导电呋喃—吡咯共聚物膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物是20世纪70年代发展起来的一个崭新的研究领域,其在能源、光电子器件、传感器、分子导线和分子器件等方面都有诱人的应用前景。与其他五元杂环聚合物,如聚吡咯、聚噻吩相比,聚呋喃研究并没有引起人们的关注。这主要是因为人们无法通过传统的化学聚合法、电化学聚合法获得具有良好共轭结构、较高导电率的聚呋喃化合物。并且因为呋喃本身高的氧化电势,使其难于通过共聚等方法对其改性。本研究采用新的合成路线,通过糠醛、毗咯间的羟甲基化反应实现了共聚,制备得到了具有良好导电性能和机械性能的呋喃-吡咯共聚物膜。我们通过FT-IR、UV-vis等考察了反应条件、共聚组分的变化对共聚物性能的影响;通过FT-IR、TG等考察了共聚物的稳定性;通过FT-IR、UV-vis等考察了碘掺杂过程对聚合物结构、导电率等的影响;通过拉伸实验等考察了共聚物膜的机械性能。我们并对反应机理、导电机理进行了分析和讨论。
     实验证明,此合成方法可以有效的实现呋喃-吡咯间的共聚,并且能够避免聚合过程中呋喃的开环,提高生成聚合物的共轭性。制备得到的呋喃-吡咯共聚物膜具有良好的环境稳定性和热稳定性、较高的导电率(1.011×10-3 S·cm-1)和良好的机械性能(拉伸断裂强度为10.2 MPa,杨氏模量为333.6 MPa)。
Since the conductive polymers were discovered in 1970s, they have attracted increasing interest due to their unique properties and wide applications such as energy, optoelectronic devices, sensors, molecular wires and molecular devices, etc. In contrast to other five heterocyclic polymers like polypyrrole and polythiophene, polyfuran is among the most ill-defined conjugated polymers. This is due to its lower aromaticity and higher oxidation potential compared with other conductive polymers. These inherent defects make polyfuran difficult to be obtained with good conjugated structures by the general chemical polymerization and electrochemical polymerization. Moreover, the problems also induce the failure of optimizations which is carried out by copolymerization. Here, a new synthetic route through the methylolation reaction between furfural and pyrrole was applied. The structures and properties of the copolymers obtained through the method were characterized in detail with infrared (IR) and ultraviolet-visible (UV-vis). The infulence of reaction conditions and copolymer compositions were investigated. In addition, the mechanism of reaction and conducting were discussed. Finally, several important properties, including thermal stability and mechanical properties of copolymers were elaborated.
     The data indicated that the copolymerization between furfual and pyrrole can achieved successfully by this method. The ring-opening of furan and pyrrole can be avoided during the polymerization. Resultant poly(furan-co-pyrrole) films show favorable environmental stability and thermal stability, high conductivity (1.011×10-3 S·cm-1) and good mechanical properties (10.2 MPa of tensile breaking strength,333.6 MPa of Young's modulus).
引文
[1]Machida S, Miyata A. Chemical synthesis of highly electrically conductive polypyrrole[J]. Synthetic Metals,1989,31 (3):311~318
    [2]McCullough R, Ewbank P, Loewe R. Self-assembly and disassembly of regioregular, water soluble polythiophenes:chemoselective ionchromatic sensing in water[J]. Journal of the American Chemical Society,1997,119 (3):633~634
    [3]Reitzel N, et al. Self-assembly of conjugated polymers at the air/water interface. Structure and properties of Langmuir and Langmuir-Blodgett films of amphiphilic regioregular polythiophenes[J]. Journal of the American Chemical Society,2000,122 (24):5788~ 5800
    [4]Wynne K J, Bryan G. Poly(pyrrol-2-ylium tosylate):Electrochemical synthesis and physical and mechanical properties[J]. Macromolecules,1985,18 (12):2361~2368
    [5]Nie Z, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society,2005,127(22):8058~ 8063
    [6]Jang J, Ha J, and Kim S. Fabrication of Polyaniline Nanoparticles Using Microemulsion Polymerization [J]. Macromolecular Research,2007,15 (2):154~23
    [7]Wu A, Kolla H, Manohar S. Chemical synthesis of highly conducting polypyrrole nanofiber film[J]. Macromolecules,2005,38 (19):7873~7875
    [8]Carswell A, Edgar A, Grady B. Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces:From spheres to wires to flat films[J]. Journal of the American Chemical Society,2003,125 (48): 14793-14800
    [9]Zhang X, Manohar S. Narrow pore-diameter polypyrrole nanotubes[J]. Journal of the American Chemical Society,2005,127 (41):14156~14157
    [10]Jang J, Yoon H. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems[J]. Langmuir,2005,21 (24):11484~11489
    [11]Marinakos S, et al. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation [J]. Journal of the American Chemical Society,1999,121 (37):8518-8522
    [12]Nusz G, et al. Rational selection of gold nanorod geometry for label-free plasmonic biosensors[J]. ACS nano,2009,3 (4):795~806
    [13]Marinakos S, Shultz D, Feldheim D. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules[J]. Advanced Materials,1999,11(1): 34~37
    [14]Watanabe M, Ogata N. Ionic conductivity of polymer electrolytes and future applications[J]. British Polymer Journal,2007,20 (3):181~192
    [15]Bay L, et al. Mechanism of actuation in conducting polymers:osmotic expansion[J]. Journal of Physics and Chenmisty. Prat B,2001,105 (36):8492~8497
    [16]Huang J, et al. Polyaniline nanofibers:facile synthesis and chemical sensors[J]. Journal of the American Chemical Society,2003,125(2):314~315
    [17]Shi G, et al. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide[J]. Biomaterials,2004,25 (13):2477~2488
    [18]Lu G, et al. Enhanced electrical conductivity of highly crystalline polythiophene insulating-polymer composite[J]. Macromolecules,2007,40 (18):6579~6584
    [19]Chiang C, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977,39 (17):1098~1101
    [20]Chiang C, et al. Polyacetylene:n-type and p-type doping and compensation[J]. Applied Physics Letters,1978,33:18~22
    [21]Heeger A. Nobel Lecture:Semiconducting and metallic polymers:The fourth generation of polymeric materials[J]. Reviews of Modern Physics,2001,73 (3):681~700
    [22]Park Y, et al. Electrical transport in doped polyacetylene[J]. The Journal of Chemical Physics,1980,73 (2):946~952
    [23]Heeger A, et al. Solitons in conducting polymers[J]. Reviews of Modern Physics,1988, 60 (3):781~850
    [24]Su W, Schrieffer J, Heeger A. Solitons in polyacetylene[J]. Physical Review Letters,1979, 42 (25):1698~1701
    [25]Su W, Schrieffer J, and Heeger A. Soliton excitations in polyacetylene[J]. Physical Review B,1980,22 (4):2099~2111
    [26]Mastragostino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors[J]. Solid State Ionics,2002,148 (3-4):493~498
    [27]Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J]. Electrochimica Acta,2005,50 (12):2499~2506
    [28]Sathiyanarayanan S, et al. Prevention of corrosion of iron in acidic media using poly (o-methoxy-aniline)[J]. Electrochimica Acta,1994,39 (6):831~837
    [29]DeBerry D. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. J. Electrochem. Soc.,1985,132 (5):1022~1026
    [30]Tan C K, Blackwood D J. Corrosion protection by multilayered conducting polymer coatings[J]. Corrosion Science,2003,45 (3):545~557
    [31]Heeger A. Nobel Lecture:Semiconducting and metallic polymers:The fourth generation of polymeric materials[J]. Reviews of Modern Physics,2001,73 (Copyright (C) 2010 The American Physical Society):681~690
    [32]MacDiarmid A G. Nobel Lecture:"Synthetic metals":A novel role for organic polymers[J]. Reviews of Modern Physics,2001, (73) (Copyright (C) 2010 The American Physical Society):701~705
    [33]Burroughes J, et al. Light-emitting diodes based on conjugated polymers [J]. Nature,1990, 347 (6293):539~541
    [34]Kim W, et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes[J]. Applied Physics Letters,2002, (80):3844~3850
    [35]Colvin VcSchlamp M, and Alivisatos A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nano Letters,2007,7(12):3803~3807
    [36]Ramanathan K, et al. Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor[J]. Materials Science and Engineering:C,1995,3 (3-4):159~163
    [37]Fortier G, Langer D B. Characterization of the biochemical behavior of glucose oxidase entrapped in a polypyrrole film[J]. Biotechnology and bioengineering,2004,37(9):854~ 858
    [38]Foulds N, Lowe C. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors[J]. Journal of the Chemical Society, Faraday Transactions 1,1986,82(4):1259~ 1264
    [39]Collins G, Buckley L. Conductive polymer-coated fabrics for chemical sensing[J]. Synthetic Metals,1996,78 (2):93~101
    [40]Li Y, et al. A flexible strain sensor from polypyrrole-coated fabrics[J]. Synthetic Metals, 2005,155 (1):89~94
    [41]Potts H, Smith G. The structure of pyrrole trimer[J]. Journal of the Chemical Society (Resumed),1957,1957:4018~4022
    [42]Korshak V, Sultanov A, Abduvaliyev A. Uzb. khim. zh.1959
    [43]Armour M, et al. Colored electrically conducting polymers from furan, pyrrole, and thiophene[J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1967,5 (7): 1527~1538
    [44]Hawkins S, Ratcliffe N. A study of the effects of acid on the polymerisation of pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole[J]. Journal of Materials Chemistry,2000,10 (9):2057~2062
    [45]Benvenuti F, et al. Synthesis structural characterization and electrical properties of highly conjugated soluble poly(furan)s[J]. Polymer,1997,38 (19):4973~4982
    [46]Diaz A, et al. Electrochemistry of some substituted pyrroles[J]. Journal of Electroanalytical Chemistry,1981,130:181~187
    [47]Diaz A, et al. Electrochemistry of conducting polypyrrole films[J]. Journal of Electroanalytical Chemistry,1981,129 (1-2):115~132
    [48]Li X, Kang Y, Huang M. Optimization of Polymerization Conditions of Furan with Aniline for Variable Conducting Polymers[J]. Journal of Combinatorial Chemistry,2006,8 (5): 670~678
    [49]Can M, et al. Investigation of catalytic effects of the proton and Lewis acids on oligomerization and chemical polymerization of pyrrole[J]. Polymer,2004,45 (20):7011~ 7016
    [50]McConnell R, Godwin W, Phillips B. New Studies of Polyfuran and Polymers of 3-Substituted Furan Rings[J]. Journal of the Arkansas Academy of Science,1997, (51)
    [51]Machida S,Miyata S,Techagumpuch A. Chemical synthesis of highly electrically conductive polypyrrole[J]. Synthetic Metals,1989,31 (3):311~318
    [52]Otero T F, Cantero I, Grande H. Solvent effects on the charge storage ability in polypyrrole[J]. Electrochimica Acta,1999,44 (12):2053~2059
    [53]Satoh M, Kaneto K, Yoshino K. Dependences of electrical and mechanical properties of conducting polypyrrole films on conditions of electrochemical polymerization in an aqueous medium[J]. Synthetic Metals,1986,14 (4):289~296
    [54]Demirboga B, Onal A M. Electrochemical polymerization of furan and 2-methylfuran[J]. Synthetic Metals,1999,99 (3):237~242
    [55]Li Y. Effect of anion concentration on the kinetics of electrochemical polymerization of pyrrole[J]. Journal of Electroanalytical Chemistry,1997,433 (1-2):181~186
    [56]Kudoh Y. Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2 (SO4)3 and anionic surfactant[J]. Synthetic Metals,1996,79(1): 17-22
    [57]Omastov ¢ M, et al. Synthesis and structural study of polypyrroles prepared in the presence of surfactants[J]. Synthetic Metals,2003,138 (3):447~455
    [58]Gonzalez-Tejera, Carrillo M J, Hernandez-Fuentes I. Influence of the electropolymerization parameters on the generation of polyfurane perchlorate doped films[J]. Synthetic Metals, 1998,92 (3):187~195
    [59]Wan X, et al. Low Potential Electrochemical Synthesis of Polyfuran and Characterization of the Obtained Free-Standing Film[J]. Chemistry of Materials,1999,11 (9):2400~2407
    [60]Otero T F, Lopez Cascales J J, Vazquez Arenas G. Mechanical characterization of free-standing polypyrrole film[J]. Materials Science and Engineering:C,2007,27 (1): 18~22
    [61]Gonzalez-Tejera M J, Carrillo I, Hernandez-Fuentes I. Polyfuran:electrosynthesis and electrochemical behaviour[J]. Synthetic Metals,1995,73 (2):135~140
    [62]Aytac M, Kabasakalolu M. Sar Ion-Selective Electrodes Prepared with Polyaniline Membranes[J]. Russian Journal of Electrochemistry,2004,40 (7):732~735
    [63]Refaey S A M, Schwitzgebel G, Schneider O. Electrochemical impedance studies on oxidative degradation, overoxidative degradation, deactivation and reactivation of conducting polymers[J]. Synthetic Metals,1999,98 (3):183~192
    [64]Ko H C, et al. Electrochemistry and electrochromism of the polythiophene derivative with viologen pendant[J]. Synthetic Metals,2002,132 (1):15~20
    [65]Benvenuti F, et al. Synthesis, Structural Characterization and Electrical-Properties of Highly Conjugated Soluble Poly(Furan)s[J]. Polymer,1997,38 (19):4973~4982
    [66]Demirboga B, Onal A M. ESR and conductivity investigations on electrochemically synthesized polyfuran and polythiophene[J]. Journal of Physics and Chemistry of Solids, 2000,61 (6):907~913
    [67]Wan X, et al. The electrochemical copolymerization of pyrrole and furan in a novel binary solvent system[J]. Journal of Electroanalytical Chemistry,1999,470 (1):23~30
    [68]Kabasakaloglu M, et al. The electrochemical homopolymerization of furan and thiophene and the structural elucidation of their bipolymer films[J]. Applied Surface Science,2003, 218 (1-4):85~97
    [69]McConnell R, et al. Co-polymers of furan with pyrrole or thiophene:A synthetic study[J]. Journal of the Arkansas Academy of Science,2002, (56):51~59
    [70]Ay, et al. Synthesis and characterization of novel polyfuran/poly(2-iodoaniline) conducting composite[J]. Journal of Applied Polymer Science,2003,89 (10):2823~2830
    [71]Ay, et al. Chemical preparation of conducting polyfuran/poly(2-chloroaniline) composites and their properties:A comparison of their components, polyfuran and poly(2-chloroaniline)[J]. Journal of Applied Polymer Science,2003,88 (13):2924~ 2931
    [72]Ballav N, Biswas M. Preparation and evaluation of nanocomposites of polyfuran with Al2O3 and montmorillonite clay[J]. Polymer International,2004,53 (10):1467~1472
    [73]Talu M, et al. Electrochemical synthesis and characterization of homopolymers of polyfuran and polythiophene and bipolymer films polyfuran/polythiophene and polythiophene/ polyfuran[J]. Applied Surface Science,2001,181 (1-2):51~60
    [74]Shang Q Y, et al. Chemical nature of conduction in indine-doped trans-1,4-poly(buta-1,3-diene) and some of its derivatives:the presence of I3- and the affect of double-bond configuration[J]. Macromolecules,1990,23 (6):1886~1889
    [75]沈辰君.聚双烯烃和聚吡咯共聚物导电高分子的研究[D].[博士学位论文].浙江:浙江大学,2002.89~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700