碱式硼酸镁晶须和六方片状氢氧化镁的水热制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的硼酸镁和氢氧化镁具有优异的力学性能、耐高温耐腐蚀性、独特的增强、阻燃性能,它们在改善金属、塑料及陶瓷等复合材料性能方面都有重要的应用价值。硼酸镁和氢氧化镁是重要镁盐功能材料,应用前景广阔。
     本文研究了硼酸镁晶须和六方片状氢氧化镁的制备工艺;考察了反应温度、反应时间、反应物浓度、表面活性剂等因素对产品性能的影响;利用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)及热重分析(TG)等测试手段对产品性能进行了表征;获得了水热制备硼酸镁晶须和氢氧化镁的优化工艺条件,并初步探讨了他们的生长过程。
     以MgCl2·6H2O, Na2B4O7·10H2O, NH3·H2O为原料,向反应体系中加入聚乙二醇,经水热法制得了碱式硼酸镁晶须,其化学组成为MgBO2(OH)。
     对碱式硼酸镁晶须的制备条件进行了研究,考察了反应物浓度、氯化镁与四硼酸钠浓度比、反应温度、反应时间、表面活性剂对产品形貌的影响。获得制备碱式硼酸镁晶须最佳的反应条件为:氯化镁浓度为1.67mol/L,四硼酸钠浓度为0.31mol/L,氨水浓度为6.3mol/L,反应温度190℃,反应时间10小时。得到了直径约为60-90纳米,长度为3-7微米,长径比为30-90,分散性良好的碱式硼酸镁晶须。
     碱式硼酸镁晶须经700℃高温焙烧3h以上,因脱水发生物相转化,得到硼酸镁(Mg2B2O5)晶须,制得的硼酸镁晶须长径比为50-80,晶须尺寸均匀。
     根据水热反应中溶解—再结晶机制对硼酸镁晶须的生长过程进行了研究。碱式硼酸镁晶须是多步离子反应经特定晶面选择生长的结果,再通过焙烧脱水得到硼酸镁晶须。
     以MgCl2·6H2O, NH3·H2O为原料,向反应体系中加入聚乙二醇,经水热制备法制得规则六方片状氢氧化镁。
     对氢氧化镁的制备条件进行了研究,考察了反应温度、反应时间、氨水浓度、表面活性剂对产品形貌的影响。氯化镁溶液浓度为1.67mol/L,氨水浓度为0.25mol/L190℃反应6h是其制备六方片状氢氧化镁的最佳条件,其直径为200-300nm,厚度为20-50nm。
     六方片状氢氧化镁的生长也是溶解—再结晶过程。随水热反应温度的升高氢氧化镁逐渐溶解,于是Mg2+和OH-不断聚集成晶胚,晶胚形成一定大小的晶核,晶核继续长大生成氢氧化镁。
Nanostructured Magnesium borate and Magnesium hydroxide has excellent mechanical properties, high temperature, corrosion resistance, unique strengthen' property and flame-retardant property and they have important application value on improveing performance of the metal, plastic and ceramic composites. Magnesium borate and Magnesium hydroxide are important functional materials with wide application prospect.
     In this paper, the preparation technology of Nanostructured Magnesium borate and Magnesium hydroxide was researched; The influence of reaction temperature, reaction time, concentration and surfactant conditions on performance of the products were investigated; XRD, SEM, FT-IR, TG were employed to characterize the structural feature, morphology, chemical composition and thermal behavior of the products. The optimized hydrothermal synthesis process conditions of them were obtained and also their growth processes were discussed.
     Magnesium borate hydroxide whiskers was prepared by using a hydrothermal method with MgCl2·6H2O, Na2B4O7·10H2O, NH3·H2O and adding dispersant into the reaction system. The experiment results showed that it was MgBO2(OH).
     The effect of operational parameters such as concentration, material ratio, reaction temperature, reaction time, surfactant on the composition and morphology of the products were studied. The optimum condition were:the concentration of MgCl2·6H2O:1.67 mol/L, Na2B4O7·10H2O:0.31mol/L, NH3:6.3mol/L, reaction temperature:190℃, reaction time:10h. MgBO2(OH) has a aspect ratio of 30-90, a diameter of 60-90, length 3-7μm and good dispersibility.
     Magnesium borate whiskers (Mg2B2O5) with aspect ratio of 50-80 were then obtained by calcining of the precursor at 700℃for 3h due to water loss.
     Magnesium borate hydroxide whiskers growth process was studied under dissolution recrystallization mechanism of hydrothermal method. Magnesium borate whisker growth is a multi-step reaction by ions selective on specific crystal face, it was then sintered to achieve Magnesium borate whiskers.
     Magnesium hydroxide nano-plates was prepared by using a hydrothermal method with MgCl2·6H2O and adding dispersant into the reaction system.
     The effect of operational parameters such as reaction temperature, reaction time, surfactant on composition and morphology of the products were studied. Magnesium hydroxide hexagonal plate with a thickness of 20-50nm and a diameter of 200-300nm was prepared when the concentration of MgCl2·6H2O:1.67 mol-L, NH3·H2O: 6.3mol/L.
     Magnesium hydroxide hexagonal plate growth is dissolution recrystallization mechanism too. Magnesium hydroxide gradually dissolved as the temperature increasing. Mg2+ and OH- continued to gather into embryos, embryos formed a certain size nuclei, thus Magnesium hydroxide nano-plates was generated finally.
引文
[1]杨剑,滕凤恩.纳米材料综述[J].材料导报,1997,11(2):6-10
    [2]陈津.纳米非金属功能材料[M].北京:化学工业出版社,2007,1-10
    [3]王翠.纳米科学技术与纳米材料概述[J].延边大学学报,2001,27:66-70
    [4]卢柯.周飞纳米晶体材料的研究现状[J].金属学报,1997,23:99-106
    [5]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社,2002,38-44
    [6]张立德等.纳米材料和纳米结构[M].北京:科学出版社,2001,12-20
    [7]王广厚.韩民.纳米微晶材料的结构和性质[J].物理学进展,1990,10:248-289
    [8]Klabunde K J纳米材料化学[M].北京:化学工业出版社,2004,79-85
    [9]王大志.纳米材料结构特征[J].功能材料,1993,24(4):303-306
    [10]倪星元,姚兰芳,等.纳米材料制备技术[M].北京:化学工业出版社,2002,45-67
    [11]高仁喜,王杰,田胜军.纳米技术与纳米材料研发现状[J].湿法冶金,2003,22:58-65
    [12]张梅.纳米材料的研究现状及展望[J].导弹与航天运载技术,2002,3:11-16
    [13]殷娇.纳米材料的合成以及在电催化和化学需氧量测定中的应用研究[D].吉林,东北师范大学,2009
    [14]孟弘.纳米材料制备研究进展[J].矿产保护与利用,2003,4:14-18
    [15]刘海涛,杨郦.无机材料合成[M].北京:化学工业出版社,2007,327-334
    [16]李彦,张庆敏,黄福志.模板法制备硫化物半导体纳米材料[J].无机化学学报,2002,18(1):79-82
    [17]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:59-67,146-154
    [18]李莉娟,孙凤久.红外光谱在金属氧化物纳米材料研究中的应用[J].材料导报,2006,20(1):92-94
    [19]李慧青,张淑芬,王国强.新型增强材料—硼酸镁晶须[J].化工新型材料,2001,29(1):16-18
    [20]李慧青,孙旖,孙萱.若干无机盐晶须的研究状况与展望[J].无机盐工业,2002,34(2):17
    [21]Kitamura Takao, katou shiyunsaku, wadahideo.Whisker of magnesium borate and its preparation[P]. Japan,60204697.1985-10-16
    [22]李强,周启立,宋晓莉.硼酸镁晶须的制备及应用[J].无机盐工业,2004,36(2):13
    [23]胡克伟,钟辉,吴小王.镁盐晶须填充材料的研究进展和应用前景[J].广州化学,2005,30(4):59
    [24]戴静,王敏,张金才.硼酸盐晶须在复合材料中的应用[J].化工矿物与加工,2005,10:36
    [25]胡克伟,李东升,孙彦军.碳酸钙晶须填充材料的合成及应用展望[J].广东微量元素科学,2006,13(4):14
    [26]Watanabe Akira. Production of magnesium borate fiber[P]. Japan,1045714,1989-02-20
    [27]马正先,陈来保,闫平科.硼酸镁晶须制备研究进展[J].中国非金属矿工业导刊,2008,(4):21-24
    [28]Wancheng Zhu, Qiang Zhang, Lan Xiang. Flux-Assisted Thermal Conversion Route to Pore-Free High Crystallinity Magnesium Borate Nanowhiskers at a Relatively Low Temperature[J]. Crystal Growth & Design,2008,8(8):2938-2945
    [29]靳志良,李武,张志宏.硼酸镁晶须的合成研究[J].无机盐工业,2003,35(3):22-24
    [30]边绍菊,李洁,乃学瑛.硼酸镁晶须的制备及生长机理初探[J].盐湖研究,2007,15(2):45-49
    [31]边绍菊.硼酸镁晶须的优化制备及生长过程分析探讨[D].北京,中国科学院,2007
    [32]王春杰.可控高压水热合成纳米MoSz及其表征[D],吉林,吉林大学,2008
    [33]张信.‘无机功能材料的湿化学制备工艺[D],大连,大连理工大学,2009
    [34]向兰,朱万诚,朱慎林.一种硼酸镁晶须的水热合成制备方法[P],中国专利,1936104,2007-03-28
    [35]汪海东,原力,尉敬华等.微波固相法合成硼酸镁晶须[J].盐湖研究,1998,6(2-3):98-102
    [36]Jiang Zhang, Zongquan Li, Bin Zhang. Formation and structure of single crystalline magnesium borate(Mg3B2O6) nanobelts[J]. Materials Chemistry and Physics,2006,98(2-3): 195-197
    [37]Yan Li, Zhiyong Fan, Jia G. Lu. Synthesis of magnesium borate (Mg2B2O5) nanowires by chemical vapor deposition method[J]. Chemistry of Materials,2004,16(13):2512-2514
    [38]张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001:135-138
    [39]江继伟,汪雷,杨青,等.溶胶—凝胶法制备硼酸镁纳米棒[J].无机材料学报,2006,21(4):833-837
    [40]李天保.低维碳材料和硼酸镁纳米材料的可控合成与机理研究[D].太原,太原理工大学,2008
    [41]李武.无机晶须[M].北京,化学工业出版社,2005,88-93
    [42]李强,周启立,宋晓莉.硼酸镁晶须的制备及应用[J].无机盐工业,2004,36(2):13-14
    [43]陈耀庭.阻燃剂发展前景及无机阻燃母料的研制[J].上海塑料,2000,12(14):4-6
    [44]周政懋.我国阻燃技术发展新动向[J].阻燃材料与技术,2000,5:1-2
    [45]刘立华,杨建杨,张连瑞,等.氢氧化镁阻燃剂的应用现状及前景展望[J].化工科技市场,2006,29(3):29-31
    [46]叶虹,孙思修.结晶氢氧化镁和镁盐晶须的制备研究[D].济南,山东大学,2006
    [47]张雪虎,许并社.阻燃用氢氧化镁的制备与改性研究[D].太原,太原理工大学,2007
    [48]Qian Haiyan, Deng Min, Zhang Shaoming. Synthesis of superfine Mg(OH)2 particles by magnesite[J]. Materials Science and Engineering A,2007,445-446:600-603
    [49]Wenjun Jiang, Xiao Hua, Qiaofeng Han. Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method[J]. Powder Technology,2009,191(3):227-230
    [50]吴士军,刘进荣,李彩虹,等.直接沉淀法制备纳米氢氧化镁粉体的研究[J].内蒙古工业太学学报,2005,24(4),272-275
    [51]Xiaotang Lv, Hari-Bala, Minggang Li., In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007, 296(1-3):97-103
    [52]李振中,瞿保钧.高分散性纳米片状氢氧化镁的制备及应用[J].灭火剂与阻燃材料,2006,25(4):514-516
    [53]李振中,瞿保钧.阻燃型氢氧化镁的制备及其应用[J].无机盐工业,2006,38(11):13-14
    [54]吴健松,郭锦媛,冯嘉儿.湛江海水制备纳米氢氧化镁及表征[J].盐业与化工,2007,37(3):35-37
    [55]X. Li, G. B. Ma, Y. Y. Liu. Synthesis and Characterization of Magnesium Hydroxide Using a Bubbling Setup[J]. Ind. Eng. Chem. Res,2009,48(2):763-768
    [56]Xiang Lan, Jin Yongcheng, Jin Yong. Hydrothermal formation of dispersive Mg(OH)2 particles in NaOH solution[J]. Trans. Nonferrous Met. Soc. China,2004,14(2):370-375
    [57]Yi Ding, Guangtao Zhang, Hao Wu. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders:Control over size, Shape, and Structure via Hydrothermal Synthesis[J]. Chem. Mater,2001,13(2):435-440
    [58]Li Yan, Jing Zhuang, Xiaoming Sun. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration[J]. Materials Chemistry and Physics,2002,76(2):119-122
    [59]Yi Ding, Guangtao Zhang, Shuyuan Zhang, Preparation and Characterization of Magnesium Hydroxide Sulfate Hydrate Whiskers[J], Chem.Mater,2000,12(10):2845-2852
    [60]Dehong Chen, Lunyu Zhu, Huaiping Zhang. Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation[J], Materials Chemistry and Physics,2008, 109(2-3):224-229
    [61]Xiaoxing Yan, Dongli Xu, Dongfeng Xue. SO42- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O[J]. Acta Materialia,2007,55(17):5747-5757
    [62]Weiliu Fan, Sixiu Sun, Liping You. Solvothermal synthesis of Mg(OH)2 nanotubes using Mg10(OH)18Cl2·5H2O nanowires as precursors[J]. Journal of Materials Chemistry,2003,13(12): 3062-3065
    [63]Xiaotao Sun, Lan Xiang. Hydrothermal conversion of magnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Materials Chemistry and Physics,2008 109(2-3):381-385
    [64]刘烨,景殿策,王宝和.氢氧化镁纳米棒的制备及热分解动力学研究[J].河南化工2008,1(25):25-27
    [65]邹燕.应用前景广‘阔的氢氧化镁[J].化工技术经济,2002,20(6):16-19
    [66]罗振敏,任大伟.天然纤维水镁石在阻燃材料中的应用[J].非金属矿,2001,24(3):21-23
    [67]向兰,吴会军,金永成,王金福.阻燃型氢氧化镁制备技术评述[J].海湖盐与化工,2001,30(5):1-4
    [68]郑荣光,徐永花.氢氧化镁处理含铬废水的研究[J].华东地质学院学报,1999,22(3):265-269
    [69]郑荣光.氢氧化镁处理含铅废水的研究[J].无机盐工业,2000,32(1):26-27
    [70]郭如新.氢氧化镁在工业废水处理中的应用[J].工业水处理,2000,20(2):1-4
    [71]郭如新.镁剂在烟气脱硫领域中的应用[J].海湖盐与化工.2003,32(3):8-10
    [72]许坤.氢氧化镁对水溶性阴离子染料废水脱色[J].环境化学,1998,17(1):94-98
    [73]裕鸣.氢氧化镁对印染废水脱色处理[J].水处理技术,2000,26(4):245-248
    [74]徐宝强.阻燃级超微氢氧化镁的制备研究[J].昆明,昆明理工大学,2005
    [75]徐如人,庞文琴.无机合成与制备化学[M].北京,高等教育出版社,2001,58-60
    [76]闫修川,李召好,李法强.阻燃用氢氧化镁的表面改性研究现状[J].盐湖研究,2005,13(4):67-71
    [77]吴健松,李财花,李海民.有机溶剂—水热法制备阻燃球形氢氧化镁[J].无机盐工业,2006,38(3):40-42
    [78]张雪虎,晏鸿,魏丽乔.针状纳米氢氧化镁的形貌控制[J].功能材料信息,2006,3(3):43-45
    [79]Li JunXia Shuping,Gao Shiyang. FT-IR and Raman Spectroscopic Study of Hydrated Borates[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,1995, 51(4):519-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700