有机添加剂辅助无机材料形貌控制合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体能够在生物大分子的精确控制下,通过生物矿化过程合成具有特殊形貌和功能的生物矿物。目前,仿生合成具有特定形貌、取向、组织、和多级结构的无机材料和无机-有机复合材料引起了人们普遍的关注。利用有机模板或者晶体生长调控剂,控制晶体的成核、生长、组装已被广泛地应用于仿生合成大量具有特定形态的无机材料。本文研究了有机添加剂辅助的一些无机材料形貌控制合成,内容包括7个部分。
     第一部分和第二部分,我们研究了在苯乙烯-马来酸交替共聚物(PSMA)和十六烷基三甲基溴化铵(CTAB)的混合系统中,CaCO_3和PbS晶体的形貌控制合成。结果显示,PSMA-CTAB混合系统能够对CaCO_3和PbS的晶体形貌和纳米晶的组装进行有效地调控。在混合系统中,PSMA和CTAB的浓度对CaCO_3和PbS的结晶有非常显著的影响,在特定的PSMA和CTAB浓度下,我们合成了花生状的CaCO_3晶体和星形的PbS晶体,这些特殊形貌的形成机制与有机-无机界面作用的选择性有关,这种作用的选择性导致晶体沿着某些特定的方向优先生长。此外,在PSMA-CTAB混合系统中,我们还成功地合成了微米尺寸的CaCO_3空心球,我们认为这是高聚物-表面活性剂混合胶束模板作用的结果。
     第三部分,我们在另外一个高聚物和表面活性剂的混合系统中研究了PbS的结晶行为,这个混合系统的组成是聚甲基丙烯酸(PMAA)和CTAB。我们发现,单独的有机添加剂PMAA或者CTAB对PbS的结晶均有不同程度的影响。PMAA-CTAB混合系统能诱导PbS纳米晶组装成球形和珊瑚状的聚集体,我们认为,这个组装过程可能是由于吸附在不同组装单元上的PMAA和CTAB之间的相互作用造成的。
     第四部分,我们研究了PMAA存在下水热合成PbWO_4。PMAA浓度、[Pb~(2+)]/[WO_4~(2-)]摩尔比、pH值、以及陈化温度对PbWO_4晶体的形貌有明显的影响,在特定的实验条件下,PbWO_4可以形成形貌新颖的微米尺寸的针状结构,微米针的长度和光致发光强度可以通过改变水热反应温度来控制。我们提出了一个非经典结晶的机理,合理地解释了微米针的形成和相关的实验结果。
     第五部分,我们通过CuSO_4和H_2C_2O_4的沉淀反应,合成了表面有孔、或者表面有花纹的草酸铜片状微米多晶。研究发现,晶体表面的孔、或者花纹,是在陈化过程中发生在片状晶体表面中心区域的溶蚀造成的。聚乙二醇(PEG)、介质酸度、陈化温度对草酸铜的溶蚀有影响,因而通过可以控制这些因素调控草酸铜多晶的形貌。
     第六部分,在PMAA存在下,我们给出了一个室温合成空心结构金属钨酸盐和钼酸盐的简便方法,提出了“高聚物-金属离子原位模板”反应机理,合理地解释了空心结构的形成。另外,我们还给出了一个合成空心结构WO_3的方法,即利用预先合成的空心结构的BaWO_4或者SrWO_4作为前驱物,通过硝酸处理和高温煅烧,将BaWO_4或者SrWO_4转化为WO_3,在此过程中,前驱物原有的空心结构在产物WO_3中完好地保持下来。
     最后一部分,我们在PMAA存在下,通过沉淀反应室温合成了微米和亚微米级的BaSO_4单分散颗粒。我们认为,BaSO_4单分散颗粒的形成同样遵循“高聚物-金属离子原位模板”反应机理。
Biological systems are able to generate crystalline materials with complex morphologies and specific functions via the processes of biomineralization and these processes are elaborately controlled by some biomacromolecules. Controlled synthesis of inorganic and inorganic/organic hybrid materials of specific morphology, orientation, organization, complex form, and hierarchical structure has drawn a lot of attention in materials science. The strategy of using organic templates or modifiers with complex functionalization patterns to control the nucleation, growth, and alignment of crystals has been widely adapted for the biomimetic synthesis of a variety of inorganic materials with complex forms. This dissertation focuses on the morphosynthesis of some inorganic materials assisted by organic additives, and contains seven parts.
     In the first two parts, controlled synthesis of CaCO_3 and PbS was studied in a mixed systems of poly-(styrene-alt- maleic acid) (PSMA) and cetyltrimethylammonium bromide (CTAB), and the results showed that the mixed PSMA-CTAB system was a very effective crystal growth modifiers to direct the growth of CaCO_3 and PbS crystals to various morphologies. The concentrations of PSMA and CTAB in the mixed system exerted great influence on the crystal growth of CaCO_3 and PbS. Peanut-like CaCO_3 and star-like PbS crystals were synthesized, and the formation mechanism was related to the selective interaction between the organic-inorganic interfaces, which resulted in preferential growth along some specific crystallographic directions. Moreover, we successfully prepared micrometer sized CaCO_3 hollow spheres in the mixed PSMA-CTAB system, and the formation of hollow structured CaCO_3 was ascribed to the templating of polymer-surfactant mixed micelle.
     In the third part, crystallization of PbS was studied in another polymer-surfactant mixed system: poly(methacrylic acid)-cetyltrimethylammonium bromide (PMAA-CTAB). We found that the presence of a single organic additive, i.e. PMAA or CTAB, could alter the crystal habit of PbS. Moreover, the PMAA-CTAB mixed system could induce self-assembly of PbS nanocrystals to spherical and coral-like aggregates by virtue of the interaction between the adsorbed PMAA and CTAB on different crystalline building blocks.
     The hydrothermal synthesis of PbWO4 crystals in the presence of PMAA was studied in the forth part. The concentration of PMAA, [pb~(2+)]/[WO_4~(2-)] molar ratio (R), pH value, and ageing temperature exhibited great effect on the crystal morphology of PbWO_4. Novel needle-like PbWO_4 single crystals of micrometer size were prepared. The length and photoluminescence intensity of PbWO_4 microneedles increased with raising ageing temperature. A nonclassical crystallization mechanism was proposed to elucidate the formation of needle-like structure of PbWO4 and the related experimental results.
     In the fifth part, we demonstrated the morphosynthesis of pitted or patterned copper oxalate polycrystalline tablets by a precipitation reaction between copper sulfate and oxalic acid solutions. The formation of the pit or pattern on the surfaces of the tablets could be due to the etching or partial dissolution at the central region of the tablets during ageing. Because the etching of copper oxalate depends on the coexisted poly(ethylene glycol) (PEG), acidity of the reaction mixture and ageing temperature, the morphology of copper oxalate could be facilely tailored by regulating these experimental parameters.
     In the sixth part, we presented a facile route to hollow structured metal tungstate and molybdate particles via precipitation reactions at the ambient temperature in the presence of PMAA. A "polymer-M in situ template" reaction model was established to elucidate the formation of these hollow structures. Moreover, hollow structured WO_3 was achieved using the hollow structured SrWO_4 or BaWO4 particles as the precursors, which were treated by nitric acid and calcinations sequentially. In the procedure, BaWO_4 or SrWO_4 was turned to WO_3, whereas the original hollow structures of the precursors were perfectly maintained.
     In the last part, micrometer and submicrometer sized monodispersed particles of polycrystalline BaSO_4 were produced by a simple precipitation reaction in the presence of PMAA at the ambient temperature. The "polymer-M in situ template" model was also available in explanation of formation process of such polycrystalline BaSO_4 particles.
引文
[1] S. Mann, R. B. Frankel, R. P. Blakemore. Structure, morphology and crystal growth of bacterial magnetite. Nature, 1984, 310(2): 405-407.
    [2] S. Weiner, L. Addadi. Design strategies in mineralized biological materials. J. Mater. Chem., 1997, 7(5): 689-702.
    [3] S. Mann. Molecular Recognition in Biomineralization. Nature, 1988, 332(10): 119-124.
    [4] S. Mann, N. H. C. Sparks, R. B. Frankel, et al. Biomineralization of ferrimagnetic greigite (Fe_3S_4) and iron pyrite (FeS_2) in a magnetotactic bacterium. Nature, 1990, 343(18): 258-261.
    [5] J.R. Young, J. M. Didymus, P. R. Bown, et al. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 1992, 356(9): 516-518.
    [6] K.M. McGrath. Probing Material Formation in the Presence of Organic and Biological Molecules. Adv. Mater., 2001, 13: 989-992.
    [7] S. Mann. Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, 2001: 5, 7.
    [8] M.J. Lochhead, S. R. Letellier, V. Vogel. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers. J. Phys. Chem. B, 1997, 101: 6665-6669.
    [9] J.W. Mullin, Crystallization, Butterworth-Heinemann, Oxford, 1992, p 257, 241, 103.
    [10] B. R. Heywood, S. Mann. Molecular Construction of Oriented Inorganic Materials: Controlled Nucleation of Calcite and Aragonite under Compressed Langmuir Monolayers. Chem. Mater., 1994, 6 (3): 311-318.
    [11] S. Mann. Molecular tectonic in biomineralization and biomimetic materials chemistry. Nature, 1993, 365(7): 499-505.
    [12] J. Aizenberg. A Bio-Inspired Approach to Controlled Crystallization at the Nanoscale. Bell Labs Technical Journal, 2005, 10(3): 129-141.
    [13]E. Dujardin, S. Mann. Bio-inspired Materials Chemistry. Adv. Mater., 2002, 14(11): 775-788.
    [14]D. Braga. From Amorphous to Crystalline by Design: Bio-Inspired Fabrication of Large Micropatterned Single Crystals. Angew. Chem. Int. Ed. 2003, 42: 5544-5546.
    [15]S.-H. Yu, H. Colfen. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem., 2004, 14: 2124-2147.
    [16]J. Yahiro, Y. Oaki, H. Imai. Biomimetic Synthesis of Wurtzite ZnO Nanowires Possessing a Mosaic Structure. Small, 2006, 2(10): 1183-1187.
    [17]R.A. Caruso, J. H. Schattka. Cellulose Acetate Templates for Porous Inorganic Network Fabrication. Adv. Mater., 2000, 12(24): 1921-1923.
    [18]M. Breulmann, S. A. Davis, S. Mann, et al. Polymer-Gel Templating of Porous Inorganic Macro-Structures Using Nanoparticle Building Blocks. Adv. Mater., 2000, 12(7): 502-507.
    [19]M. Nesterova, J. Moreau, J. F. Banfield. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochimica et Cosmochimica Acta, 2003, 67(6): 1177-1187.
    [20]N.I. Kovtyukhova, T. E. Mallouk, T. S. Mayer. Templated Surface Sol-Gel Synthesis of SiO_2 nanotubes and SiO_2-Insulated Metal Nanowires. Adv. Mater., 2003, 15(10): 780-785.
    [21]C. J. Johnson, M. Li, S. Mann, Seed-Assisted Synthesis of BaCrO_4 nanoparticles and nanostructures in Water-in-Oil Microemulsions. Adv. Funct. Mater., 2004, 14(12): 1233-1239.
    [22]D.H.W. Hubert, M. Jung, P. M. Frederik, et al. Vesicle-Directed Growth of Silica. Adv. Mater., 2000, 12(17): 1286-1290.
    [23]S-H. Yu, H. Colfen, M. Antonietti. Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures. J. Phys. Chem. B, 2003, 107: 7396-7405.
    [24]E. Dalas, P.Klepetsanis, G. Koutsoukos. The overgrowth of calcium carbonate on poly (vinyl chloride-co-vinyl acetate-co-maleic acid). Langmuir. 1999, 15: 8322-8327.
    [25]L. A. Gower, D. A .Tirrell. Calcium carbonate films and helices grown in solutions of poly(aspartate). J. Cryst. Growth., 1998, 191: 153-160.
    [26]M. Li, H. Colfen, S. Mann. Morphological control of BaSO_4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem., 2004, 14: 2269-2276.
    [27]H. Colfen, M. Antonietti. Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers. Langmuir, 1998, 14: 582-589.
    [28]J. Rudloff, M. Antonietti, H. Colfen, et al. Double-hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO_3. Macromal. Chem. Phys., 2002, 203: 627-635.
    [29]王飞,岳林海.活性聚苯乙烯膜诱导碳酸钙异相成核结晶.无机化学学报.2004,20(11):1361-1366.
    [30]岳林海,金达莱.两亲PS-b-PAA共聚物水溶液中球形碳酸钙复合物的合成及其热分解性质.科学通报,2004,49(1):61-64.
    [31]K. Naka, Y. Tanaka, Y. Chujo. Effect of anionic starburst dendrimers on the crystallization of CaCO_3 in aqueous solution: size control of spherical vaterite particles. Langmuir, 2002, 18: 3655-3658.
    [32]J.J.J.M. Donners, B. R. Heywood, E. W. Meijer, et al. Control over calcium carbonate phase formation by dendrimer/surfactant templates. Chem. Eur. J., 2002, 8: 2561-2567.
    [33]H. Colfen. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromal. Rapid Commun., 2001: 219-252.
    [34]S. Liu, N. C. Billingham, S. P. Armes. A Schizophrenic Water-Soluble Diblock Copolymer. Angew. Chem. Int. Ed., 2001, 40: 2328-2331.
    [35]J. Rodriguez-Hernandez, S. Lecommandoux. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc., 2005, 127: 2026-2027.
    [36]M. Oishi, Y. Nagasaki, K. Itaka, et al. Lactosylated Poly(ethylene glycol)-siRNA Conjugate through Acid-Labile β-Thiopropionate Linkage to Construct pH-Sensitive Polyion Complex Micelles Achieving Enhanced Gene Silencing in Hepatoma Cells. J. Am. Chem. Soc., 2005, 127: 1624-1625.
    [37]M. Antonietti, M. Breulmann, C. G. Gltner, et al. Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chem. Eur. J., 1998, 4: 2493-2500.
    [38]L. Qi, H. Colfen, M. Antonietti. Crystal Design of Barium Sulfate Using Double-Hydrophilic Block Copolymers. Angew Chem Int Ed., 2000, 39: 604-607.
    [39]张冬柏,齐利民,马季铭,等.双亲水嵌段共聚物存在下特殊形貌的BaC_2O_4晶体合成.高等学校化学学报,2004,25(1):159-161.
    [40]齐利民,席凯,马季铭.特殊形貌SrCO_3粒子的简易合成.化学学报,2003,61(1):126-128.
    [41]H. Colfen, L. Qi. A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chem. Eur. J., 2001, 7: 106-116.
    [42]L. Qi, H. Colfen, M. Antonietti. Control of Barite Morphology by Double-Hydrophilic Block Copolymers. Chem. Mater., 2000, 12: 2392-2403.
    [43]S.-H. Yu, H. Colfen, A. W. Xu, et aL.Complex Spherical BaCO_3 Superstructures Self-Assembled by a Facile Mineralization Process under Control of Simple polyelectrolyte. Cryst. Growth Design, 2004, 4(1): 33-37.
    [44]R. Kniep, S. Busch. Biomimetic Growth and Self-Assembly of Fluorapatite Aggregates by Diffusion into Denatured Collagen Matrices. Angew. Chem. Int. Ed., 1996, 35: 2624-2626.
    [45]S. Busch, U. Schwarz, R. Kniep. Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Flourapatite-Gelatine Composites. Chem. Mater., 2001, 13: 3260-3271.
    [46]J.H. Fendler. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev., 1987, 87: 877-899.
    [47]J.H.Fendler, F.C. Meldrum. The Colloid Chemical Approach to Nanostructured Materials. Adv. Mater., 1995, 7: 607-632.
    [48]L. Rapoport, Yu. Bilik, Y. Feldman, et al. Hollow nanoparticles of WS_2 as potential solid-state lubricants. Nature, 1997, 387(19): 791-793.
    [49] X. Li, Y. Xiong, Z. Li, et al. Large-Scale Fabrication of TiO_2 Hierarchical Hollow Spheres. Inorg. Chem., 2006, 45(9): 3493-3495.
    [50] H. Strohm, P. Lobmann. Porous TiO_2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised Pickering emulsions. J. Mater. Chem., 2004, 14: 2667-2673.
    [51] F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(6): 1111-1114.
    [52] Z. Dai, L. Dahne, H. Mohwald, et al. Novel Capsules with High Stability and Controlled Permeability by Hierarchic Templating. Angew. Chem. Int. Ed., 2002, 41: 4019-4023.
    [53] M. L. Breen, A. D. Dinsmore, R. H. Pink et al. Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir, 2001, 17(3): 903-907.
    [54] M. S. Fleming, T. K. Mandal, D. R. Walt. Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation. Chem. Mater., 2001, 13: 2210-2216.
    [55] J.J. Schneider. Magnetic Core/Shell and Quantum-Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis. Adv. Mater., 2001, 13: 529-533.
    [56] Z. Z. Yang, Z. W. Niu, Y. F. Lu et al. Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles. Angew. Chem. Int. Ed., 2003, 42: 1943-1945.
    [57] Z. Y. Zhong, Y. D. Yin, B. Gates et al. Preparation of Mesoscale Hollow Spheres of TiO_2 and SnO_2 by Templating Against Crystalline Arrays of Polystyrene Beads. Adv. Mater., 2000, 12: 206-209.
    [58] Y. D. Yin, Y. Lu, B. Gates et al. Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces. Chem. Mater., 2001, 13: 1146-1148.
    [59] C. X. Song, G. H. Gu, Y. S. Lin et al. Preparation and characterization of CdS hollow spheres. Materials Research Bulletin, 2003, 38: 917-924.
    [60] J. C. Bao, Y. Y. Liang, Z. Xu et al. Facile Synthesis of Hollow Nickel Submicrometer Spheres. Adv. Mater., 2003, 15: 1832-1835.
    [61] L. Z. Wang, Y. S. Ebina, K. Takada et al. Ultrathin hollow nanoshells of manganese oxide. Chem. Commun., 2004: 1074-1075.
    [62] F. Caruso, X. Y. Shi, R. A. Caruso et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Adv. Mater., 2001, 13: 740-744.
    [63] Y. Hotta, P. C. A. Alberius, L. Bergstrom. Coated polystyrene particles as templates for ordered macroporous silica structures with controlled wall thickness. J. Mater. Chem., 2003, 13: 496-501.
    [64] Z. Chen, P. Zhan, Z. L. Wang et al. Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating. Adv. Mater., 2004, 16: 417-422.
    [65] J. Chen, J. Wang, R. Liu et al. Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate. Inorg. Chem. Commun., 2004, 7: 447-449.
    [66] X. Sun, Y. D. Li. Ga_2O_3 and GaN Semiconductor Hollow Spheres. Angew. Chem. Int. Ed., 2004, 43: 3827-3831.
    [67] D. Wang, F. Caruso. Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel Reactions. Chem. Marer., 2002, 14: 1909-1214.
    [68] F. Caruso. Nanoengineering of Particle Surfaces. Adv. Mater., 2001, 13(1): 11-22.
    [69] D. J. Nottis, Y. A. Vlasov. Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals. Adv. Mater., 2001, 13: 371-374.
    [70] J. X. Huang, Y Xie, B. Li et al. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Adv. Mater., 2000, 12: 808-811.
    [71] J. S. Hu, Y. G. Guo, H. P. Liang et al. Interface Assembly Synthesis of Inorganic Composite Hollow Spheres. J. Phys. Chem. B, 2004, 108: 9734-9738.
    [72] Y. Hu, J. Chen, W. Chen, X. Li. Synthesis of Nickel Sulfide Submicrometer-sized Hollow Spheres Using a γ-Irradiation Route. Adv. Fuct. Mater., 2004, 14(4): 383-386.
    [73] B. Liu, H. C. Zeng. Symmetric and Asymmetric Ostwald-Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors. Small, 2005, 1(5): 566-571.
    [74] H. G. Yang, H. C. Zeng. Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening. J. Phys. Chem. B, 2004, 108: 3492-3495.
    [75] Y. Yin, R. M. Rioux, C. K. Erdonmez, et al. Formation of Hollow Nanocrystals through the Nanoscale Kirdendall Effect. Science, 2004, 304: 711-714.
    [76] B. Liu, H. C. Zeng. Fabrication of ZnO Dandelions via a Modified Kirdendall Process. J. Am. Chem. Soc., 2004, 126: 16744-16746.
    [77] J. G. Yu, M. Lei, B. Cheng, et al. Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction. J. Cryst. Growth, 2004, 261:566-570
    [78] K. Holmberg, B. Josson, B. Kronberg, et al. Surfactants and polymers in Aqueous Solution. John Wiley & Sons, Ltd. New York, 2002: 43,281.
    [79] S. Mann. The Chemistry of Form. Angew. Chem. Int. Ed., 2000, 39: 3392-3406.
    [80] P. Liang, Y. Zhao, Q. Shen, et al. The effect of carboxymethyl chitosan on the precipitation of calcium carbonate. J. Cryst. Growth, 2004, 261: 571-576.
    [81] J. G. Yu, J. C. Yu, L. Z. Zhang, et al. Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres. Chem. Commun. 2004: 2414-2415.
    [82] J. G. Yu, H. Tang, B. Cheng, et al. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid), J. Solid State Chem. 2004, 177: 3368-3374.
    [83] A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271: 933-937.
    [84] C. Dekker. Carbon nanotubes as molecular quantum wires. Phys. Today, 1999, 52: 22-28.
    [85] J. L. Machol, F. W. Wise, R. C. Patel, et al. Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B, 1993, 48: 2819-2822.
    [86] B. Zhang, G. Li, J. Zhang, et al. Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane. Nanotecnology, 2003, 14: 443-446.
    [87] P. Gadenne, Y. Yagil, G. Deutscher. Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition. J. Appl. Phys., 1989, 66(7): 3019-3025.
    [88] Z. H. Zeng, S. H. Wang, S. H. Yang. Synthesis and Characterization of PbS Nanocrystallites in Random Copolymer Ionomers. Chem. Mater., 1999, 11: 3365-3369.
    [89] D. M. Wilhelmy, E. Matijevic, Preparation of uniform colloidal particles of lead sulfide and of mixed sulfides of cadmium+zinc and cadmium+lead. Colloids Surf., 1985, 16: 1-8.
    [90] T. Trindade, P. O'Brien, X. Zhang, et al. Synthesis of PbS nanocrystallites using a novel single molecule precursors approach: X-ray single-crystal structure of Pb(S_2CNEtPr~i)_2. J. Mater. Chem., 1997, 7: 1011-1016.
    [91] S. H. Wang, S. H. Yang. Preparation and Characterization of Oriented PbS Crystalline Nanorods in Polymer Films. Langmuir, 2000, 16: 389-397.
    [92] D. B. Yu, D. B Wang, Z. Meng, et al. Synthesis of closed PbS nanowires with regular geometric morphologies. J. Mater. Chem., 2002, 12: 403-405.
    [93] D. B. Yu, D. B. Wang, S. Y. Zhang,et al. Multi-morphology PbS: frame-film structures, twin nanorods, and single-crystal films prepared by a polymer-assisted solvothermal method. J. Cryst. Growth, 2003, 249: 195-200.
    [94] Y.R. Ma, L. M. Qi, J. M. Ma et al. Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route. Cryst. Growth Des., 2004, 4: 351-354.
    [95] D.B. Wang, D. B. Yu, M. W. Shao, et al. Dendritic growth of PbS crystals with different morphologies. J. Cryst. Growth, 2003, 257: 384-389.
    [96] D. B. Kuang, A. W. Xu, Y. P. Fang, et al. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process. Adv. Mater., 2003, 15: 1747-1750.
    [97] Y. H. Ni, H. J. Liu, F. Wang, et al. PbS crystals with clover-like structure: Preparation, characterization, optical properties and influencing factors. Cryst. Res. Technol., 2004, 39: 200-206.
    [98] Y.C. Zhang, X. H. Hu, T. Qiao. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Commun., 2004, 132: 779-782.
    [99] J. F. Moulder, W. F. Stickle, P. E. Sobol, et al, Handbook of X-ray Photoelectron Spectroscopy, Perking-Elmer, 1992.
    [100] P. Jiang, Z. F. Liu, S. M. Cai. Thermodynamic Effects of Alcohol Additives on the Cooperative Binding of Sodium Dodecyl Sulfate to a Cationic Polymer. Langmuir, 2002, 18: 4465-4470.
    [101] Z. L. Wang. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B, 2000, 104: 1153-1175.
    [102] Y. H. Ni, H. J. Liu, F. Wang, et al. Shape Controllable Preparation of PbS Crystals by a Simple Aqueous Phase Route. Cryst. Growth Des. 2004, 4: 759-764.
    [103] J. M. Ouyang, S. P. Deng. Controlled and uncontrolled crystallization of calcium oxalate monohydrate in the presence of citric acid. Dalton Trans., 2003: 2846-2851.
    [104] H. L Wang, X. D. Ma, X. F Qian, et al. Selective synthesis of CdWO_4 short nanorods and nanofibers and their self-assembly. J. Solid State Chem., 2004, 177: 4588-4596.
    [105] X. G. Peng, J. Wickham, A. P. Alivisatos. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions. J. Am. Chem. Soc.,1998, 120: 5343-5344.
    [106] C. J. Murphy. Nanocubes and Nanoboxes. Science, 2002, 298: 2139-2141.
    [107] S. Lee, S. Cho, J. Cheon. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals. Adv. Mater., 2003, 15: 441-444.
    [108] S. Lee, Y. Jun, S. Cho, J. Cheon. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks. J. Am. Chem. Soc. 2002, 124: 11244-11245.
    [109] L. Qi, J. Li, J. Ma. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Adv. Mater., 2002, 14: 300-303.
    [110] N. J. Goldenfeld. Theory of spherulitic crystallization. J. Cryst. Growth, 1987, 84: 601-608.
    [111] S. Park, J. H. Lim, S. W. Chung, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiles. Science, 2004, 303: 348-351.
    [112] D. Whang, S. Jin, Y. Wu, et al. Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems. Nano Lett., 2003, 3: 1255-1259.
    [113] Y. Zhao, Z. Zhang, W. Liu, et al. Controlling Synthesis of Biln Dendritic Nanocrystals by Solution Dispersion. J. Am. Chem. Soc., 2004, 126: 6854-6855.
    [114] F. Gao, Q. Lu, X. Liu, et al. Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase. Nano Letters. 2001, 1: 743-748.
    [115] D. B. DeOliveira, R. A. Laursen. Control of Calcite Crystal Morphology by a Peptide Designed To Bind to a Specific Surface. J. Am. Chem. Soc., 1997, 119: 10627-10631.
    [116] G. Falini, S. Fermani, M. Gazzano, et al. A Comparative Study of Oxo-Ligand Effects in the Gas-Phase Chemistry of Atomic Lanthanide and Actinide Cations. Chem. Eur. J., 1997, 3: 1803-1090.
    [117] G. Falini, S. Fermani, M. Gazzano, et al. Oriented Crystallization of Vaterite in Collagenous Matrices. Chem. Eur. J., 1998, 4: 1048-1052.
    [118] S. Lin, M. Li, E. Dujardin, et al. One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater., 2005, 17: 2553-2559.
    [119] M. Li, E. Dujardin, S. Mann. Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chem. Commun., 2005: 4952-4954.
    [120] D. Zhang, L. Qi, J. Ma. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions. Adv. Mater., 2002, 14: 1499-1502.
    [121] H. Colfen, S. Mann. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed., 2003, 42:2350-2365
    [122] X. F. Zhao, J. G. Yu, B. Cheng, et al. Crystallization of lead sulfide in the presence of poly(methacrylic acid) or/and cetyltrimethylammonium bromide. J. Colloids and Surfaces A, 2005, 268: 78-84.
    [123] P. Lecoq. Ten years of lead tungstate development. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 537: 15-2i.
    [124] P. Lecoq, I. Dafinei, E. Auffray, et al. Lead tungstate (PbWO_4) scintillators for LHC EM calorimetry. Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 365: 291-298.
    [125] B. Liu, S.-H. Yu, L. J. Li, et al. Morphology Control of Stolzite Microcrystals with High Hierarchy in Solution. Angew. Chem. Int. Ed., 2004, 43: 4745-4750.
    [126] D. Chen, G. Z. Shen, K. B. Tang, et al. AOT-Microemulsions-Based Formation and Evolution of PbWO_4 Crystals. J. Phys. Chem. B, 2004, 108: 11280-11284.
    [127] X. L. Hu, Y. J. Zhu. Morphology Control of PbWO_4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route. Langmuir, 2004, 20: 1521-1523.
    [128] J. G. Yu, X. F. Zhao, B. Cheng, et al. Controlled synthesis of calcium carbonate in a mixed aqueous solution of PSMA and CRAB. J. Solid State Chem., 2005, 178: 861-867.
    [129] T. X. Wang, H. Colfen, M. Antonietti. Nonclassical Crystallization: Mesocrystals and Morphology Change of CaCO_3 Crystals in the Presence of a Polyelectrolyte Additive. J. Am, Chem. Soc., 2005, 127: 3246-3247.
    [130] L. Qi, H. Colfen, M. Antonietti, et al. Formation of BaSO_4 Fibres with Morphological Complexity in Aqueous Polymer Solutions. Chem. Eur., J., 2001, 7: 3526-3532.
    [131] M. Li, S. Mann. Emergence of Morphological Complexity in BaSO_4 Fibers Synthesized in AOT Microemulsions. Langmuir, 2000, 16: 7088-7094.
    [132] S.-H. Yu, M. Antonietti, H. Colfen, et al. Growth and Self-Assembly of BaCrO_4 and BaSO_4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions. Nano Lett., 2003, 3: 379-382.
    [133] Y. A. Hizhnyi, S. G. Nedilko, T. N. Nikolaenko. Theoretical investigation of the luminescence centres in PbWO_4 and CdWO_4 crystals. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 537: 36-39.
    [134] S.-H. Yu, M. Antonietti, H. Colfen, et al. Synthesis of Very Thin 1D and 2D CdWO4 Nanoparticles with Improved Fluorescence Behavior by Polymer-Controlled Crystallization. Angew. Chem. Int. Edit., 2002, 41: 2356-2360.
    [135] A. Michalowicz, J. J. Girerd, J. Goulon. EXAFS [extended x-ray absorption fine structure] determination of the copper oxalate structure. Relation between structure and magnetic properties. Inorg. Chem., 1979, 18: 3004-3010.
    [136] N. Jongen, P. Bowen, J. Lemaitre, et al. Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of Hydroxypropylmethylcellulose (HPMC): Control of Morphology. Colloid Interface Sci., 2000, 226: 189-198.
    [137] E. Matijevic. Fine Particles: Science and Technology. MRS Bull, 1989, 14: 18-22.
    [138] F. Caruso. Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chem. Eur. J., 2000, 6: 413-419.
    [139] H. Strohm. Liquid-Phase Deposition of TiO_2 on Polystyrene Latex Particles Functionalized by the Adsorption of Polyelectrolytes. Chem. Mater., 2005, 17: 6772-6780.
    [140] A. Bourlinos, N. Boukos, D. Petridis. Exchange Resins in shape Fabrication of Hollow Inorganic and Carbonaceous-Inorganic Composite Spheres. Adv. Mater., 2002, 14: 21-24.
    [141] C. E. Fowler, D. Khushalani, S. Mann. Facile synthesis of hollow silica microspheres. J. Mater. Chem., 2001, 11: 1968-1971.
    [142] A. B. Bourlinos, D. Petridis, M. A. Karakassides. Synthesis and characterization of hollow clay microspheres through a resin template approach. Chem. Commun., 2001: 1518-1519.
    [143] D. H. W. Hubert, M. Jung, A. L. German. Vesicle Templating. Adv. Mater., 2000, 12: 1291-1294.
    [144] H. T. Schmidt, A. E. Ostafin. Liposome Directed Growth of Calcium Phosphate Nanoshells. Adv. Mater., 2002, 14: 532-535.
    [145] D. Walsh, B. Lebeau, S. Mann. Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges. Adv. Mater., 1999, 11: 324-328.
    [146] S. Xu, H. Wang, J. J. Zhu, et al. An in situ Template Route for Fabricating Metal Chalcogenide Hollow Spherical Assemblies Sonochemically. Eur. J. Inorg. Chem., 2004: 4653-4659.
    [147] X. L. Li, T. J. Lou, X. M. Sun, et al. Highly Sensitive WO_3 Hollow-Sphere Gas Sensors. Inorg. Chem., 2004, 43: 5442-5449.
    [148] Z. B. Huang, F. Q. Tang. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J. Colloid Interface Sci., 2005, 281: 432-435.
    [149] C. W. Lantman, W. J. MacKnight, R. D. Lundberg. Structural Properties of Ionomers. Annu. Rev. Mater. Sci., 1989, 19: 295-317.
    [150] H. T. Shi, L. M. Qi, J. M. Ma, et al. Synthesis of single crystal BaWO_4 nanowires in catanionic reverse micelles. Chem. Commun., 2002: 1704-1705.
    [151] H. T. Shi, L. M. Qi, J. M. Ma, et al. Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles. J. Am, Chem. Soc., 2003, 125:3450-3451.
    [152] H. T. Shi, L. M. Qi, J. M. Ma, et al. Architectural Control of Hierarchical Nanobelt Superstructures in Catanionic Reverse Micelles. Adv. Funct. Mater., 2005, 15: 442-450.
    [153] X. Zhang, Y. Xie, X. B. Tian. Growth of BaWO_4 fishbone-like nanostructures in w/o microemulsion. J. Colloid Interface Sci., 2004, 274: 118-121.
    [154] J. G. Zhou, M. K. Lu. Z. L. Xiu, et al. Polymer micelle-assisted fabrication of hollow BaWO_4 nanospheres. J. Cryst. Growth, 2005, 276: 116-120.
    [155] C. Santato, M. Odziemkowski, M. Ulmann, et al. Crystallographically Oriented Mesoporous WO_3 Films: Synthesis, Characterization, and Applications. J. Am. Chem. Soc., 2001, 123: 10639-10649.
    [156] A. G. Souza-Filho, V. N. Freire, J. M. Sacaki, et al. Coexistence of monoclinic and triclinic phase in WO_3 ceramics. J. Raman Spectrosc. 2000, 31: 451-454.
    [157] J. M. Jethmalani, W. T. Ford, G. Beaucage. Crystal Structures of Monodisperse Colloidal Silica in Poly(methyl acrylate) Films. Langmuir, 1997, 13: 5515-5515.
    [158] T. Sugimoto. The theory of the nucleation of monodisperse particles in open systems and its application to agbr systems. J. Colloid Interface Sci., 1992, 150: 208-225.
    [159] S. O'Brien, L. Brus, C. B. Murray. Synthesis of Monodisperse Nanoparticles of Barium Titanate: Toward a Generalized Strategy of Oxide Nanoparticle Synthesis. J. Am. Chem. Soc., 2001, 123: 12085-12086.
    [160] M. Yin, S. O'Brien. Synthesis of Monodisperse Nanocrystals of Manganese Oxides. J. Am. Chem. Soc., 2003, 125: 10180-10181.
    [161] T. Yanagishita, Y. Tomabechi, K. Nishio, et al. Preparation of Monodisperse SiO_2 Nanoparticles by Membrane Emulsification Using Ideally Ordered Anodic Porous Alumina. Langmuir, 2004, 20: 554-555.
    [162] C. Liu, X. Wu, T. Klemmer, et al. Polyol Process Synthesis of Monodispersed FePt Nanoparticles. J. Phys. Chem. B., 2004, 108: 6121-3123.
    [163] W. Lu, J. Fang, K. L. Stokes, et al. Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals. J. Am. Chem. Soc., 2004, 126: 11798-11799.
    [164] H. Hiramatsu, F. E. Osterloh. A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants. Chem. Mater., 2004, 16: 2509-2511.
    [165] X. Sun, S. Dong, E. Wang. Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature. J. Am. Chem. Soc., 2005, 127: 13102-13103.
    [166] V. K. Lamer, R. H. Dinegar. Theory, production and mechanism of formation of mondispersed hydrosols. J. Am. Chem. Soc., 1950, 71: 4847-4854.
    [167] M. Summers, J. Eastoe, S. Davis. Formation of BaSO_4 Nanoparticles in Microemulsions with Polymerized Surfactant Shells. Langmuir, 2002, 18: 5023-5026.
    [168] Z. Jia, Z. Liu, E He. Synthesis of nanosized BaSO_4 and CaCO_3 particles with a membrane reactor: effects of additives on particles. J. Colloid Interface Sci., 2003, 266: 322-327.
    [169] D. Rautaray, A. Banpurkar, S. R. Sainkar, et al. BaSO_4 Crystals Grown at an Expanding Liquid-Liquid Interface in a Radial Hele-Shaw Cell Show Spontaneous Large-Scale Assembly into Filaments. Cryst. Growth Des., 2003, 3: 449-452.
    [170] D. Rautaray, A. Kumar, S. Reddy, et al. Morphology of BaSO_4 Crystals Grown on Templates of Varying Dimensionality- The Case of Cysteine-Capped Gold Nanoparticles (0-D), DNA (1-D), and Lipid Bilayer Stacks (2-D). Cryst. Growth Des., 2002, 2: 197-203.
    [171] P. A. Sermon, N. M. McLellana I. R. Collins. Formation of BaSO_4 nanoribbons from a molecular mangle. CrystEngComm, 2004, 6: 470-474.
    [172] V. Privman, D. V. Coia, J. Park, et al. Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors. J. Colloid Interface Sci., 1999, 213:36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700