导电聚合物复合膜电极的氧还原性能及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物由于具有无毒无害、制备简便、高的导电性和环境稳定性等特点而受到广泛关注。但其自身也存在机械可加工性能差的缺点,所以近年来导电聚合物复合材料已成为研究热点,即在单体聚合的过程中将不同的阴离子基团掺杂进导电聚合物膜内,在保持其原有性能的基础上,得到具有掺杂阴离子特性的导电聚合物复合膜。
     蒽醌及其衍生物能极大地促进氧还原为过氧化氢(H2O2)的反应速率,然而,通常将其以自然吸附和共价键合修饰在电极表面,经长时间使用后容易脱落,造成修饰电极稳定性和电催化活性的降低。因此,如何提高蒽醌衍生物修饰电极的稳定性和保证修饰电极的电催化活性已成为当今研究的热点。此外,由于均相electro-Fenton水处理方法存在介质pH条件苛刻、大量的酸碱消耗、产生大量含铁污泥和铁催化剂络合失活、流失等主要缺点,限制了该技术的大规模实用化。因此,开发和构建非均相electro-Fenton体系并将其应用于污水处理领域,已成为环境电化学学科广泛关注的课题。
     本论文采用电化学原位聚合方法制备了蒽醌单磺酸(AQS)掺杂的导电聚吡咯(PPy)复合膜(AQS/PPy)。利用扫描电镜、傅里叶变换红外光谱技术详细研究了它们的结构、形貌及组成性能。结果表明,在吡咯(Py)单体电化学氧化聚合的过程中,AQS作为对阴离子可实现对导电PPy膜的掺杂,获得具有多孔结构的导电聚合物复合膜。在不同的pH溶液中,利用循环伏安法、计时安培/计时库仑技术考察了AQS/PPy复合膜的电化学性质。结果表明,在酸性水溶液中掺杂于PPy膜内的AQS只经历了一步两电子转移的还原过程。同时,导电聚合物复合膜具有优良的环境稳定性和电化学重现性。
     利用循环伏安法(CV)、计时安培/计时库仑、旋转圆盘电极(RDE)、旋转环盘电极(RRDE)、Tafel极化、电化学交流阻抗(EIS)等技术手段研究了AQS/PPy复合膜修饰光谱纯石墨(SPG)电极对溶解氧分子还原反应的电催化性能。结果表明,在酸性溶液介质中导电聚合物复合膜修饰电极均能高效地催化溶解氧的两电子还原反应生成过氧化氢(H2O2),掺杂于导电聚合膜内的蒽氢醌(H2AQS)对氧还原反应起主要的媒介电催化作用。在比H2AQS催化氧还原反应生成H2O2更负的电位区域内,导电PPy膜能进一步催化H2O2的两电子还原反应生成H2O。
     此外,本论文还以AQS/PPy复合膜修饰光谱纯石墨作为电解池的阴极,以γ-Al2O3载体负载铜氧化物(CuO)作为活化H2O2的催化剂,构建了非均相electro-Fenton-like氧化体系。采用恒电位运行方式分别从体系温度、催化剂投加量等方面考察了该体系对苋菜红偶氮染料氧化降解效果的影响。确定了体系运行的最优化条件。并对非均相催化剂的稳定性与再生性能进行了评价。
Conducting polymers have been applied in many fields because of convenience of preparation, harmlessness, high conductivity and environmental stability. Recently, the conducting polymer composite materials have been paid much attention because of the poor mechanical properties of pure conductive polymers. On one hand, the conductive polymer composite materials hold their primary properties, and on the other hand their mechanical properties have been improved at a certain extent.
     Recently, the electrochemical reduction of oxygen has also been widely studied on anthraquinones and their various derivatives modified electrodes,, since the surface modification of electrodes with anthraquinones greatly increase the rate of oxygen reduction to hydrogen peroxide (H2O2). However, anthraquinones and their various derivatives which are grafted as spontaneously adsorbed or covalently bound monolayer on the electrode surface, tend to desorb from the surface during the long-term operation, leading to a loss of electrocatalytic ability and stability of the working electrodes. So, how to improve the stability and the electrocatalytic activity of the anthraquinones derivatives modified electrodes becomes a research hotspot. In addition, homogeneous electro-Fenton systems have some well-known drawbacks, e.g. a limited pH range, the production of iron-containing waste sludge which is difficult to dispose, and the catalyst deactivation by some iron complexing agents like phosphates anions, that is why the development of heterogenerous electro-Fenton systems that causes extensive attention in the subject of electrochemical, especially for wastewater treatment.
     In this work, the functionalized PPy film with anthraquinone-monosulphonate (AQS) incorporated as dopant was prepared by electrochemical anodic polymerization of pyrrole (Py) at a glassy carbon electrode from aqueous solution. The prepared AQS/PPy hybrid film was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopic (FTIR). The results showed that anion AQS can realize the doping in the process of Py monomer electrochemical oxidation polymerization, synthesizing the conductive polymer composite film with porous structure. The electrochemical behavior of AQS in PPy matrix was investigated in various pH solutions using cyclic voltammetry (CV) and chronoamperometry/chronocoulometry, a single two-electron reduction step was observed for the resulting composite film in donor's media. AQS/PPy hybrid film exhibits good stability and electrochemical reproducibility.
     The electrocatalytic reduction of oxygen on the AQS/PPy composite film was also investigated in detail in various pH solutions using various electrochemical techniques such as CV, chronoamperometry/chronocoulometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE), Tafel polarity and electrochemical impedance spectroscopy (EIS). It was found that the conductive polymer composite film exhibits obvious catalytic behavior on the electrochemical reduction of oxygen into hydrogen peroxide (H2O2). The doping AQS is an effective mediator for the reduction of oxygen and the H2AQS is responsible for the enhanced catalytic activity. The PPy film can further reduce H2O2 to H2O in the potential range more negative than the potential range where the two-electron reduction of oxygen proceeds efficiently on the AQS sites.
     In addition, heterogeneous electro-Fenton-like system has been constructed by the AQS/PPy composite membrane modified spectrum pure graphite and the catalyst CuO/γ-Al2O3. The azo dye decay were determined as a function of temperature, catalyst dosage. The system operation optimization conditions have been found. Further, the stability and regeneration of the heterogeneous catalysts were also investigated under the optimum reaction conditions.
引文
[1]Sires I, Garrido JA, Rodriguez RM, et al. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Applied Catalysis B: Environmental,2007,72(3-4):382-390.
    [2]Flox C, Ammar S, Arias C, et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Applied Catalysis B:Environmental,2006, 67(1-2):93-104.
    [3]Boye B, Dieng MM, Brillas E. Degradation of Herbicide 4-Chlorophenoxyacetic Acid by Advanced Electrochemical Oxidation Methods. Environmental Science and Technology,2002, 36(13):3030-3035.
    [4]Sires I, Arias C, Cabot PL, et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere,2007,66(9):1660-1669.
    [5]Guinea E, Arias C, Cabot PL, et al. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research,2008, 42(1-2):499-511.
    [6]宫兆合,梁国正,卢婷利,等.玻璃钢复合材料.北京:科学出版社,2003:45-49.
    [7]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2002.
    [8]Sung H, Lee T, Paik W-k. Electroactive counter anions in conducting polypyrrole: hexacyanoferrate and heteropolytungstate ions. Synthetic Metals,1995,69(1-3):485-486.
    [9]Coutanceau C, Rakotondrainibe A, Crouigneau P, et al. Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine:application to the study of oxygen reduction at such electrodes. Journal of Electroanalytical Chemistry,1995,386(1-2): 173-182.
    [10]Coutanceau C, El Hourch A, Crouigneau P, et al. Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines:Preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochimica Acta,1995,40(17):2739-2748.
    [11]Coutanceau C, Crouigneau P, Leger J M, et al. Mechanism of oxygen electroreduction at polypyrrole electrodes modified by cobalt phthalocyanine. Journal of Electroanalytical Chemistry,1994,379(1-2):389-397.
    [12]Shchukin D G, Sviridov D V. Highly efficient generation of H2O2 at composite polyaniline/heteropolyanion electrodes:effect of heteropolyanion structure on H2O2 yield. Electrochemistry Communications,2002,4(5):402-405.
    [13]Pham M-C, Bouallala S, Le LA, et al. Study of a heteropolyanion-doped poly(5-amino-l-naphthol) film electrode and its catalytic activity. Electrochimica Acta, 1997,42(3):439-447.
    [14]Dong S, Cheng L, Zhang X. Electrochemical studies of a lanthanide heteropoly tungstate/molybdate complex in polypyrrole film electrode and its electrocatalytic reduction of bromate. Electrochimica Acta,1997,43(5-6):563-568.
    [15]Fabre B, Bidan G. Electrosynthesis of different electronic conducting polymer films doped with an iron-substituted heteropolytungstate:choice of the immobilization matrix the most suitable for the electrocatalytic reduction of nitrite ions. Electrochimica Acta, 1997,42(16):2587-2590.
    [16]Lee J K, Song I K, Lee W Y. Design of novel catalyst imbedding heteropoly acids in polymer films:Catalytic activity for ethanol conversion. Journal of Molecular Catalysis A:Chemical,1997,120(1-3):207-216.
    [17]Pielichowskia K, Hasik M. Thermal properties of new catalysts based on heteropolyanion-doped polyaniline. Synthetic Metals,1997,89(3):199-202.
    [18]Stochmal-Pomarzanska E, Quillard S, Hasik M, et al. Spectroscopic and catalytic studies of selected polyimines protonated with heteropolyacids. Synthetic Metals,1997,84(1-3): 427-428.
    [19]Lapkowski M, Turek W, Barth M, et al. Changes in catalytic properties of substituted and unsubstituted heteropolyacids in conductive polymer matrix. Synthetic Metals,1995, 69(1-3):127-128.
    [20]Nguyen Cong H, El Abbassi K, Gautier J L, et al. Oxygen reduction on oxide/polypyrrole composite electrodes:effect of doping anions. Electrochimica Acta,2005,50(6):1369-1376.
    [21]Nguyen-Cong H, de la Garza Guadarrama V, Gautier J L, et al. Oxygen reduction on NixCo3-xO4 spinel particles/polypyrrole composite electrodes:hydrogen peroxide formation. Electrochimica Acta,2003,48(17):2389-2395.
    [22]Gautier J L, Marco J F, Gracia M, et al. Ni0.3Co2.7O4 spinel particles/polypyrrole composite electrode:Study by X-ray photoelectron spectroscopy. Electrochimica Acta,2002, 48(2):119-125.
    [23]Marco J F, Gancedo J R, Cong H N, et al. Characterization of Cu1.4Mn1.6O4/PPy composite electrodes. Solid State Ionics,2006,177(15-16):1381-1388.
    [24]Cong H N, Abbassi K E, Chartier P. Electrocatalysis of Oxygen Reduction on Polypyrrole/Mixed Valence Spinel Oxide Nanoparticles. Journal of the Electrochemical Society,2002,149(5):A525-A530.
    [25]Singh R N, Lal B, Malviya M. Electrocatalytic activity of electrodeposited composite films of polypyrrole and CoFe204 nanoparticles towards oxygen reduction reaction. Electrochimica Acta,2004,49(26):4605-4612.
    [26]Khomenko V G, Barsukov V Z, Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction. Electrochimica Acta,2005,50(7-8):1675-1683.
    [27]Galal A. Elelctrocatalytic oxidation of some biologically important compounds at conducting polymer electrodes modified by metal complexes. Journal of Applied Electrochemistry,1998,2(1):7-15.
    [28]Tuken T, Arslan G, Yazici B, et al. The preparation of polypyrrole coated brass and copper electrodes for electrocatalysis. Progress in Organic Coatings,2004,49(2):153-159.
    [29]Buttner E, Holze R. Hydroquinone oxidation electrocatalysis at polyaniline films. Journal of Electroanalytical Chemistry,2001,508(1-2):150-155.
    [30]Komura T, Mori Y, Yamaguti T, et al. Electrostatic incorporation of anthraquinone-sulfonate ions into a polypyrrole film containing pyridinium groups. Electrochimica Acta, 1997,42(6):985-991.
    [31]Komura T, Yokono Y, Yamaguchi T, et al. Current enhancing effect of poly [1-methyl-3-(pyrrol-1-ylmethyl)-pyridinium] films on the electrode reaction of anthraquinonedisulfonate. Journal of Electroanalytical Chemistry,1999,478(1-2):9-16.
    [32]Zhang J, Tse Y-H, Pietro W J, et al. Electrocatalytic activity of N, N',N",N'-tetramethyl-tetra-3,4-pyridopor-phyrazinocobalt(Ⅱ) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine. Journal of Electroanalytical Chemistry,1996,406(1-2):203-211.
    [33]Ardiles P, Trollund E, Isaacs M, et al. Electrocataltyic oxidation of hydrazine at polymeric iron-tetraaminophthalocyanine modified electrodes. Journal of Molecular Catalysis A:Chemical,2001,165(1-2):169-175.
    [34]Vaik K, Sarapuu A, Tammeveski K, et al. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 2004,564(1-2):159-166.
    [35]Hossain M S, Tryk D, Yeager E. The electrochemistry of graphite and modified graphite surfaces:the reduction of O2. Electrochimica Acta,1989,34(12):1733-1737.
    [36]Tammeveski K, Kontturi K, Nichols R J, et al. Surface redox catalysis for O2 reduction on quinone-modif ied glassy carbon electrodes. Journal of Electroanalytical Chemistry,2001, 515(1-2):101-112.
    [37]Manisankar P, Gomathi A, Velayutham D. Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. Journal of Solid State Electrochemistry,2005,9(9):601-608.
    [38]Mirkhalaf F, Tammeveski K, Schiffrin D J. Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics,2004,6(6):1321-1327.
    [39]Zhang G, Yang F. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisulphonate composite film in various pH solutions. Electrochimica Acta,2007,52(24):6595-6603.
    [40]Zhang G, Yang W, Yang F. Electrochemical behavior and electrocatalytic activity of anthraquinone- disulphonate in solution phase and as doping species at polypyrrole modified glassy carbon electrode. Journal of Electroanalytical Chemistry,2007,602(2):163-171.
    [41]Manesh K M, Santhosh P, Gopalan A I, et al. Electrocatalytic Dioxygen Reduction at Glassy Carbon Electrode Modified with Polyaniline Grafted Multiwall Carbon Nanotube Film. Electroanalysis,2006,18(16):1564-1571.
    [42]Coutanceau C, Croissant M J, Napporn T, et al. Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochimica Acta,2000,46(4): 579-588.
    [43]Lai E K W, Beattie P D, Holdcroft S. Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films. Synthetic Metals,1997,84(1-3):87-88.
    [44]Lai E K W, Beattie P D, Orf ino F P, et al. Electrochemical oxygen reduction at composite films of Nafion(R), polyaniline and Pt. Electrochimica Acta,1999,44(15):2559-2569.
    [45]Yang Q, Wang Y, Nakano H, et al. Electrocatalytic reduction of oxygen at platinum particles photodeposited on polyaniline/Nafion film. Polymer for Advanced Technologies, 2005,16(11-12):759-763.
    [46]Coutanceau C, Rakotondrainibe A, Crouigneau P, et al. Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine:Application to the study of oxygen reduction at such electrodes. Journal of Electroanalytical Chemistry,1995, 386(1-2):173-182.
    [47]Alonso-Vante N, Cattarin S, Musiani M. Electrocatalysis of O2 reduction at polyaniline+ molybdenum-doped ruthenium selenide composite electrodes. Journal of Electroanalytical Chemistry,2000,481(2):200-207.
    [48]Shchukin D G, Sviridov D V. Highly efficient generation of H2O2 at composite polyaniline/ heteropolyanion electrodes:effect of heteropolyanion structure on H2O2 yield. Electrochemistry Communications,2002,4(5):402-405.
    [49]Nagaoka T, Sakai T, Ogura K, et al. Oxygen reduction at electrochemically treated glassy carbon electrodes. Analytical Chemistry,1986,58(9):1953-1955.
    [50]Huang Y H, Chen C C, Huang G H, et al. Comparison of a novel electro-Fenton method with Fenton's reagent in treating a highly contaminated wastewater. Water Science and Technology,2001,43(2):17-24.
    [51]Lin S H, Lo C C. Fenton process for treatment of desizing wastewater. Water Research, 1997,31(8):2050-2056.
    [52]Kusic H, Loncaric Bozic A, Koprivanac N. Fenton type processes for minimization of organic content in coloured wastewaters:Part I:Processes optimization. Dyes and Pigments, 2007,74(2):380-387.
    [53]Qiang Z, Chang J, Huang C. Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research,2003,37(6):1308-1319.
    [54]Brillas E, Mur E, Sauleda R, et al. Anline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photo-Fenton processes. Applied Catalysis B: Environmental,1998,16(1):31-42.
    [55]Flox C, Ammar S, Arias C, et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Applied Catalysis B:Environmental,2006, 67(1-2):93-104.
    [56]Sires I, Garrido J A, Rodriguez R M, et al. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Applied Catalysis B: Environmental,2007,72(3-4):382-390.
    [57]Boye B, Dieng M M, Brillas E. Degradation of Herbicide 4-Chlorophenoxyacetic Acid by Advanced Electrochemical Oxidation Methods. Environmental Science and Technology,2002, 36(13):3030-3035.
    [58]Sires I, Arias C, Cabot P L, et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere,2007,66(9):1660-1669.
    [59]Qin J, Zhang Q, Chuang K T. Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts. Applied Catalysis B:Environmental,2001,29(2):115-123.
    [60]Costa R C, Lelis M F, Oliveira L C, et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):The role of M2+ species on the reactivity towards H202 reactions. Journal of Hazardous Material,2006,129(1-3):171-178.
    [61]Baldrian P, Merhautova V, Gabriel J, et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental,2006,66(3-4):258-64.
    [62]Kwan W P, Voelker B M. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems. Environmental Science and Technology, 2003,37(6):1150-1158.
    [63]Sanchez-Sanchez C M, Exposito E, Casado J, et al. Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electrochemistry Communications,2007,9(1):19-24.
    [64]Labat G, Seris J L, Meunier B. Oxidative Degradation of Aromatic Pollutants by Chemical Models of Ligninase Based on Porphyrin Complexes. Angewandte Chemie-International Edition English,1990,29(12):1471-1473.
    [65]Tao X, Ma W H, Li J, et al. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation. Chemical Communications,2003, (1):80-81.
    [66]Sorokin A, Seris J L, Meunier B. Efficient Oxidative Dechlorination and Aromatic Ring Cleavage of Chlorinated Phenols Catalyzed by Iron Sulfophthalocyanine. Science,1995, 268(5214):1163-1166.
    [67]Ding K Q, Cheng F M. Cyclic voltammetrically prepared MnO2-PPy composite material and its electrocatalysis towards oxygen reduction reaction (ORR). Synthetic Metals,2009, 159(19-20):2122-2127.
    [68]E. Hakansson, T. Lin, H. Wang, et al. The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synthetic Metals,2006,156(18-20): 1194-1202.
    [69]Salimi A, Eshghi H, Sharghi H, et al. Electrocatalytic Reduction of Dioxygen at the Surface of Glassy Carbon Electrodes Modified by Some Anthraquinone Substituted Podands. Electroanalysis,1999,11(2):114-119.
    [70]Salimi A, Mousavi M F, Sharghi H, et al. Electrocatalysis of O2 Reduction at Glassy Carbon Electrodes Modified with Adsorbed 1,4-Dihydroxy-9,10-anthraquinone Derivatives. Bulletin of the Chemical Society of Japan,1999,72(9):2121-2127.
    [71]Manisankar P, Gomathi A. Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions. Journal of Molecular Catalysis A: Chemical,2005,232(1-2):45-52.
    [72]Forster R J, O'Kelly J P. Protonation reactions of anthraquinone-2,7-disulphonic acid in solution and within monolayers. Journal of Electroanalytical Chemistry,2001,498(1-2): 127-135.
    [73]Tammeveski K, Kontturi K, Nichols R J, et al. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry,2001, 515(1-2):101-112.
    [74]Shamsipur M, Salimi A, Golabi S M, et al. Electrochemical properties of modified carbon paste electrodes containing some amino derivatives of 9,10-anthraquinone. Journal of Solid State Electrochemistry,2001,5(1):68-73.
    [75]Shamsipur M, Salimi A, Haddadzadeh H, et al. Electrocatalytic activity of cobaloxime complexes adsorbed on glassy carbon electrodes toward the reduction of dioxygen. Journal of Electroanalytical Chemistry,2001,517(1-2):37-44.
    [76]Raoof D B, Golabi S M. Electrochemical Properties of Carbon-Paste Electrodes Spiked with Some 1,4-Naphthoquinone Derivatives. Bulletin of the Chemical Society of Japan,1995, 68(8):2253-2261.
    [77]Manisankar P, Gomathi A, Velayutham D. Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. Journal of Solid State Electrochemistry,2005,9(9):601-608.
    [78]Golabi S M, Raoof J B. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and sone of its derivatives. Journal of Electroanalytical Chemistry,1996,416(1):75-82.
    [79]Salimi A, Eshghi H, Sharghi H, et al. Electrocatalytic Reduction of Dioxygen at the Surface of Glassy Carbon Electrodes Modified by Some Anthraquinone Substituted Podands. Electroanalysis,1999,11(2):114-119.
    [80]Tammeveski K, Kontturi K, Nichols R J, et al. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry,2001, 515(1-2):101-112.
    [81]Coutanceau C, El Hourch A, Crouigneau P, et al. Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines:Preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochimica Acta,1995,40(17):2739-2748.
    [82]Nagaoka T, Sakai T, Ogura K, et al. Oxygen reduction at electrochemically treated glassy carbon electrodes. Analytical Chemistry,1986,58(9):1953-1955.
    [83]Erdogdu G, Karagozler A E. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta, 1997,44(11):2011-2018.
    [84]Zhang L, Dong S. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. Journal of Electroanalytical Chemistry, 2004,568(1):189-194.
    [85]Raoof J B, Ojani R, Kiani A. Carbon paste electrode spiked with ferrocene carboxylic acid and its application to the electrocatalytic determination of ascorbic acid. Journal of Electroanalytical Chemistry,2001,515(1-2):45-51.
    [86]Wang B C, Cao X Q. Anodic oxidation of hydrazine on glassy carbon modified by macrocyclic transition metal complexes:Part 1. Cobalt protoporphyrin dimethyl ester modified electrode. Journal of Electroanaltical Chemistry,1991,309(1-2):147-158.
    [87]Kumar S A, Chen S M. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes. Journal of Molecular Catalysis A:Chemical,2007,278(1-2):244-250.
    [88]Khomenko V G, Barsukov V Z, Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction. Electrochimica Acta,2005,50(7-8):1675-1683.
    [89]S. Biallozor, T. Zalewska. Study on polypyrrole as an electrode material in neutral solutions. Corrosion Science,1998,40(11):1873-1881.
    [90]S. Biallozor, T. Zalewska, A. Lisowska-Oleksiak. Reduction of dioxygen in neutral solution at polypyrrole electrode. Journal of Applied Electrochemistry,1996,26(10): 1053-1057.
    [91]Coutanceau C, Hourch A El, Crouigneau P, et al. Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines:Preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochimica Acta,1995,40(17):2739-2748.
    [92]Golabi S M, Raoof J B. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and sone of its derivatives. Journal of Electroanalytical Chemistry,1996,416(1):75-82.
    [93]Shamsipur M, Salimi A, Haddadzadeh H, et al. Electrocatalytic activity of cobaloxime complexes adsorbed on glassy carbon electrodes toward the reduction of dioxygen. Journal of Electroanalytical Chemistry,2001,517(1-2):37-44.
    [94]Bard A. J., Faulkner L. R. Electrochemical Methods, Fundamentals and Applications. New York:John Wiley & Sons,2000.
    [95]Shang Yu Yeh, Chong Mou Wang. Anthraquinone-modified electrodes, preparations and characterizations. Journal of Electroanalytical Chemistry,2006,592(2):131-138.
    [96]Paskossy T. Impedance of rough capacitive electrodes. Journal of Electroanalytical Chemistry,1994,364(1-2):111-125.
    [97]M. Kullapere, J M Seinberg, U Maeorg, et al. Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations. Electrochimica Acta,2009,54(7):1961-1969.
    [98]Shchukin D G, Sviridov D V. Highly efficient generation of H2O2 at composite polyaniline/heteropolyanion electrodes:effect of heteropolyanion structure on H2O2 yield. Electrochemistry Communications,2002,4(5):402-405.
    [99]Lamy C, Leger J M, Garnier F. Hand-book of conductive Molecules and Polymer[M]. New York:John Wiley and Sons,1977.
    [100]Nguyen-Cong H, Guadarrama V G, Gautier J L, et al. Oxygen reduction on NixCo3-xO4 spinel particles/polypyrrole composite electrodes:hydrogen peroxide formation. Electrochimica Acta,2003,48(17):2389-2395.
    [101]Zumin Qiu, Yunbing He, Xiaocheng Liu, et al. Catalytic oxidation of the dye wastewater with hydrogen peroxide. Chemical Engineering and Processing,2005,44(9):1013-1017.
    [102]Karkmaz K, Puzenat E, Guillard C, et al. Photocatalytic degradation of the alimentary azo dye amaranth-Mineralization of the azo dye to nitrogen. Applied Catalysis B: Environmental,2004,51(3):183-194.
    [103]Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental,1998,16(1):31-42.
    [104]E Guivarch, Trevin S, Lahitt C, et al. Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters,2003,1(1):38-44.
    [105]Joseph J, Destaillats H, Hung H, et al. The sonochemical degradation of azobenzene and related azo dyes:rates enhancements via Fenton's reactions. The Journal of Physical Chemistry A,2000,104(2):301-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700