1994.
    41.吕进,刘辉军,林敏,陈才华,庄松林.近红外光谱分析技术在茶叶成分检测中的应用.陆婉珍,袁洪福,褚小立,王艳斌主编,当代中国近红外光谱技术-全国第一届近红外光谱学术会议论文集,2006:435-440.
    42.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    43.齐小明,张录达,杜晓林,宋昭娟,张一,徐淑燕.PLS-BP法近红外光谱定量分析研究.光谱学与光谱分析,2003,23(5):870-872.
    44.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    45.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究-以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    46.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,3 1(3):355-360.
    47.闻新,周露,王丹力,熊晓英.MATLAB神经网络应用设计.北京:科学出版社,2001.
    48.翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社,2005.
    49.许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    50.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003:7(1): 73-80.
    51.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435.
    52.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    53.周冬琴,朱艳,杨杰,田永超,姚霞,曹卫星.基于冠层高光谱参数的水稻叶片碳氮比监测.农业工程学报,2009,25(3):135-141.
    1. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment,1998,64(3):234-253.
    2. Batten G D, Ciavarella S, Blakeney A B. Analysis of plant constituents using NIRS: intercorrelation effects. In:Davies A M C, Garrido-Varo A (Eds). Proceedings of the 11th International Conference on Near Infrared Spectroscopy. Chichester, United Kingdom:NIR Publications,2004:389-392.
    3. Batten G D. An appreciation of the contribution of NIR to agriculture. Journal of Near Infrared Spectroscopy,1998,6(1):105-114.
    4. Cao J, Lin X. Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique. Engineering Applications of Artificial Intelligence,2008, 21(8):1255-1263.
    5. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76(3):349-359.
    6. Dou Y, Mi H, Zhao L, Ren Y, Ren Y. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,2006,351(2):174-180.
    7. Elvidge C D. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing,1990,11(10):1775-1795.
    8. Feng W, Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy,2008,28(3):394-404.
    9. Giangiacomo R. Study of water-sugar interactions at increasing sugar concentration by NIR spectroscopy. Food Chemistry,2006,96(3):371-379.
    10. Gislum R, Micklander E, Nielsen J P. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Research,2004,88:269-277.
    11. He Y, Li X, Deng X. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model. Journal of Food Engineering,2007,79(4):1238-1242.
    12. Inoue Y, Penuelas J. An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications. International Journal of Remote Sensing,2001, 22(18):3883-3888.
    13. Janik L J, Cozzolino D, Dambergs R, Cynkar W, Gishen M. The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks. Analytica ChimicaActa,2007,594(1):107-118.
    14. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67(3):267-287.
    15. Lawler I R, Aragones L, Berding N, Marsh H, Foley W. Near-infrared reflectance spectroscopy is a rapid, cost-effective predictor of seagrass nutrients. Journal of Chemical Ecology,2006,32(6): 1353-1365.
    16. Luo J W, Ying K, Bai J. Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing,2005,85(7):1429-1434.
    17. McClure W F, Crowell B, Stanfield D L, Mohapatra S, Morimoto S, Batten G. Near infrared technology for precision environmental measurements:part 1. Determination of nitrogen in green-and dry-grass tissue. Journal of Near Infrared Spectroscopy,2002,10(3):177-185.
    18. Moron A, Garcia A, Sawchik J, Cozzolino D. Preliminary study on the use of near-infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants. Journal of the Science of Food and Agriculture,2006,87(1):147-152.
    19. Norris K H, Williams P C. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. influence of particle size. Cereal Chemistry, 1984,61(2):158-165.
    20. Perez-Marin D, Garrido-Varo A, Guerrero J E. Non-linear regression methods in NIRS quantitative analysis. Talanta,2007,72(1):28-42.
    21. Scheromm P, Martin G, Bergoin A, Autran J C. Influence of nitrogen fertilizer on the potential bread-baking quality of two wheat cultivars differing in their responses to increasing nitrogen supplies. Cereal Chemistry,1992,69(6):664-670.
    22. Slaton M R, Hunt E R, Smith W K. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany,2001,88(2):278-284.
    23. Smith B M, Gemperline P J. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Analytica Chimica Acta,2000,423(2):167-177.
    24. Stroppiana D, Boschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119-129.
    25. Subasi A, Alkan A, Koklukaya E, Kiymik M K. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Networks,2005,18(7):985-997.
    26. Tabaraki R, Khayamian T, Ensafi A A. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Journal of Molecular Graphics and Modelling,2006,25(1):46-54.
    27. Thermo Electron Corporation. TQ Analyst Users Guide.2004.
    28. Wang W, Paliwal J. Generalisation Performance of Artificial Neural Networks for Near Infrared Spectral Analysis. Biosystems Engineering,2006,94(1):7-18.
    29. Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. Journal of Plant Nutrition,1998,21(2):217-233.
    30. Xu J, Ho D W C. A basis selection algorithm for wavelet neural networks. Neurocomputing,2002, 48:681-689.
    31. Yoder B J, Pettigrew-Crosby R E. Prediction nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53(3):199-211.
    32. Zhang Q, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks,1992,3(6): 889-898.
    33. Zhang Q. Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Networks,1997,8(2):227-236.
    34. Zhong H B, Zhang J, Gao M, Zheng J B, Li G B, Chen L R. The discrete wavelet neural network and its application in oscillographic chronopotentiometric determination. Chemometrics and
    Intelligent Laboratory Systems,2001,59:67-74.
    35.冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学,2008,41(6):1630-1639.
    36.黄文江,王纪华,刘良云,赵春江,王锦地,杜小鸿.冬小麦红边参数变化规律及其营养诊断.遥感技术与应用,2003,18(4):206-211.
    37.李友军,熊瑛,吕 强,陈明灿,骆炳山.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系.中国农业科学,2005,38(11):2219-2226.
    38.吕 进,刘辉军,林敏,陈才华,庄松林.近红外光谱分析技术在茶叶成分检测中的应用.陆婉珍,袁洪福,褚小立,王艳斌主编,当代中国近红外光谱技术-全国第一届近红外光谱学术会议论文集,2006:435-340.
    39.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    40.田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社,2006:106-131.
    41.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,31(3):355-360.
    42.王渊,黄敬峰,王福民,刘占宇.油菜叶片和冠层水平氮素含量的高光谱反射率估算模型.光谱学与光谱分析,2008,28(2):273-277.
    43.闻新,周露,王丹力,熊晓英.MATLAB神经网络应用设计.北京:科学出版社,2001:225-232.
    44.翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社,2005:1-33.
    45.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1): 73-80.
    46.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435.
    47.杨敏华,刘良云,刘团结,黄文江,赵春江.小麦冠层理化参量的高光谱遥感回归试验研究.测绘学报,2002,31(4):316-321.
    48.杨敏华,赵春江,赵永超,刘良云,王纪华.用航空成像光谱数据获取小麦冠层信息的研究.中国农业科学,2002,35(6):626-631.
    49.张金恒.基于连续统去除法的水稻氮素营养光谱诊断.植物生态学报,2006,30(1):78-82.
    50.张录达,沈晓南,赵龙莲,李军会.近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量.分析化学,2000,28(6):723-726.
    51.张明生,彭忠华,谢波,谈锋,张启堂,付玉凡,杨春贤,杨永华.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系.中国农业科学,2004,37(1):152-156.
    1. Buchmann N B, Josefsson H, Cowe I A. Performance of European artificial neural network (ANN) calibrations for moisture and protein in cereals using the Danish near-infrared transmission (NIT) network. Cereal Chemistry,2001,78(5):572-577.
    2. Delwiche S R, Dowell F E. Single kernel wheat NIR analysis. Paper presented at the 2nd International Wheat Quality Conference, Manhattan, USA,2001.
    3. Delwiche S R, Graybosch R A, Peterson C J. Predicting protein composition, biochemical properties, and dough-handling properties of hard red winter wheat flour by near-infrared reflectance. Cereal Chemistry,1998,75(4):412-416.
    4. Delwiche S R, Hruschka W R. Protein content of bulk wheat from near-infrared reflectance of individual kernels. Cereal Chemistry,2000,77(1):86-88.
    5. Delwiche S R, Reeves III J B. The effect of spectral pre-treatments on the partial least squares modelling of agricultural products. Journal of Near Infrared Spectroscopy,2004,12(3):177-182.
    6. Delwiche S R. Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. Journal of Cereal Science,1998,27(3):241-254.
    7. Dou Y, Mi H, Zhao L Z, Ren Y Q, Ren Y L. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis. Analytical Biochemistry,2006,351(2):174-180.
    8. Dowell F E, Maghirang E B, Xie F,,Lookhart G L, Pierce R O, Seabourn B W, Bean S R, Wilson J D, Chung O K. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chemistry,2006,83(5):529-536
    9. Herbert W, Seilmier W. The influence of nitrogen fertilization on quantities and proportions of different protein types in wheat flour. Journal of the science of food and agriculture,1998,76(1): 49-55.
    10. Huang H B, Yu H Y, Xu H R, Ying Y. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages:a review. Journal of Food Engineering,2008,8(3):303-313.
    11. Janik L J, Cozzolino D, Dambergs R, Cynkar W, Gishen M. The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks. Analytica Chimica Acta,2007,594(1):107-118.
    12. Kays S E, Barton II F E, Windham W R. Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. Journal of Near Infrared Spectroscopy,2000,8(1): 35-43.
    13. Lopez-Bellido L, Fuentes M, Castillo J E, Lopez-Garrido F J. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean condition. Field Crop Research,1998,57(3):265-276.
    14. Mahesh S, Jayas DS, Paliwal J, White N D G. Protein and oil contents determination in wheat using near-infrared (NIR) hyperspectral imaging.2008 ASABE annual international meeting, Rhode Island, USA. Paper Number 084895.
    15. Mikhaylenko G G, Czuchajowska Z, Baik B K, Kidwell K K. Environmental influences on flour composition, dough rheology, and baking quality of spring wheat. Cereal Chemistry,2000,77(4): 507-511.
    16. Nielsen J P, Pedersen D K, Munck L. Development of nondestructive screening methods for single kernel characterization of wheat. Cereal Chemistry,2003,80(3):274-280.
    17. Norris K H, Williams P C. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. influence of particle size. Cereal Chemistry, 1984,61(2):158-165.
    18. Sivakumar M. Determination of main constituents in wheat using near infrared hyperspectral imaging. Winnipeg, Canada:University of Manitoba,2007.
    19. Smith B M, Gemperline P J. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Analytica Chimica Acta,2000,423(2):167-177.
    20. Souza E J, Martin J M, Guttieri M J, O'Brien K M, Habernicht D K, Lanning S P, Mclean R, Carlson G R, Talbert L E. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Science,2004,44(2):425-432.
    21. Subasi A, Alkan A, Koklukaya E, Kiymik M K. Wavelet neural network classification of EEG
    signals by using AR model with MLE preprocessing. Neural Networks,2005,18(7):985-997.
    22. Tabaraki R, Khayamian T, Ensafi A A. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide. Journal of Molecular Graphics and Modelling,2006,25(1):46-54.
    23. Wang D, Dowell F E, Lacey R E. Single wheat kernel size effects on near infrared reflectance spectra and color classification. Cereal Chemistry,1999,76(1):34-37.
    24. Williams P C, Norris K H, Gehrke C W, Bernstein K. Comparison of near-infrared methods for measuring protein and moisture in wheat. Cereal Foods World,1983,28(2):149-152.
    25. Williams P C, Norris K H, Sobering D C. Determination of protein and moisture in wheat and barley by NIR transmission. Journal of Agricultural and Food Chemistry,1985,33(2):239-244.
    26. Williams P C, Norris K H. Effect of mutual interactions on the estimation of protein and moisture in wheat. Cereal Chemistry,1983,60(3):202-207.
    27. Williams P C, Sobering D C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy,1993,1(1):25-32.
    28. Williams P C, Thompson B N. Influence of whole meal granularity on analysis of HRS wheat for protein and moisture by near infrared reflectance spectroscopy (NRS). Cereal Chemistry,1978, 55(6):1014-1037.
    29. Williams P C. Application of near infrared reflectance spectroscopy to analysis of cereal grain and oilseed. Cereal Chemistry,1975,52(4):561-576.
    30. Williams P C. Screening wheat for protein and hardness by near infrared reflectance spectroscopy. Cereal Chemistry,1979,56(3):169-172.
    31. Wrigley C W, Beitz J A. Proteins and amino acids. In:Pomeranz Y (Eds). Wheat:chemistry and technology. St. Paul, MN:American Association of Cereal Chemists,1988:159-285.
    32. Zhong H B, Zhang J, Gao M, Zheng J B, Li G B, Chen L R. The discrete wavelet neural network and its application in oscillographic chronopotentiometric determination. Chemometrics and Intelligent Laboratory Systems,2001,59:67-74.
    33.陈锋,何中虎,崔党群,赵武善,张艳,王德森.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1-4.
    34.高文淑,张录达,王万军.应用付里叶变换近红外漫反射光谱法测定几种谷物籽粒中蛋白质的含量.北京农业大学学报,1990,16(增刊):72-79.
    35.何中虎,林作楫,王龙俊,肖志敏,万富世,庄巧生.中国小麦品质区划的研究.中国农业科学,2002,35(4):359-364.
    36.吉海彦,闻明,郝斌.神经网络模型在LED便携式近红外整粒小麦成分测量仪上的建立.光谱学与光谱分析,2006,26(1):57-59.
    37.荆奇,姜东,戴廷波,曹卫星.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响.应用生态学报,2003,14(10):1649-1653.
    38.李庆春,王文真,张玉良,贺微仙,杨金华,林澄菲,李宗智.近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用.作物学报,1992,18(3):235-240.
    39.刘波平,秦华俊,罗香,曹树稳,王俊德.偏最小二乘-反向传播-近红外光谱法同时测定饲料中4种氨基酸.分析化学,2007,35(4):525-528.
    40.王卫东,谷运红,秦广雍,霍裕平.近红外漫反射光谱法测定整粒小麦单株蛋白质含量.光谱学与光谱分析,2007,27(4):697-701.
    41.王文真.在近红外光谱定量分析中应注意的几个问题.现代科学仪器,1996,(1):24-25.
    42.闻新,周露,王丹力,熊晓英.MATLAB神经网络应用设计.北京:科学出版社,2001:225-232.
    43.翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社,2005:1-33.
    44.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    45.张洪程.我国小麦优质生产与加工转化之思路.江苏农业科学,2000,(5):2-6.
    46.赵丽丽,赵龙莲,李军会,张录达,严衍禄.傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响.光谱学与光谱分析,2004,24(1):41-44.
    47.郑咏梅,张军,陈星旦,申铉国,张铁强.短波近红外光谱的整粒小麦蛋白质PLS方法的定量分析.光谱学与光谱分析,2004,24(9):1047-1049.
    48.朱志华,王文真,刘三才,李为喜,张晓芳,刘方,李燕.近红外漫反射光谱分析技术在作物种质资源品质性状鉴定中的应用.现代科学仪器,2006,(1):63-66.
    1. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment,1998,64(3):234-253.
    2. Batten G D. An appreciation of the contribution of NIR to agriculture. Journal of Near Infrared Spectroscopy,1998,6(1):105-114.
    3. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989,30(3): 271-278.
    4. Delwiche S R. Single wheat kernel analysis by near-infrared transmittance:protein content. Cereal Chemistry,1995,72(1):11-16.
    5. Dowell F E, Maghirang E B. Accuracy and feasibility of measuring characteristics of single kernels using near-infrared spectroscopy. Paper for presentation at the ICC Conference 2002 "Novel Raw Materials, Technologies, and Products-New Challenge for Quality Control", Budapest, Hungary, 2002.
    6. Dury S J, Jia X, Turner B J, Dibley G. From leaf to canopy:determination of nitrogen concentration of eucalypt tree foliage using HyMap image data. In:Proceedings of 10th Australian Remote Sensing and Photogrammetry Conference, Adelaide, Australia,2000:875-891.
    7. McClure W F. Near-infrared spectroscopy:The giant running strong. Analytical Chemistry,1994, 66(1):43A-53A.
    8. Nielsen J P, Pedersen D K, Munck L. Development of nondestructive screening methods for single kernel characterization of wheat. Cereal Chemistry,2003,80(3):274-280.
    9. Osborne B G. Review:Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes. Journal of Near Infrared Spectroscopy,2006, 14(2):93-101.
    10. Phua P K H, Ming D. Parallel nonlinear optimization techniques for training neural networks. IEEE Transactions on Neural Networks,2003,14(6):1460-1467.
    11. Williams P, Norris K. Near-infrared technology in the agricultural and food industries (2nd Edition). St. Paul, MN:American Association of Cereal Chemists Inc.,2001.
    12. Wrigley C W, Beitz J A. Proteins and amino acids. In:Pomeranz Y (Eds). Wheat:chemistry and technology. St. Paul, MN:American Association of Cereal Chemists,1988:159-285.
    13. Yoder B J, Pettigrew-Crosby R E. Prediction nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53(3):199-211.
    14. Zhang Q, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks,1992,3(6): 889-898.
    15.陈锋,何中虎,崔党群,赵武善,张艳,王德森.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1-4.
    16.冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学,2008,41(6):1630-1639.
    17.黄文江,王纪华,刘良云,赵春江,王锦地,杜小鸿.冬小麦红边参数变化规律及其营养诊断.遥感技术与应用,2003,18(4):206-211.
    18.吉海彦,闻明,郝斌.神经网络模型在LED便携式近红外整粒小麦成分测量仪上的建立.光谱学与光谱分析,2006,26(1):57-59.
    19.江苏农学会.江苏麦作科学.南京:江苏科学技术出版社,1994.
    20.李民赞.光谱分析技术及其应用.北京:科学出版社,2006.
    21.刘后利.农作物品质育种.武汉:湖北科技出版社,2001.
    22.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    23.彭玉魁,李菊英,祁振英.近红外光谱分析技术在小麦营养成份鉴定上的应用.麦类作物,1997,17(2):33-35.
    24.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    25.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    26.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究-以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    27.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,31(3):355-360.
    28.田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术.生态学杂志,2007,26(9):1454-1463.
    29.王纪华,赵春江,黄文江.农业定量遥感基础与应用.北京:科学出版社,2008:171-174.
    30.许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    31.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1): 73-80.
    32.严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    33.杨敏华,刘良云,刘团结,黄文江,赵春江.小麦冠层理化参量的高光谱遥感回归试验研究.测绘学报,2002,31(4):316-321.
    34.张录达,沈晓南,赵龙莲,李军会.近红外光谱主成分-所有可能回归法定量分析烤烟、小麦样品中的组分含量.分析化学,2000,28(6):723-726.
    35.郑咏梅,张军,陈星旦,申铉国,张铁强.短波近红外光谱的整粒小麦蛋白质PLS方法的定量分析.光谱学与光谱分析,2004,24(9):1047-1049.
    36.周冬琴,朱艳,杨杰,田永超,姚霞,曹卫星.基于冠层高光谱参数的水稻叶片碳氮比监测.农业工程学报,2009,25(3):135-141.
    37.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700