原位液相催化加氢合成芳胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机化合物加氢反应是一类极为重要的反应,在化工生产中占有非常重要的地位。在诸多合成路线中,由于催化加氢具有“三废”污染少、对环境友好、产品质量高等优点而备受关注。现有的催化加氢技术分为氢气还原和氢转移催化加氢法。氢气还原法是利用外加氢气进行催化加氢,但由于氢气易燃易爆且不易储存、运输,成为限制推广氢气还原法这一绿色工艺应用的主要障碍。而氢转移技术是将氢供体(醇、肼、碳氢化合物、有机酸等)提供的活化氢转移到无机或有机化合物中。但该方法原子利用率低、生产成本高。
     原位液相催化加氢反应是本课题组于2004年提出的一类新的液相催化加氢反应体系,其原理是醇类水溶液重整制得的活化氢,不经过形成分子氢阶段,直接用于有机物的加氢反应,从而克服了液相催化加氢必须使用外加氢气的难点,并且该新反应体系中,氢原子能够100%利用,不但可以利用醇中的氢原子,而且还利用了水分子中的氢原子,从而极大提高氢供体中的原子利用率,符合当今化工生产绿色化的发展趋势(原子经济、环境友好等),具有工业化应用前景。
     本论文主要研究了芳香族硝基化合物原位液相催化加氢制备芳胺的反应;重点研究了原位液相催化加氢反应体系中催化剂的稳定性,并对催化剂的失活原因和再生方法进行了探讨;有关研究内容如下:
     1、制备了Ru-B/C、Ru-Fe-B/C、Ru-Ce-B/C、Ru-Sn-B/C、Ru-Co-B/C等Ru基非晶态催化剂,应用于芳香族硝基化合物的原位液相催化加氢合成芳胺的反应。研究结果表明,所制备的5%(wt)Ru-Sn-B/C(molarRu:Sn=1:3)非晶态催化剂具有较高的催化性能,对邻氯硝基苯原位液相催化加氢的转化率达到99.3 %,无脱卤产生,邻氯苯胺的选择性可以达到99.5%,副产物主要为邻氯羟胺中间体,该催化剂能稳定32h。从非晶态催化剂结构特征、金属原子之间的相互电子转移作用等方面对原位液相催化加氢反应进行了探讨。
     2、采用浸渍法制备了不同载体不同助剂的Ru基晶态催化剂,用于芳香族硝基化合物的原位液相催化加氢反应。0.5%Ru-2.5%Fe/C催化剂对邻氯硝基苯原位液相催化加氢的转化率达到99.8 %,选择性达到98.0%,该催化剂反应480h后未见明显失活。通过XRD、TEM、XPS等表征手段对0.5%Ru-2.5%Fe/C催化剂的表面特性进行了表征,并考察了反应条件。以表征结果及反应条件对原位液相催化加氢反应的影响为依据,研究了催化剂稳定性提高的原因。
     3、采用XRD、TEM、XPS、IR、EDS等表征手段研究了催化剂的表面结构、表面电子态、表面吸附情况、原子组成、比表面积和催化剂稳定性之间的关系。经反应机理的研究分析,原位液相催化加氢反应制氢过程中伴随着CO的产生,CO极易吸附于催化剂表面而导致催化剂中毒失活,可通过水汽转化(WGS)和费托合成(FTS)降低CO浓度,提高催化剂的稳定性。研究结果表明Ru-Fe/C催化剂有较高的稳定性,其原因为氧化态的Fe基催化剂在WGS和FTS反应中有高活性及选择性。
     4、间硝基苯胺是重要的精细化工中间体,通常由间二硝基苯采用硫化碱还原制备。该反应原子经济性低,三废污染大。液相催化加氢获得单硝基部分还原产物的选择性普遍不高。本文通过间二硝基苯原位液相催化加氢反应的研究,在0.5%Ru-2.5%Fe/C催化剂下,间二硝基苯的转化率可达99.4%,间硝基苯胺的选择性为100%。进一步在使用外加氢源的液相催化加氢反应中研究,3.5%Ru16.6Fe83.4/C催化剂在氢气压力为2.0MPa,反应温度为373K,以乙醇为溶剂时,间二硝基苯的转化率为100%,间硝基苯胺的选择性可达98.8%,TOF为0.127s-1。3.5%Ru8.3Ce91.7/C催化剂在此反应条件下,转化率为100%,间硝基苯胺的选择性可达99.4%,TOF为0.364s-1。
     总之,通过研究发现,原位液相催化加氢反应对一系列的芳香族硝基化合物都具有较好的转化率和选择性,且通过改性或再生可提高催化剂的稳定性。该反应原子利用率高,简化了生产流程,对环境友好,是针对液相催化加氢反应的一大创新,具有重要的科学意义及工业化应用前景。
Hydrogenation of organic compounds is an important reaction inindustry. Compared with chemical reductions, catalytic hydrogenation ispreferred currently for the industrial production of many fine chemicalsowing to its lower impact on the environment and the superior quality.Generally, there are two hydrogenation types: catalytic hydrogenationusing molecular hydrogen and catalytic transfer hydrogenation usinghydrogen donors. Catalytic hydrogenation using molecular hydrogen islimited because of the risk associated with the necessity of molecularhydrogen which is easily ignited, exploded and difficult to store andtransport. In the catalytic transfer hydrogenation, active hydrogen can betransferred from hydrogen donors (alcohols, hydrazines, hydrocarbons,organic acids etc) to the inorganic or organic compounds directly.However, its disadvantages are also obvious: relatively low atomic utilization and high cost of products.
     In-situ liquid catalytic hydrogenation is a novel liquid system ofcatalytic hydrogenation proposed by our group in 2004, in which activehydrogen produced from the reforming of alcohol solution is useddirectly for the hydrogenation of organic compounds, obviating thediffculty associated with the necessity of molecular hydrogen in liquidcatalytic hydrogenation. In the novel reaction system, the utilization ofhydrogen atoms from hydrogen donors is improved greatly because thehydrogen atoms come both from alcohol and water which could beutilized totally with the water-gas shift (WGS) reaction. The novelreaction shows wide application in industry owing to its advantages ofhigh atomic utilization and lower harmful on the environment.
     In this dissertation, in-situ liquid catalytic hydrogenation of aromaticnitro compounds to corresponding anilines are studied; Speciallyemphasis on the stability of catalysts in the in-situ liquid catalytichydrogenation. Meanwhile, the main reasons of catalyst deactivation andthe methods of catalysts reactived were discussed. Main points of thisdissertation are listed as follows.
     1. The Ru-B/C、Ru-Fe-B/C、Ru-Ce-B/C、Ru-Sn-B/C and Ru-Co-B/Camorphous catalysts were prepared by chemical reduction and applied inthe in-situ liquid catalytic hydrogenation of aromatic nitro compounds tocorresponding anilines. 5%(wt)Ru-Sn-B/C (molarRu:Sn=1:3) amorphous catalyst exhibited excellent catalytic performance, with the conversion of99.3%, and selectivty of 99.5% for the in-situ liquid hydrogenation ofo-chloronitrobenzene to o-chloroaniline without dehydrohalogenation.The main byproducts were intermediates of halogenated hydroxylamine,the catalyst could be active for 32 hours. The in-situ liquid catalytichydrogenation has been systematically studied based on the structure ofamorphous catalyst, the electronic shift between metallic atoms andreaction conditions.
     2. The Ru-based catalysts were prepared by impregnation and appliedin the in-situ liquid catalytic hydrogenation of aromatic nitro compoundsto corresponding anilines. The conversion of the in-situ liquid catalytichydrogenation of o-chloronitrobenzene reached to 99.8% and theselectivty to 98.0% over 0.5%Ru-2.5%Fe/C catalyst. The catalyst showssuper stability with more than 480h. The properties of 0.5%Ru-2.5%Fe/Ccatalyst were tested by XRD、TEM、XPS, and the reaction conditionswere studied. Based on the results of catalyst characterization andreaction conditions, the reasons of the catalyst stability were studied.
     3. The relationship between the catalyst stability and the structure ofcatalyst, the surface electronic state, the surface adsorption, the specificsurface area, the composition of the catalyst, has been systematicallystudied by a series of characterization of catalysts (XRD、TEM、XPS、IR、EDS). In the in-situ liquid catalytic hydrogenation, the active hydrogen produced from the reforming of alcohol solution is alwaysaccompanied with CO production, and the CO could easily adsorb on thesurface of catalyst, which lead to catalyst deactivation attributed topoisoning by CO. The stability of catalyst was improved by water-gasshift (WGS) and fischer-tropsch (FTS) reactions decreasing theconcentration of CO. The Ru-Fe/C catalysts exhibit higher stabiltiy whichis attributed to the FeOx presenting excellent activity and selectivity inWGS and FTS reactions.
     4. m-Nitroaniline (m-NA) is an important intermediate, the traditionalroute for the preparation of m-NA is based on the use of sulphidesresulting in low atomic utilization and the serious wastes. However, lowselectivity to m-NA is often obtained with liquid catalytic hydrogenationusing molecular hydrogen. Herein, the in-situ liquid catalytichydrogenation was studied. The conversion of the in-situ liquid catalytichydrogenation of m-dinitrobenzene (m-DNB) was 99.4% and theselectivty to m-NA reached 100% over 0.5%Ru-2.5%Fe/C catalyst.Further study was done with the liquid catalytic hydrogenation of m-DNBover 3.5%Ru16.6Fe83.4/C catalyst. With the reaction conditions ofhydrogen pressure of 2.0Mpa, temperature of 373K, ethanol as solvent,the conversion of m-DNB reach to 100% and the selectivty of m-NA to98.8%. On the same reaction conditions, 3.5%Ru8.3Ce91.7/C exhibitedhigher catalytic properties with the conversion of m-DNB was 100% and the selectivty of 99.4%.
     In conclusion, a series of aromatic nitro compounds could be reducedto corresponding anilines with excellent conversion and selectivity in thein-situ liquid catalytic hydrogenation, and the stability of catalyst can beimproved by modification or reactivation. The in-situ liquid catalytichydrogenation shows high atomic utilization, simplify production processand lower harmful on the environment which opens a new reaction in thefield of liquid catalytic hydrogenation and shows wide applications inindustry.
引文
[1]Hu A. G, Ngo H. L, Lin W. B. Chiral porous hybrid solids for practicalheterogeneous asymmetric hydrogenation of aromatic ketones[J]. J. Am. Chem. Soc,2003, 125(38): 1490-1491
    [2]Kumarraja M, Pitchumani K. Simple and efficient reduction of nitroarenes byhydrazine in faujasite zeolites[J]. Appl. Catal. A: General, 2004, 265(2): 135-139
    [3]沈志虹,付玉梅,蒋明.化学改性对催化裂化催化剂氢转移性能的影响[J].催化学报, 2004, 25(3): 227-230
    [4]Robert A. W. Johnstone, Anna H. Wilby. Heterogeneous catalytic transferhydrogenation and its relation to other methods for reduction of organic compounds[J].Chem. Rev. 1985,85: 129-170
    [5]Grazia Zassinovich, Giovanni Mestroni, Serafino Gladiali. Asymmetric hydrogentransfer reactions promoted by homogeneous transition metal catalysts[J]. Chem. Rev.1992, 92: 1051-1069
    [6]Maria Cristina F, Oliveira. On the study of the catalytic transfer hydrogenationreaction: The hydrogenation of 3-buten-1-ol on a Pd-black film[J]. J. Mol. Catal. A2007, 272: 225-232
    [7]Amit Saha, Brindaban Ranu. Highly Chemoselective Reduction of Aromatic NitroCompounds by Copper Nanoparticles/Ammonium Formate[J]. J.Org. Chem, 2008,73(17): 6867-6870
    [8]吴川,张华民,衣宝廉.化学制氢技术研究进展[J].化学进展, 2005, 17(3):423-429
    [9]王艳辉,王树东,吴迪镛. PEMFC制氢技术现状[J].环境科学进展, 1999(1):73-77
    [10]洪学伦.甲醇重整气为燃料的质子交换膜燃料电[J].化工学报, 2007, 58(6):1564-1567
    [11]吴倩,陈豪慧.稀土金属氧化物在乙醇重整制氢催化剂中的应用[J].化工进展, 2008, 27(2): 187-189
    [12]Maggio G, Freni S, Cavallaro S. Light alcohols/methane fuelled molten carbonatefuel cells:a comparative study [J]. J. Power Sources, 1998 (74): 17-23
    [13]亓爱笃,王树东.甲醇氧化重整制氢过程(Ⅰ)反应条件对制氢过程的影响[J].化工学报, 2001, 52(12): 1095-1099
    [14]Cortright R. D, Davad R. R, Dumesic J. A. Hydrogen from catalytic reforming ofbiomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418: 964-967
    [15]Huber G. W, Shabaker J. W, Dumesic J. A. Raney Ni-Sn Catalyst for H2Production from Biomass-Derived Hydrocarbons[J]. Science, 2003, 300: 2075-2077
    [16]Deluga G. A, Salge J. R., Schmidt L. D. Renewable Hydrogen from Ethanol byAutothermal Reforming[J]. Science, 2004, 303: 993-997
    [17]李小年,罗雄军,孙军庆,徐振元,严新焕.一种邻氯苯胺的制备方法[P].中国专利: 200410099103.4, 2005-08-31
    [18]李小年,罗雄军,孙军庆,徐振元,严新焕.一种苯胺的制备方法[P].中国专利: 200410099106.8, 2005-08-31
    [19]杨建峰,孙军庆,严新焕,李小年.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报, 2006, 27(7): 559-561
    [20]李小年,项益智.一类新的液相催化氢化反应体系[J].中国科学B辑:化学,2007, 37(2): 136-142
    [21]姜莉,祝一锋,项益智.甲醇水相重整制氢原位还原苯乙酮制备α-苯乙醇[J].催化学报, 2007, 28(3): 281-286
    [22]孙杰,吴锋,邱新平. Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制[J].催化学报, 2004, 25(7): 551-555
    [23]B. Coq, A. Tijani, F. Figueras. Influence of alloying platinum for thehydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge,Al, Zn[J]. J. Mol. Catal, 1992, 71: 317-333
    [24]Q. Xu, X.M. Liu, J.R. Chen, R.X. Li, X.J. Li. Modification mechanism of Sn4+for hydrogenation of p-chloronitrobenzene over PVP-Pd/γ-Al2O3[J]. J. Mol. Catal. A,2006, 260: 299 -305
    [25]MH Liu, WY Yu, HF Liu, and JM Zheng. Preparation and characterization ofpolymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloidsand their catalytic properties for hydrogenation of o-chloronitrobenzene[J]. J. colloidInterface Sci, 1999, 214(2): 231-237
    [26]Z.H. Yu, Z.X. Li, J.L. Tian. Synthesis, characteristics and catalytic activity ofwater-soluble [Pd(lysine·HCl)(Cl)2] complex as hydrogenation catalyst[J]. J. Mol.Catal. A, 2007, 265: 258-267
    [27]姚蒙正,程侣柏,王家儒.精细化工产品合成原理[M].北京:中国石化出版社, 1992
    [28]唐培堃主编.精细有机合成化学及工艺学[M].天津:天津大学出版社, 1993
    [29]蒋登高.精细有机合成反应及工艺[M].北京:化学工业出版社, 2002
    [30]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社, 1987
    [31]吕恩雄.有机电解合成研究动向[J].精细石油化工, 1992, 5: 41-44
    [32]Ahmed M. Tafesh, Jens Weiguny. A Review of the Selective Catalytic Reductionof Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, andUreas Using CO[J]. Chem. Rev, 1996, 96 (6): 2035-2052
    [33]R. Prons, M. Benz. Reduction of aromatic nitrocompounds with hydrazinehydrate in the presence of an iron oxide hydroxide catalyst II. Activity, X-raydiffraction and M?ssbauer study of the iron oxide hydroxide catalyst [J]. Appl. Catal.A: General, 1998, 172: 149-157
    [34]刘晓智,陆世维.催化CO/H2O还原芳香硝基化合物制芳胺的研究进展[J].染料与染色, 2003, 40(60): 339-341
    [35]彭爱东,陆世维.硒催化芳香硝基物制芳胺的反应研究[A].大连:中国科学院大连化学物理研究生, 2002
    [36]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社, 1998.
    [37]Khan M. S, Hanan A, Majeed A. Reduction of aromatic nitro compounds usingaluminium scrap[J]. J. Chem. Soc. Pak, 1988, 10(3): 393-395
    [38]Karl F. K. Reduction of aromatic nitro compounds by magnesium and methylalcohol. Can. J. Chem[J]. 1953, 31: 1064 -1077
    [39]蒋志斌,侯琳娜.利用醇镁还原体系一步法制取对氯苯胺的研究[J].石油化工进展, 2002, 3(11): 50-51
    [40]宋志祥,宋涛,彭长征,佘万能.卤代芳胺合成的研究进展[J].涂料染料颜料,2008, 8: 35-38
    [41]张荣成,高健.芳香族硝基化合物还原制芳胺生产工艺评析[J].化工矿物与加工, 2000, 8: 29-31
    [42]姚蒙正,张若蘅.芳香族硝基化合物还原反应的若干进展[J].化工进展,1984, 4: 19-25
    [43]Rybakova I. A, Shekhtman, R. I, Prelezhaeva E. N et al. Method of profucinghalosub-stituted anilines[P]. US: 4362861.30, 1990-09-17
    [44]吕荣文,张竹霞,张珂珂.水合肼还原对硝基乙酰苯胺的研究[J].染料与染色, 2003, 40(4): 227-230
    [45]Kumbhar P S, Valente J S. Mg-Fe hydrotalcite as a catlayst for the reduction ofaromatic nitro compounds with hydrazine hydrate[J]. J Catal, 2000, 191: 467-473
    [46] Kumarraja M, Pitchumani K. Simple and difficient reduction of nitroarenes byhydrazine in faujasite zeolites[J]. Appl. Catal. A: General, 2004, 265: 135- 139
    [47]吉宝明,陈花婷.三种新型二胺的合成研究[J].化学研究与应用, 1999, 11(6):373-375
    [48]杨志兰,张爱清,杨正险.聚酰亚胺新型单体-含氟和氧磷二胺的合成[J].化工新型材料, 2004, 32(9): 29-31
    [49]Liaw D J, Liaw BY, Yu C W. Synthesis and characterization of neworganosoluble polyimides based on flexible diamine[J]. Polymer, 2001, 42:5175-5179
    [50]Wang C S, Leu T S. Synthesis and characterization of polyimides containingnaphthalene pendant group and flexible ether linkages[J]. Polymer, 2000, 41:3581-3591
    [51]Furst A, Berlo R C, Hooton S. Hydrazine as a reducing agent for organiccompounds[J]. Chem. Rev, 1958, 65: 51-68
    [52]Gowda S, Gowda D. C. Zinc/hydrazine: a low cost facile system for the reductionof nitro compounds[J]. India Journal of Chemistry, 2003, 42B(1), 180-183
    [53]Yun Tae Ho, Park Moon kyeu, Han Byung Hee. Reduction of nitroarenes using anactivated catalyst prepared by the reduction of nickel nitrate with excess Zinc in thepresence of hydrazine mono-hydrate[J ]. Chem. Res, 1992, 10: 336 -347
    [54]周莹,叶翠层,李永芳等. Fe-Al复合催化合成邻氯苯胺.精细化工中间体[J],2005, 35(3): 40-42
    [55]廖齐,周莹,邓洪. Fe-Al复合催化剂催化水合肼选择性还原硝基制备对氯苯胺[J].染料与染色, 2004, 41(5): 279-282
    [56]吕恩雄.有机电解合成研究动向[J].精细石油化工, 1992, 5: 41-44
    [57]马淳安,童少平,陈骁军等.芳香族硝基化合物电还原中Cu-Ni合金的电极活性[J].电化学, 1997, 3(4): 438-453
    [58]黄培,王朋朋,黄丽萍.硝基化合物还原制备芳香胺工艺研究进展[J].南京工业大学学报, 2007, 29(4): 101-106
    [59]Ahmed M, Tafesh, Jens Weiguny. A Review of the Selective Catalytic Reductionof Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, andUreas Using CO[J]. Chem. Rev, 1996, 96(6): 2035-2052
    [60]Kaneda K, Kuwahara H, Imanaka T. Chemoselective reduction of nitro groups inthe presence of olefinic, ester, and halogeno functions using a reducing agent of COand H2O catalyzed by Rh carbonyl clusters l[J]. J. Mol. Cata, 1994, 88(3): L267-L270
    [61]Nomura K. Efficient selective reduction of aromatic nitro compounds byruthenium catalysis under CO/H2O conditions[J]. Appl. Catal. A: General, 1995, 95(3):203-210
    [62]Nomura K, IshinoM et al. Studies on transition metal catalyzed selectivereduction of aromatic nitro compounds under carbon monoxide/water conditions[J].Sumitomo Kagaku(Osaka), 1993, 1: 41-51
    [63]L. Q. Liu, B. T. Qiao, Z.J. Chen, J. Zhang, Y. Q. Deng. Novel chemoselectivehydrogenation of aromatic nitro compounds over ferric hydroxide supportednanocluster gold in the presence of CO and H2O[J]. Chem. Commun, 2009, 653-655
    [64]Groggins P. H. Unit Processes in Organic Synthesis[M]. McGraw Hill bookCompany, 1958
    [65]L. Szigeth. Laufrolle mit spreizmuffen-befestigung[P]. Ger. Offen:DE 1809711,1968-11-09
    [66]孟明扬,马瑛,谭立哲等.加氢还原新工艺及设备[J].精细与专用化学品,2004, 12, 24: 1-3
    [67]申凯华,刘平芹,李宗石.液相催化加氢制芳胺的研究与应用[J].染料工业,1999, 36(6): 18-21
    [68]李良助.有机合成中氧化还原反应[M].北京:高等教育出版社, 1989: 132
    [69]Ertl G, Knotzinger H, Weitkamp J. Handbook of Heterogeneous Catalysis [M].Weinheim: Wiley-VCH, 1997: Vol. V
    [70]Mozingo R. Palladium catalysts [J]. Org. Synth, 1946, 26(1): 77-82
    [71]徐善利,陈宏博,李树德.催化加氢还原芳香硝基化合物制备芳胺的技术进展[J].精细石油化工, 2006, 23(4): 58-61
    [72]Maggio G, Freni S, Cavallaro S. Light alcohols/methane fuelled molten carbonatefuel cells: a comparative study [J]. J. Power Sources, 1998, 74: 17-23
    [73]梅华,王欢,陈墨雨,姚虎卿.Pt/C催化剂的制备及其在对氯苯胺合成中的应用[J].工业催化, 2007, 15(4): 37-41
    [74]Junling Zhang, Yuan Wang,Hua Ji,Yongge Wei, Nianzu Wu, Bojun Zuo, QilongWang. Magnetic nanocomposite catalysts with high activity and selectivity forselective hydrogenation of ortho-chloronitrobenzene[J]. J Catal, 2005,229: 114-118
    [75]许兴中,杨建锋,严新焕,李小年.激光溅射法制备Pt/CNTs催化剂用于邻氯硝基苯的液相加氢反应[J].物理化学学报, 2008, 24(1): 121-126
    [76]江玲超,顾辉子,许兴中,杨建锋,严新焕.激光溅射法制备的Pt/Al2O3催化剂及其催化邻氯硝基苯加氢的性能[J].石油化工, 2009, 38(2): 128-133
    [77]Lingchao Jiang, Huizi Gu, Xingzhong Xu, Xinhuan Yan. Selective hydrogenationof o-chloronitrobenzene(o-CNB) over supported Pt and Pd catalysts obtained by laservaporization deposition of bulk metals[J]. J Mol Catal A: Chem, 2009, 310, 144-149
    [78]LiuM H, YuW Y, Liu H F, et al. J. Preparation and characterization of polymerstabilized ruthenium-palladium bimetallic colloids and their catalytic properties forhydrogenation of o-chloronitrobenzene[J]. Coll. Inter. Sci, 1999, 214(2): 231-237
    [79]Yu Zh K, Liao Sh, J, Xu Y, et al. Hydrogenation of nitroaromatics bypolymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalystsunder mild conditions[J]. J. Mol. Catal A: Chem, 1997, 120(1-3): 247-255
    [80]刘新梅,樊光银,赵松林,陈骏如,李贤均. Sn4+离子修饰的Pd/γ-Al2O3催化卤代芳香硝基化合物选择性加氢[J].分子催化, 2005,19 (6): 430-435
    [81]Jiang H, Xu Y, Liao Sh J, et al. A remarkable synergic effect of water-solublebimetallic catalyst in the hydrogenation of aromatic nitrocompounds[J]. J. Mol. Catal.A: Chem, 1999, 142(2): 147-152
    [82]Kosak, John R. Catalytic Reduction of Halonitroaromatic Compounds[P]. USPatent: 4 020 107, 1977-04-26
    [83]Kratky V, Kralik M. Mecarova M, et al. Effect of catalyst and substituents on thehydrogenation of chloronitrobenzenes[J]. Appl. Catal. A: General, 2002, 235 (1-2):225-231
    [84]郭芳,王越,吕连海.高分散度Ru/C选择性催化对氯硝基苯加氢制备对氯苯胺[J].精细化工, 2007, 24(3): 252-256
    [85]Liu Manhong, Yu Weiyong, liu Hanfan. Selective hydrogenation ofo-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts[J]. J MolCatal A: Chem, 1999, 138(2-3): 295- 303
    [86]B.J. Zuo, Y. Wang, Q.L. Wang, J.L. Zhang, N.Z. Wu, L.D. Peng, L.L. Gui, X.D.Wang, R.M. Wang, D.P. Yu. An efficient ruthenium catalyst for selectivehydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tinoxide nanoparticles [J]. J.Catal, 2004, 222(2): 493-498
    [87]Mariusz Pietrowski, Maria Wojciechowska. An effcient ruthenium-vanadiumcatalyst for selective hydrogenation of ortho-chloronitrobenzene[J]. Catalysis Today,2009, 142: 211-214
    [88]Jun Zhu, Wang S J, Luo X H. Dispersion of nano-nickel into gamma-Al2O3studied by positron[J]. Radiation Physics and Chemistry, 2003, 68: 541-544
    [89]余小兵,谈燮峰,萧树德.化学通报(网络版), 1999.
    [90]尾崎萃等编,《催化剂手册》翻译小组译.催化剂手册[M].北京:化学工业出版社, 1982
    [91]Jozsief P, Tibor M. Process for the preparation of metal oxide catalysts and metaloxide supported catalysts [P]. US Patent : 4021371, 1977-05-03
    [92]孙利方,李霞. Raney-Ni催化加氢制备2-氨基苯酚[J].染料与染色, 2008,45(3): 45-53
    [93]李平,王香婷,郭新亮,赵文杰,赵振波,刘金廷. Raney Ni催化呋喃加氢制备四氢呋喃的研究[J].应用科技, 2008, 35(7): 65-68
    [94]Bellefon C D, Fouilloux P. Homogeneous and Heterogeneous Hydrogenation ofNitriles in a Liquid Phase: Chemical, Mechanistic, and Catalytic Aspects[J]. Catal Rev.1994, 36(3), 459-506
    [95]吴跃东,张静,骆红山,王明辉,陶,李和兴.乙腈液相选择性加氢中Ni-B非晶态合金和Raney Ni催化性能的比较[J].化学研究与应用, 2003, 15(4): 463-466
    [96]De Thomas, Waldo R, Eugene V. Catalyst comprising Raney nickel with adsorbedmolybdenum compound[P]. US Patent: 4 153 578, 1979-05-08
    [97]Michele Besson, Georges Cordier, Pierre Fouilloux. Process for the preparation ofa catalyst for the hydrogenation of nitrile to amines and use of this catalyst inhydrogenation[P]. US Patent: 5 801 286, 1998-09-01
    [98]Georges Cordier, Pierre Fouilloux, Nathalie laurain. Catalyst for thehydrogenation of nitriles to amines, preparation process thereof and hydrogenationprocess making use thereof [P]. US Patent: 5 840 989, 1998-11-24
    [98]沈琴,刘仲能,侯闽渤,吕晓渊.改性Raney Ni催化剂用于加氢合成间苯二甲胺[J].燃料化学学报, 2001, 29: 163-166
    [99]童孟良,唐有根,黄铃,李志松. Ti改性骨架Ni催化乙腈液相加氢制乙胺[J].石油化工, 2008, 24(1): 90-94
    [100]江志东,陈瑞芳,王金渠.雷尼镍催化剂[J].化学工业与工程, 1997, 14(2):23-32
    [101]Raney M. Hydrogenation: catalysts from alloys Nickel catalysts [J]. Ind. Eng.Chem, 1940, 32: 1199-1203
    [102]江志东,吴平东. Raney-Ni浸取方法对木糖加氢活性的影响[J].化学反应工程与工艺, 1996, 12(1): 34-39
    [103]MacNab J I, Anderson R B. The structure of Raney nickel : VII. Ferromagneticproperties[J]. J Catal , 1973 , 29(2) : 328-337
    [104]张文忠,苏桂琴,焦风英,特木勒,殷元琪.骨架镍催化剂活性本质的研究[J].催化学报, 1992 , 13(1): 13-18
    [105] Kokes R J, Emmett P. H. The role of hydrogen in Raney Nickel catalysts [J]. J.Am. Chem. Soc, 1959, 81: 5032-5037
    [106]左东华,张志琨,崔作林.纳米镍在硝基苯加氢中催化性能的研究[J].分子催化, 1995, 9(4): 298-302
    [107]Zhang Z K, Cui Z L, Chen K Z, et al. Thin-shell structure of nanometer particles[J]. Mater. Characterization, 2000, 44(2): 371-374
    [108]夏少武,刘红天,赵纯洁.雷尼镍活性本质的探讨[J].工业催化,2003 , 11(2):36-41
    [109]R.Raja, V.B.Golovko, J.M.Thomas, A.Berenguer-Murcia, W.Z.Zhou, S.H.Xie,B.F.G.Johnson. Highly efficient catalysts for the hydrogenation of nitro-substitutedaromatics[J]. Chem.Commun, 2005, 15: 2026-2028
    [110] Li Xing, Jieshan Qiu, Changhai Liang, Chuang Wang, Li Mao. A new approachto high performance Co/C catalysts for selective hydrogenation ofchloronitrobenzenes[J]. J Catal, 2007, 250: 369-372
    [111]叶惠仁.加氢合成对苯二胺的研究[J].辽宁化工, 1993, 5: 45-46
    [112]Spiegler L, Woodbury N J. Process for catalytically reducing halogen-substitutedaromatic nitro compounds to the corresponding amines [P]. US Patent: 3073865,1963-01-15
    [113]Kossak J R. Catalytic reduction of halonitro-aromatic compounds [P]. US Patent:4201107, 1980-05-06
    [114]Yutaka H, Katsuharu M. Method for the preparation of a halogenated aromaticamine [P]. US Patent: 4070401, 1978-01-24
    [115]Hildreth J H. Catalytic hydrogenation process for the manufacture of chlorinatedaromatic amines [P]. European Patent: 0000805, 1979-02-21
    [116]Kossak J R, Catalysis in Organic Syntheses [M]. New York: Academic Press,1980
    [117]Bailliard R, Cordier G, Grosselin J M, et al. Process for hydrogenation ofhalogennitro-aromatic compounds in the presence of a sulfur-containing compound[P]. US Patent: 5126485, 1992-06-30
    [118]Augustine R L. Heterogeneous Catalysis for the Synthetic Chemistry [M]. NewYork :Marcel Dekker, 1996
    [119]Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for OrganicSynthesis [M]. New York :Wiley, 2001
    [120]包德才,赵岷.催化还原对氯硝基苯制备对氯苯胺的研究进展[J].内蒙古民族大学学报(自然科学版), 2001, 16(1): 96-100
    [121]Songlin Zhao, Huading Liang, Yafen Zhou. Selective hydrogenation ofm-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3[J]. CatalysisCommunications, 2007, 8, 1305-1309
    [122]蔡春,吕春绪.二氯苯胺柔性生产技术研究[J].南京理工大学学报, 2000,24(3): 219-222
    [123]胡拖平,陈宏博.单氯代硝基苯加氢还原时脱氯规律的研究[J].染料工业,2000, 37(6): 11-12
    [124]刘新梅,陈骏如. Sn4+对钌铂催化剂催化芳香硝基化合物加氢影响[J].广西工学院学报. 2006, 17(2): 83-86
    [125]刘新梅,樊光银,赵松林,陈骏如,李贤均. Sn4+离子修饰的Pd/γ-Al2O3催化卤代芳香硝基化合物选择性加氢[J].分子催化, 2005, 19(6): 430-435
    [126]Coq B, Tijani A, Figueras F. Particle size effect on the kinetic of p-chloronitrobenzenehydrogenation over platinum/alumina catalysts [J]. J. Mol. Catal, 1991,68(3): 331-345
    [127]Tijani A, Coq B, Figueras F. Hydrogenation of p-chloronitrobenzene oversupported ruthenium-based catalysts [J]. Appl. Catal, 1991, 76(1-2): 255-266
    [128]Han X X, Zhou R X, Lai G H, et al. Effect of transition metal (Cr, Mn Fe, Co, Niand Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO_2 catalysts[J]. J. Mol. Catal. A, 2004, 209(1-2): 83-87
    [129]Li Zhou, Xinhuan Yan. A Novel Transfer Hydrogenation with High HydrogenUtilization for the Hydrogenation of Halogenated Nitrobenzene withoutHydrodehalogenation[J]. Catal Lett, 2009, 132: 16-21
    [130]韩文锋,霍超,刘化章.钌基氨合成催化剂的TPD/R研究[J].高校化学工程学报, 2002, 16(5): 565-569
    [131]丁军委,江秀华.载体预处理对Pd/C催化剂催化性能的影响[J].工业催化,2007, 15(7): 62-65
    [132]李同信,高大彬.非晶态合金催化剂的研究进展[J].石油化工, 1991, 20(12):861-869
    [133]Rostovshchikova T.N, Smirnov V.V, Gurevich S.A, et al. Nanostructured metalfilms: Fabrication and catalytic properties [J]. Catal. Today, 2005, 105(3-4): 344-349
    [134]Fang J, Chen X Y, Liu B, et al. Liquid-phase chemoselective hydrogenation of2-ethylanthraquinone over chromium-modified nanosized amorphous Ni-B catalysts[J]. J. Catal, 2005, 229(1): 97-104
    [135]张国胜,沈宁福. Ni-Zr-Al基非晶态合金催化剂的苯加氢催化性能[J].催化学报, 2000, 21(1): 67-70
    [136]程庆彦,李伟,张明慧等.用原位红外光谱法研究NiB和NiP非晶态合金的还原及苯加氢反应过程[J].催化学报, 2001, 22(4): 326-330
    [137]李江,乔明华,邓景发.前驱体干燥法对非晶态Ni-B/γ-Al2O3催化剂性能的影响[J].高等学校化学学报, 2001, 22(6): 1022-1024
    [138]Li J, Qiao M. H, Deng J. F. Amorphous Ni-B/γ-Al2O3 catalyst prepared in amodified drying approach and its excellent activity in benzene hydrogenation[J]. J.Mol. Catal. A, 2001, 169(1-2): 83-87
    [139]Wang M. W, Li F. ., Zhang R. B. Study on catalytic hydrogenation propertiesand thermal stability of amorphous Ni-B alloy supported on carbon nanotubes[J].Catal. Today, 2004, 93-95: 603-606
    [140]张荣斌,李凤仪,石秋杰.非晶态Ni-B/膨润土催化剂苯加氢研究[J].南昌大学学报(理科版), 2002, 26(3): 250-254
    [141]王辉,刘仲毅,师瑞娟等.用于苯选择加氢制环己烯的非晶态合金Ru-La-B/ZrO_2催化剂的失活与再生[J].催化学报, 2005, 26(5): 407-411
    [142]王来军,张明慧,李伟等.粉末化学镀法制备负载型Ni-B非晶态合金催化剂[J].催化学报, 2005, 26(2): 91-92
    [143]Wang L. J, Li W, Zhang M. H. The interactions between the NiB amorphousalloy and TiO_2 support in the NiB/TiO_2 amorphous catalysts[J]. Appl. Catal. A:General, 2004, 259(2): 185-190
    [144]Ma Y. F, Li W, Zhang M. H.. Preparation and catalytic properties of amorphousalloys in hydrogenation of sulfolene[J]. Appl. Catal. A: General, 2003, 243(2):215-223
    [145]Li H X, Wu Y D, Zhang J, et al. Liquid phase acetonitrile hydrogenation toethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst[J].Appl. Catal. A: General, 2004, 275(1-2): 199-206
    [146]Li H. X, Wu Y. D., Wan Y. Comparative studies on catalytic behaviors ofvarious Co- and Ni-based catalysts during liquid phase acetonitrile hydrogenation[J].Catal. Today, 2004, 93-95: 493-503
    [147]Li H. X, Wu Y. D, Luo H. S. Liquid phase hydrogenation of acetonitrile toethylamine over the Co-B amorphous alloy catalyst[J]. J Catal, 2003, 214(1): 15-25
    [148]王明辉,李和兴. Ni-B/SiO_2非晶态催化剂应用于硝基苯液相加氢制苯胺[J].催化学报, 2001, 22(3): 287-290
    [149]Yu X. B, Wang M. H, Li H. X. Study on the nitrobenzene hydrogenation over aPd-B/SiO_2 amorphous catalyst[J]. Appl. Catal. A: General, 2000, 202(1):17-22
    [150]Lee S. P, Chen Y. W. Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-Bultrafine materials[J]. J. Mol. Catal. A, 2000, 152(1-2): 213-223
    [151]吴跃东,郭海兵,万颖等. Ru-B/SiO_2非晶态催化剂应用于液相葡萄糖加氢制山梨醇[J].催化学报, 2004, 25(7): 533-536
    [152]Guo H. B, Li H. X, Zhu J. Liquid phase glucose hydrogenation to D-glucitolover an ultrafine Ru-B amorphous alloy catalyst[J]. J. Mol. Catal. A, 2003, 200(1-2):213-221
    [153]Masson J, Vidal S, Cividino P. Selective hydrogenation of acetophenone onchromium promoted Raney Nickel catalysts: II. Catalytic properties in thehydrogenation of acetophenone, determination of the reactivity ratios as selectivitycriteria[J]. Appl. Catal. A: General, 1993, 99(2): 147-159
    [154]徐长青,朱大建,李光兴. Ni-B/SiO_2非晶态催化剂对苯乙酮的催化加氢研究[J].分子催化, 2004, 18(4): 381-385
    [155]王友臻,乔明华,胡华荣等.苯乙酮加氢非晶态镍硼催化剂及其制备方法[P].中国发明专利: CN 200410015896.7, 2004-01-16
    [156]王友臻,乔明华,胡华荣等.高选择性苯乙酮加氢Ni-Sn-B/SiO_2非晶态催化剂的制备及表征[J].化学学报, 2004, 62(14): 1349-1352
    [157]Li H. X, Zhang S. Y, Luo H. S. A Ce-promoted Ni-B amorphous alloy catalyst(Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol[J]. Mater. Lett,2004, 58(22-23): 2741-2746
    [158]Li H. X, Luo H. S, Zhuang L. Liquid phase hydrogenation of furfural to furfurylalcohol over the Fe-promoted Ni-B amorphous alloy catalysts[J]. J. Mol. Catal, 2003,203(1-2): 267-275
    [159]Chen X. F, Li H. X, Luo H. S. Liquid phase hydrogenation of furfural to furfurylalcohol over Mo-doped Co-B amorphous alloy catalysts[J]. Appl. Catal. A: General,2002, 233(1-2): 13-20
    [160]Rahimpour R, Fathikalajahi J, et al. Selective kinetic deactivation model formethanol synthesis from simultaneous reaction of CO_2 and CO with H2 on acommercial copper/zinc oxide catalyst[J]. Can J Chem. Eng, 1998, 76(4): 753-761
    [161]李承烈等.催化剂失活[M].北京:化学工业出版社. 1989, 11-21,158-159
    [162]Hughes R. Deactivation of Catalyst[M]. New York: Academic press, 1984
    [163]申凯华,刘平芹,李宗石.液相催化加氢制芳胺的研究与应用[J].染料工业,1999, 36(6): 18-21
    [164]Calvin H, Bartholomew. Mechanisms of catalyst deactivation[J]. Appl. Catal. A:General, 2001, 212: 17-60
    [165]黄永生,尹燕华,郑邯勇.催化剂失活探讨[J].舰船防化, 2004, 3: 1-6
    [166]李玉敏.工业催化原理[M].天津:天津大学出版社, 1992, 209
    [167]王文兴.工业催化[M].北京:化学工业出版社, 1980, 187
    [168]Johnstone RAW, Wilby AH, Entwistle ID. Heterogeneous catalytichydrogenation and its relation to other methods for reduction of organic compounds[J]. Chem Rev, 1985, 85:129-170
    [169]Arterburn Jeffrey B, Pannala Madhavi, Gonzalez Anicele M, et al.Palladium-catalyzed transfer hydrogenation in alkaline aqueous medium[J].Tetrahedron Letters 2000, 41: 7847-7849
    [170]Mizushima Eiichiro, Ohi Hidenori,Yamaguchi Motowo, et al. Asymmetrictransfer hydrogenation of aryl-alkyl ketones catalyzed by ruthenium ( II ) complexeshaving chiral pyridylmethylamine and phosphine ligands[J]. J. Mol. Catal. A, 1999,149: 43-49
    [171]M. E. Volpin, V. P. Kukolev, V. O. Chernyshev, I. S. Kolomnikov. Reduction ofolefins and acetylenes by means of formic acid and formates in presence of transitionmetals complexes[J]. Tetrahedron Lett, 1971, 46(12): 4435-4438
    [172]郑纯智,张继炎,王日杰.催化转移加氢及其在有机合成中的应用[J].工业催化, 2004, 12(3): 29-35
    [173]D. Channe Gowda, B. Mahesh. Catalytic transfer hydrogenation of aromaticnitro compounds by employing ammonium formate and 5% platinum on carbon[J].Synthetic communications, 2000, 30(20): 3639-3644
    [174]Braude E A, Linstead R P, Wooldridge K R H. Hydrogen transfer PartⅦ.Metal-catalysed transfer-hydrogenation of nitro-compounds[J].J Chem Soc, 1954,3586-3595
    [175]Gottfried Brieger, Terry J. Nestrick. Catalytic transfer hydrogenation[J]. ChemRev, 1974,74(5): 567-580
    [176]Kibby C L, Swift H E. Study of catalysts for cyclohexane-thiophene hydrogentransfer reactions[J]. J Catal, 1976, 45(2): 231-241
    [177]H. Atkins, L. M. Richards, J. W. Davis. Catalytic Dehydrogenation ofHydroaromatic Compounds with Benzene[J]. J. Am. Chem. Soc, 1941, 63(5):1320-1325
    [178]K. Kindler, K. Luehrs. Mechanism of chemical reactions XXII. Hydrogenationsand specific hydrogenations with bonded hydrogen. 6. Hydrogenation with terpenes[J].Justus Liebigs Ann. Chem, 1965, 685: 36-48
    [179]Cortese N A, Heck R F. Palladium-catalyzed reductions ofα,β-unsaturatedcarbonyl compounds, conjugated dienes, and acetylenes with trialkylammoniumformats[J]. J Org Chem, 1978, 43: 3985-3987
    [180]Johnstone R A W, Wilby A H.Rapid, stereoselective and specific catalytictransfer reduction of alkynes to cis-alkenes [J]. Tetrahedron, 1981, 37: 3667-3670
    [181]罗鸽,刘歆文,许宁等.丙烯醛与异丙醇均相氢转移制烯丙醇反应中催化剂失活及再利用研究[J].化学世界, 2008, 1: 42-45
    [182]陈建珊,陈玲玲,高景星等.手性羰基铁体系催化酮的不对称氢转移氢化[J].化学学报, 2004, 62(18): 1745-1750
    [183]T.V.Pratap, S.Baskaran. Direc tconversion of aryl nitro compounds toformanilides under catalytic transfer hydrogenation conditions[J]. Tetrahedron Letters2001, 42: 1983-1985
    [184]M.V.Joshi, D.Mukesh. Transfer Hydrogenation of Nitro Compounds withHeteropolyacid Catalysts[J]. J Catal, 1997, 168:273-277
    [185]Susanta K. Mohapatra, Sachin U. Sonavane, Radha V. Jayaram , ParasuramanSelvam. Heterogeneous catalytic transfer hydrogenation of aromatic nitro andcarbonyl compounds over cobalt(II) substituted hexagonal mesoporousaluminophosphate molecular sieves[J]. Tetrahedron Letters, 2002, 43: 8527-8529
    [186]Jicsinszky L, Ivanyi R. Catalytic transfer hydrogenation of sugar derivatives[J].Carbohydrate Polymers, 2001, 45: 139-145
    [187]Olah G A, Prakash G K S. Synthetic methods and reactions; AlCl3/Pd-catalyzedreduction of aryl substituted alcohols and olefins by hydrogen transfer fromcyclohexene[J]. Synthesis, 1978, 397-398
    [188]沈颖旎,罗智伟.原位液相催化加氢法合成N-乙基苯胺和N,N-二乙基苯胺[J].催化学报, 2008, 29(1): 612-616
    [189]罗智伟,顾辉子.原位液相催化氮烷基化反应[J].应用化学, 2009, 26(10):1169-1173
    [190]李小年,张军华,项益智等.硝基苯和乙醇一锅法合成N-乙基苯胺[J].中国科学B辑:化学, 2008, 38(1): 27-34
    [191]项益智,李小年.苯酚液相原位加氢合成环己酮和环己醇[J].化工学报,2007, 58(12): 3041-3045
    [1]Takeshi Naota, Hikaru Takaya, Shun-Ichi Murahashi. Ruthenium-catalyzedreactions for organic synthesis[J]. Chem. Rev, 1998, 98(7): 2599-2660
    [1]J.O.Morley. Nonlinear Optical Properties of Organic Molecules. 19. Calculationsof the Structure, Electronic Properties, and Hyperpolarizabilities of Phenylsydnones[J]. J.Phys. Chem, 1995, 99(7): 1923-1927
    [2]Y.Okazaki, K.Yamashita, H.Ishii, M.Sudo, M.Tsuchitani. Potential of neurotoxicityafter a single oral dose of 4-bromo-, 4-chloro-, 4-fluoro- or 4-iodoaniline inrats[J]. J.Appl.Toxicol, 2003, 23: 315-322
    [3]V.Kratky, M.Kralik, M.Mecarova, M.Stolcova, L.Zalibera, M.Hronec. Effect ofcatalyst and substituents on the hydrogenation of chloronitrobenzenes[J].Appl.Catal.A, 2002, 235: 225-231
    [4]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社, 1998
    [5]姚蒙正,张若蘅.芳香族硝基化合物还原反应的若干进展[J].化工进展, 1984,(4): 19-25
    [6]Rybakova I. A, Shekhtman R. I, Prelezhaeva E. N.et al. Method of profucinghalosubstituted aniline[P]. US Patent : 4362861.30, 1990-09-17
    [7]Gowda S, GowdaD. C. Zinc/hydrazine: a low cost- facile system for the reductionof nitro compounds[J]. India Journal of Chemistry, 2003, 42B(1), 180-183
    [8]AbirajK, Gowda S, GowdaD. C. Magnesium/hydrozinium monoformate: a newhydrogenation system for the selective reduction of nitro compounds[J]. Synthesis andReactivity in Inorganic and metal - organic Chemistry, 2002, 32(8): 1409-1417
    [9]GowdaD. C, MaheshB. Catalytic transfer hydrogenation of aromatic nitrocompounds by employing ammonium formate and 5% platinum on carbon[J].Synthesis community, 2000, 30(20): 3639-3644
    [10]Gowda S. Nickel-catalyzed formic acid reductions. A selective method for thereduction of nitro compounds[J]. Synth. Commun, 2000, 30 (16): 2889 - 2895
    [11]Yun Tae Ho, Park Moon kyeu, Han Byung Hee. Reduction of nitroarenes using anactivated catalyst prepared by the reduction of nickel nitrate with excess Zinc in thepresence of hydrazine mono-hydrate[J ]. J. Chem. Res, 1992, 10: 336 -347
    [12]周莹,叶翠层,李永芳等. Fe-Al复合催化合成邻氯苯胺[J].精细化工中间体,2005, 35(3): 40-42
    [13]吕恩雄.有机电解合成研究动向[J].精细石油化工, 1992, 5: 41-44
    [14]Udupa H. V, Aaantharaman P. N. Improvements in electrolytic reduction of pchloronitrobenzeneto p-chloroaniline [P]. Indian Patent: 143584 31, 1977-12-20
    [15]Ahmed M. Tafesh, Jens Weiguny. A Review of the Selective Catalytic Reductionof Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, andUreas Using CO[J]. Chem. Rev, 1996, 96 (6): 2035-2052
    [16]Rao.P.S, Anand.J, Palaniappan S, D.N. Sathyanarayana. Effect of sulphuric acidon the properties of polyaniline-HCl salt and its base[J]. Eur.Polym.J, 2000, 36(5):915-921
    [17]Ding Y, Harold W. Boone, Jeff D. Anderson, Padias A. B, H. K. Hall.Poly ( aryle ne amin e)s fro m the Red uc tio n of Arom at ic Poly imi ne s [J].Macromolecules, 2001, 34(16): 5457-5462
    [18]Surrey A. R, Hammer H. F. Some 7-substituted 4-amino- quinoline derivatives[J].J. Am. Chem. Soc, 1946, 68: 113-116
    [19]Robert A.W, Anna H. Wilby, Johnstone, I. Entwistle. Heterogeneous catalytictransfer hydrogenation and its relation to other methods for reduction of organiccompounds[J]. Chem. Rev, 1985, 85: 129-170
    [20]G. Zassinovich, G. Mestroni. Asymmetric hydrogen transfer reactions promotedby homogeneous transition metal catalysts[J]. Chem. Rev, 1992, 92(5): 1051-1069
    [21]Maria Cristina F, Oliveira. On the study of the catalytic transfer hydrogenationreaction: The hydrogenation of 3-buten-1-ol on a Pd-black film[J]. J. Mol. Catal. A2007, 272: 225-232
    [22]Gottfried Brieger, Terry J. Nestrick. Catalytic transfer hydrogenation[J]. ChemRev, 1974,74(5): 567-580
    [23]李小年,罗雄军,孙军庆,徐振元.一种邻氯苯胺的制备方法[P].中国专利:200410099103.4, 2005-08-31
    [24]李小年,罗雄军,孙军庆,徐振元.一种苯胺的制备方法[P].中国专利:200410099106.8, 2005-08-31
    [25]杨建峰,孙军庆,李小年.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报, 2006, 27(7): 559-561
    [26]李小年,项益智.一类新的液相催化氢化反应体系中[J].中国科学B辑:化学,2007, 37(2): 136-142
    [27]姜莉,祝一锋,项益智.甲醇水相重整制氢原位还原苯乙酮制备α-苯乙醇[J].催化学报, 2007, 28(3): 281-286
    [28]Deluga G. A, Salge J. R, Schmidt L. D. Renewable Hydrogen from Ethanol byAutothermal Reforming [J]. Science, 2004, 303: 993-997
    [29]孙杰,吴锋,邱新平. Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢[J].催化学报, 2004, 25(7): 551-555
    [30]Yamashita H, Yoshikawa M, Funabiki T, et al. Catalysis by amorphous alloys [J].J Chem. Soc, Faraday Trans ?, 1986, 82(6): 1771-1780
    [31]任行涛,伦志红,栗同林,赵岚.金属助剂对非晶态合金催化剂改性研究进展[J].石化技术, 2006, 13(4): 47-51
    [32]韩民乐,刘寿长,杨笑迪.助剂对Ru-B/ZrO2非晶合金催化剂性能及表面性质的影响[J].分子催化, 2004, 18(1): 47-50
    [33]J.P.Wolfe, S.Wagaw, J.F.Marcous, S.L.Buchwald, Acc. For reviews on thepalladium catalyzed aryl amination[J]. Chem Res. 1998, 1277-1312
    [34]Xiao S, Sun Z, Liu H, Yan G. DV-Xa method and its application in quantumchemistrty [M]. sichuan univ press, 1986, 130
    [35]Songlin Zhao, Huading Liang, Yafen Zhou. Selective hydrogenation ofm-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3[J].Catalysiscommunications, 2007,8: 1305-1309
    [36] Coq B, Tijani A, Dutartre R, et al. Influence of support and metallic precursor onthe hydrogenation of p-chloronitrobenzene over supported platinum catalysts [J]. J.Mol. Catal, 1993, 79(1-3): 253-264
    [37]Menini C, Park C, Shin E J, et al. Catalytic hydrodehalogenation as adetoxification methodology [J]. Catal. Today, 2000, 62(4): 355-366
    [38]郝庆兰,白亮,相宏伟,李永旺.铁基催化剂成型方式对浆态床费-托合成反应性能的影响[J].催化学报, 2008, 29(10): 969-974
    [39]Hilaire S, Wang X, Luo T. A comparative study of water-gas-shift reaction overceria supported metallic catalysts[J]. Appl. Catal. A: General, 2001, 215(1-2):271-278
    [40]Grenoble D. C, Estadt M. M, Ollis D. F. The chemistry and catalysis of the watergas shift reaction [J]. J. Catal, 1981, 67(1): 90-102
    [41]Li Zhou, Xinhuan Yan. A Novel Transfer Hydrogenation with High HydrogenUtilization for the Hydrogenation of Halogenated Nitrobenzene withoutHydrodehalogenation[J]. Catal Lett, 2009, 132: 16-21
    [42]Ertl G, Knotzinger H, Weitkamp J. Handbook of Heterogeneous Catalysis[M].Weinheim: Wiley-VCH, 1997, Vol. V
    [43]Llorca J, de la Piscina P. R, Sales J., Homs N. Direct production of hydrogenfrom ethanolic aqueous solutions over oxide catalysts [J]. Chem. Comm, 2001, 7:641-642
    [44]Arita T, Nakahara K, Nagami K, Kajimoto O, Hydrogen generation from ethanolin supercritical water without catalyst [J]. Tetra. Lett, 2003, 44(5): 1083-1086
    [45]Rice R G, Kohn E J. Raney Nickel catalyzed N-alkylation of aniline andbenzidine with alcohols [J]. Am Chem Soc, 1955, 77: 4052-4054
    [1] A. F. Ghenciu, Curr.Opin. Review of fuel processing catalysts for hydrogenproduction in PEM fuel cell systems [J]. Solid State. Mater. Sci, 2002, 6(5): 389-399.
    [2]T.V.Choudhary, D.W.Goodman. CO-free fuel processing for fuel cellapplications[J]. Catal.Today, 2002, 77(1-2): 65-78
    [3]R.J. Farrauto, Y. Liu, W. Ruettinger, O. llinich, L. Shore, T. Giroux. Precious MetalCatalysts Supported on Ceramic and Metal Monolithic Structures for the HydrogenEconomy [J]. Catal. Rev, 2007, 49(2): 141-196
    [4]D.L.Trimm. Minimisation of carbon monoxide in a hydrogen stream for fuel cellapplication[J]. Appl.Catal A, 2005, 296(1): 1-11
    [5]I.Rosso, C.Galletti, G.Saracco, E.Garrone, V.Specchia. Preferential CO oxidationover Pt/3A zeolite catalysts in H2-rich gas for fuel cell application[J]. Appl. Catal. B,2004, 48: 195-203
    [6]Anderson R B. Fischer-Tropsch Synthesis. New York: Academic Press, 1984.1.
    [7] S.H.Oh, R.M.Sinkevitch. CO removal from hydrogen2rich fuel cell feedsteams byse2 lective catalytic oxidation[J]. J.Catal, 1993, 142: 254-262
    [8]Li Zhou, Xinhuan Yan. A Novel Transfer Hydrogenation with High HydrogenUtilization for the Hydrogenation of Halogenated Nitrobenzene withoutHydrodehalogenation[J]. Catal Lett, 2009, 132: 16-21
    [9]Y. F. Han, M. J. Kahlich, M. Kinne, R.J. Behm. Kinetic study of selective COoxidation in H2-rich gas on a Ru/γ-Al2O3 catalyst[J]. Phys.Chem.Chem.Phys, 2002, 4:389-397
    [10]M. Echigo, T. Tabat. A study of CO removal on an activated Ru catalyst forpolymer electrolyte fuel cell applications[J]. Appl.Catal. A, 2003, 251(1): 157-166
    [11]陈幼芳,徐慧珍,徐伟亮. CO在Ru-Fe分散型催化剂上的吸脱附作用及其表面加氢反应的初步研究[J].浙江农业大学学报, 1998, 24(3): 255-258
    [12]徐慧珍,施介华,过中儒. CO在负载型Ru、Co和Ru-Co金属簇催化剂上的脱附及表面加H_2反应[J].燃料化学学报, 1994, 22(1): 70-75
    [13]徐慧珍,过中儒,施介华,陈幼芳等.担载Ru3(CO)12-Fe2(CO)9混合簇的脱羰基作用和表面加氢反应[J].燃料化学学报, 1995, 16(5): 353-358
    [14]郝庆兰,白亮,相宏伟,李永旺.铁基催化剂成型方式对浆态床费-托合成反应性能的影响[J].催化学报, 2008, 29(10): 969-974
    [15]郑绳安,刘旦初,陈鑫.负载型铁催化剂费托合成的反应机理[J].化学物理学报, 1993, 6(5): 486-490
    [16]Bukur DB, Nowichi L, Lang X. Fischer-Tropsch synthesis in a stirred tank slurryreactor[J]. Chem Eng Sci, 1994, 49(24): 4615-4625
    [17]Bukur DB, Lang X. Highly active and stable iron Fischer-Tropsch catalyst forsynthesis gas conversion to liquid fuels[J]. Ind Engng Chem Res, 1999, 38(9):3270-3275
    [18]Bukur D B, Lang X, Rossin J A, Zimmerman WH, Rosynek MP, Yeh EB, Li C.Activation studies with a promoted precipitated iron Fischer-Tropsch catalyst [J]. IndEng Chem Res,1989, 28(8): 1130-1140
    [19]Bukur D. B, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C.Binder/support effects on the activity and selectivity of iron catalysts in theFischer-Tropsch synthesis [J]. Ind Eng Chem Res, 1990, 29(8): 1588-1599
    [20]Bukur D.B, Okabe K, Rosynek MP, Li C, Wang D, Rao KRPM, Huffman GP.Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis.I.Characterization studies[J]. J Catal, 1995, 155: 353-363
    [21]Bukur D.B, Nowicki L, Manne R.K, Lang X. Activation studies with aprecipitated iron catalyst for Fischer-Tropsch synthesis. II. Reaction studies[J]. J Catal,1995, 155(2): 366-375
    [22]Bukur D.B, Patel S.A, Lang X. Fixed bed and slurry reactor studies ofFischer-Tropsch synthesis on precipitated iron catalyst[J]. Appl Catal, 1990, 61:329-349
    [23]Tingzhen Li, Yong Yang, Zhichao Tao, Chenghua Zhang, Hongwei Xiang,Yongwang Li. Study on an iron-manganese Fischer-Tropsch synthesis catalystprepared from Ferrous sulfate[J]. Fuel Processing Technology, 2009, 90: 1247-1251
    [24]Songlin Zhao, Huading Liang, Yafen Zhou. Selective hydrogenation ofm-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3[J]. Catalysiscommunications, 2007, 8: 1305-1309
    [25]B.H.Davis. Overview of reactors for liquid phase Fischer-Tropsch synthesis[J].Catal. Today, 2002, 71: 249-300
    [26]H.J. Wan, B. S. Wu, T. Z. Li, Z. C. Tao et al. Effects of SiO2 and Al2O3 onperformances of iron-basedcatalysts for slurry Fischer-Tropsch synthesis[J]. J. FuelChem Technol, 2007, 35(5): 589-594
    [27]Emiel de Smit, Andrew M. Beale, Sergey Nikitenko, Bert M. Weckhuysen. Localand long range order in promoted iron-based Fischer-Tropsch catalysts:A combined insitu X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. J. Catal,2009, 262: 244-256
    [28]Hegedus L. L, Mccabe R. W. Catalyst Deactivation[M]. Holand: ElsevierScientific Publishing Comp, 1980
    [29]李承烈.催化剂失活[M].北京:化学工业出版社, 1989
    [30]曾宪春,王昱.工业生产中Pd/C催化剂失活原因研究[J].工业催化, 2001, 9(5): 17-22
    [31]Li Y. J, Jin Y. Y. Hydrogenation of nitro-compounds catalyzed by silicasupported polyvinylpyrrolidone-palladium complexes[J]. J. Mol. Catal, 1983, 19 (2):277-281
    [32]姜恒,徐筠,廖世健.双重负载钯催化剂用于硝基化合物的催化加氢[J].催化学报, 1997, 18 (1): 33-37
    [33]徐慧珍,施介华,王利盛,等.在担载催化CO Ru剂上的吸脱附作用及其表面加氢反应[J].催化学报, 1993, 14(4): 251-256
    [34] Deluga G. A, Salge J. R., Schmidt L. D. Renewable Hydrogen from Ethanol byAutothermal Reforming[J]. Science, 2004, 303: 993-997
    [1]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社, 1998
    [2]魏文德.有机化工原料大全(下卷) [M].北京:化学工业出版社, 1999
    [3]章思规,辛忠.精细有机化工制备手册[M].北京:科学技术文献出版社, 1994
    [4]贾志刚,李方实.液相催化加氢制取芳胺的研究进展[J].化工时刊, 2004, 18:1-3
    [5]Khilnani V, Chandalia. S B. Selective hydrogenationⅡm-Dinitrobenzene tom-nitroaniline using palladium on carbon as catalyst[J]. Org Process Res DeV, 2001,5: 263-266
    [6]赵松林.负载型Ru、Pt催化剂催化芳香硝基化合物选择加氢的研究[A].四川:四川大学, 2004
    [7]Coq B, Tijani A, Dutartre R, et al. Influence of support and metallic precursor onthe hydrogenation of p-chloronitrobenzene over supported platinum catalysts[J]. J.Mol. Catal, 1993, 79(1-3): 253-264
    [8]Menini C, Park C, Shin E J, et al. Catalytic hydrodehalogenation as a detoxificationmethodology [J]. Catal. Today, 2000, 62(4): 355-366
    [9]Llorca J, de la Piscina P. R, Sales J, Homs N. Direct production of hydrogen fromethanolic aqueous solutions over oxide catalysts [J]. Chem. Comm, 2001, 7: 641-642
    [10]Arita T, Nakahara K, Nagami K, Kajimoto O, Hydrogen generation from ethanolin supercritical water without catalyst[J]. Tetra. Lett, 2003, 44(5): 1083-1086
    [11]X. L. Yang, H. F. Liu. Influence of metal ions on hydrogenation ofo-chloronitrobenzene over platinum colloidal clusters[J]. Appl. Catal. A, 1997,164(1-2): 197-203
    [12]R.A. Rajadhyaksha, S.L. Karwa. Solvent effects in catalytic hydrogenation[J].Chem. Eng. Sci, 1986, 41 (7): 1765-1770
    [13]J.Wisnial, M.Klein. Reduction of nitrobenzene to aniline [J]. Ind. Eng. Chem.Prod.Res.Dev, 1984, 23(1): 44-50
    [14]V. L. Khilnani, S. B. Chandalia. Selective Hydrogenation. II. m-Dinitrobenzeneto m-Nitroaniliine Using Palladium on Carbon As Catalyst[J]. Org. Process. Res. Dev,2001, 5(3): 263-266
    [15]M.Liu, W.Yu, H.F.Liu. Selective hydrogenation ofα,β-unsaturated aldehyde toα,β-unsaturated alcohol over polymer-stabilized platinum colloid and the promotioneffect of metal cations[J]. J.Mol.Catal.A: Chem, 1999, 138(2-3): 273-286
    [16]X.L.Yang, H.F.Liu, Z.Hao. Hydrogenation of o-chloronitrobenzene overpolymer-stabilized palladium-platinum bimetallic colloidal clusters[J]. J. Mol. Catal.A:Chem, 1999, 147(1-2): 55-62
    [17]Songlin Zhao, Huading Liang, Yafen Zhou. Selective hydrogenation ofm-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3[J]. Catalysiscommunications, 2007, 8: 1305-1309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700